N
N

N

HAL

open science

SemCat: Source Selection Services for Linked Data
Pascal Molli, Hala Skaf-Molli, Arnaud Grall

» To cite this version:

Pascal Molli, Hala Skaf-Molli, Arnaud Grall. SemCat: Source Selection Services for Linked Data.
[Research Report] université de Nantes. 2020. hal-02931367

HAL Id: hal-02931367
https://hal.science/hal-02931367

Submitted on 6 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02931367
https://hal.archives-ouvertes.fr

SEMCAT: Source Selection Services for Linked
Data

Pascal Molli', Hala Skaf-Molli', and Arnaud Gralll»2

! LS2N - University of Nantes, France
{pascal.molli,hala.skaf,arnaud.grall}@univ-nantes.fr
2 GFI Informatique - IS/CIE, Nantes, France arnaud.grall@gfi.fr

Abstract. As a web search engine is able to find relevant sources for a
keyword query, the web of data clearly needs a source selection engine
able to find relevant endpoints for a SPARQL query. However, source
selection requires to get informations about the content of endpoints
and currently, it remains difficult to automatically explore the content of
endpoints as web robots explore the content of web servers. Thanks to
the web preemption principle, we propose to automatically build RDF
summaries of endpoints through SPARQL queries. We propose SEMCAT,
an approach to compute the source selection of a query @ by evaluat-
ing a rewriting of @@ on summaries. As all queries terminate under the
web preemption paradigm, SEMCAT is able to provide a web automated
source selection service relying on preemptable SPARQL servers. We
empirically demonstrate that various summaries can be extracted with
a data transfer proportional to the size of the summary, and highlight
the trade-off between the size of the summaries, the accuracy of source
selection and the execution time of source selection.

Keywords: Linked Data; Semantic Web; SPARQL query service

1 Introduction

Context and motivation: Following the Linked Data principles [3] hundreds
of interconnected knowledge graphs are available through public SPARQL End-
points [22]. However, executing a SPARQL query at the web scale is still chal-
lenging. The main issue concerns source selection, i.e. given a SPARQL query,
find the minimal number of relevant sources on the web of data to be contacted
to execute the query.

Existing Federated Query Engines (FQE) [18] perform source selection just
over a local catalog of sources and not over the web. In these conditions, a
federated query engine barley build a federated database, not a global data space.
As a web search engine is able to find relevant sources for a keyword query, the
web of data clearly needs a source selection engine able to find relevant endpoints
for a SPARQL query. As web search engines help the web to be decentralized, a
source selection engine should help the web of data to be decentralized.

Related works and problem: Source selection has been extensively stud-
ied [18, 16]. Efficient source selection requires to know what are inside endpoints.
This can be done by asking endpoints [18] but this cannot scale to large number
of endpoints. Another option relies on summaries but this supposes that sum-
maries can be obtained or computed in a fully automated and reliable way at
web scale [8]. Clearly, there is no equivalent to web robots of web search en-
gines able to crawl the whole set of endpoints. This prevents the automation of
indexing of endpoints at the web scale. Recently, web preemption[10] allowed
SPARQL queries to be executed sliced time, and [7] presented how it can be
used to compute aggregates. This opens the door to the traversing of endpoints
while collecting summaries.

Approach and Contributions: In this paper, we foster on web preemption
to build SEMCAT; a source selection service for SPARQL endpoints. SEMCAT is a
SPARQL endpoint hosting an RDF dataset containing summaries of endpoints.
Thanks to preemptable servers, summaries of endpoints are obtained by execut-
ing summary functions as SPARQL queries over endpoints. The same summary
functions can also be applied to any query @ to be executable on SEMCAT. The
mappings produced by the execution of a query over SEMCAT allow to compute
the source selection of the query) over endpoints. The contributions of this
paper are the following:

— We define a model for building a source selection service at web scale using
only the semantic web technologies RDF and SPARQL.

We demonstrate that summaries can be obtained with a data transfer pro-
portional to the size of the summary and not to the size of data sources.
We demonstrate how source selection can be obtained by executing SPARQL
queries on summaries.

— We validate empirically SEMCAT on a subset of LargeRDFBench.

This paper is organized as follows. Section 2 summarizes related works. Sec-
tion 3 details the approach of SEMCAT for building summaries and source selec-
tion. Section 4 presents our experimental results. Finally, conclusions and future
work are outlined in Section 5.

2 Related Works

The source selection for a SPARQL query, finds the minimal number of relevant
sources on the web of data to be contacted to execute the query. In this paper,
we focus on RDF data hosted in SPARQL endpoints.

SPARQL 1.1 Federated queries [19] allow executing queries over different
SPARQL endpoints. The SERVICE clause advises a federated query processor
to execute a portion of SPARQL query against a remote SPARQL endpoint. In
this case, the source selection is performed by users when authoring SPARQL
queries.

Federated query engines [18, 6] suppose the existence of a catalog of SPARQL
endpoints and achieves automatic source selection based on the catalog. In its

simplest form, this catalog is just a set of endpoints. Automatic source selection
can be seen as the rewriting of a SPARQL query into SPARQL 1.1 federated
query given a catalog of endpoints.

Different techniques for source selection are proposed [15]. We can distin-
guish two categories of source selection: catalog/index-free and catalog/index-
assisted. In catalog/index-free source selection, the federated query engine per-
forms source selection without using any stored data summaries, in contrast,
in catalog/index-assisted source selection, the federated query engine uses data
summaries that have been collected in a pre-processing step.

FedX [18] is a representative of index-free SPARQL federated query engine.
The source selection relies completely on a simple catalog of URLs of SPARQL
endpoints and SPARQL ASK query. For each triple pattern of a query, FedX
sends ASK queries to all endpoints in the catalog and those that pass the
SPARQL ASK test are selected. The source selection of FedX does not require
to store any data summaries. However, it requires a lot of communication with
the endpoints before to start the query execution. For instance, for a catalog
of 100 endpoints and a query with 10 triple patterns, FedX sends 100*10=1000
ASK queries to compute source selection before starting the execution of the
federated query.

Index-assisted federated query engines improve the source selection but re-
quire preprocessing. Different levels of detail of statistics of SPARQL endpoints
are pre-computed and used by the federated query engine during query pro-
cessing. Different techniques and formats are proposed for precomputed indexes.
Some approaches require sources to compute and maintain statistics[6, 11], other
do not [13,16].

Both Odyssey[11] Splendid[6] require data sources to compute and share
statistics. Odyssey uses sophisticated statistics for source selection. The statis-
tics detail information about the data provided by remote endpoints and links
between them. Splendid[6] relies on VOID statistics and ASK queries to per-
form source selection. The statistics of VOID description are aggregated in a
local index. This index is used to map triple patterns with bound predicate to
relevant data sources. A SPARQL ASK query is used when the subject or object
of the triple pattern is bound or unbound predicate. WoDQA [1] is another fed-
erated query engine that uses VOID, more precisely, it uses linksets description
to retrieve relevant datasources.

Relaying on statistics precomputed by data sources appears as promising
solution for source selection. However, recent studies [8] observed that only third
of public SPARQL endpoints give static description of their content using VOID
vocabularies, and even when they are provided, it is unclear the level of details.
To mitigate burden on publishers to provide description of their endpoints’,
Sportal [8] proposes to compute VOID descriptions directly from the endpoints.
Sportal defines sources self-description queries that allow to compute VOID.
Unfortunately, as highlighted in [8], Sportal naturally inherits the limitations of
SPARQL endpoints, many endpoints do not return results or produce incomplete
results.

DARQ [13] and HiBISCuS[16] pre-compute the indexes directly from data
in the endpoints. DARQ uses an index known as service description for source
selection. The description includes hand crafted source description similar to
Vocabulary of Linked Datasets VOID [2]. DARQ source selection matchs the
predicates in the query against the predicates in the service description. HbiBIS-
CusS [16] proposes a join-aware source selection algorithm. HbiBISCuS relies on
the authority fragments of resources URIs to estimate whether combing data of
multiple sources can lead to any join results. For unbound predicates or common
predicates, an ASK query is used for sources selection.

Relaying on statistics precomputed by federated query engines seem afford-
able, however, existing federated query engines propose different level of informa-
tion and different formats for storing the indexes. Moreover, the index is locked
up by the federated query engine and cannot be shared with other federated
query engines.

Different summary approaches for source selection with different accuracy
and different granularity have been proposed [21,5]. Some summaries are ap-
proximative such as QTree, others are exact such as schema-level indexing.

Overall, many techniques have been proposed to build catalogs for source
selection, but currently, there is no reliable method to build and maintain such
catalogs over the web. In SEMCAT, we foster on web preemtion[10] that allows
SPARQL queries to terminate. Thanks to preemptable servers, it is possible
to compute aggregations as proposed in [7]. This allows to rely on endpoints
to compute summaries and transfer only summaries. Using the same summary
functions, a query) over endpoints can be rewritten as a query @, to be
executed on SEMCAT. The provenance of the mappings of Q5 contains the source
selection of Q.

3 The SEMCAT approach

A source selection service for the linked data has the same objective than a
keyword search service in the web of documents, i.e. ensuring the findability of
sources over a decentralized web of data. The general use-case is the following:

1. A user aims to execute the SPARQL query Q1 of the figure 1a over the whole
set of SPARQL endpoints with no prior knowledge.

2. She loads a SPARQL 1.1 query engine in her web browser, as proposed by
Communica [20] or SAGE [10] , and launchs the execution.

3. The query engine contacts a source selection service that returns the set of
endpoints to contact per triple pattern. The query engine is free to refine the
source selection, optimize the query and finally rewrites the original query
into the SPARQL 1.1 federated query Q2 as in Figure 1la.

4. Finally, the web browser starts the execution of (2 and returns complete
results.

SELECT ?p 70 WHERE { SELECT 7p 7o WHERE {
7s <sameas> SERVICE <dba.org>

?7s <sameas> <http://dba.org/b obama> }.
<http://dba.org/b _obama>. #tpl SERVICE <wda.com§ /{/75 7p ?ié.i ¥
?s 7p Yo tp SERVICE <nyt.com> {?s ?p 70}.

¥ }
(a) Q1 (b) Q2

Fig. 1: SPARQL queries @; and Q2

Such scenario raises many issues: how to build this source selection service?
How to contact it? Is the source selection optimal? What is the execution time of
the source selection? The objective of SEMCAT is to answer the above questions
and makes the above use-case possible.

3.1 Preliminaries

We consider three disjoint sets I (IRIs), L (literals) and B (blank nodes) and
denote the set T" of RDF terms I UL U B.

An RDF triple(spo) € (IUB) x I x T connects subject s through predicate
p to object 0. An RDF graph G is a finite set of RDF triples. We denote Val(G)
the set of all values (IRI, blank nodes and literals) in G. A mapping p from V to
T is a partial function p : V' — T, the domain of p, denoted dom(u) is the subset
of V where p is defined. Mappings p1 and po are compatible on the variable ?x,
written py(?2) ~ po(?x) if w1 (?x)= po(?z) and ?x € dom (1) N dom(ps).

RDF graphs are published in the web following the Linked data principles [3].
These RDF graphs could be accessible through public SPARQL endpoints. A
SPARQL endpoint is defined as a couple (E;, G;), where E; is the URL of the
endpoint and G; is the RDF graph accessible by F;. A SPARQL query has the
form Head < Body where Head is an expression indicates how to construct the
answer of the body and the body is a complex RDF graph pattern expression.
Assume the existence of an infinite set V' of variables, disjoint with previous sets.
A SPARQL graph pattern expression P is defined recursively as follows [9,12,
17].

1. A tuple from (JULUV)x (IUV)x (IULUYV) is a triple pattern.

2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT
P2), and (P1 UNION P2) are graph patterns (a conjunction graph pattern,
an optional graph pattern, and a union graph pattern, respectively).

3. If P is a graph pattern and R is a SPARQL built-in condition, then the
expression (P FILTER R) is a graph pattern (a filter graph pattern).

The evaluation of a graph pattern P over a SPARQL endpoint F; denoted
by [P]g, returns a set of mappings, called result set. Each element of the result
of a query is a set of variable bindings.

We define a federation of SPARQL endpoint F(E,G) as a set of couple of
F(E,G) ={(E1,G1),...,(En,Gy)} where E = {E,,...,E,} and G = J;_, Gi,
respectively. For the sake of simplicity, we consider the RDF graphs of endpoints

do not have blank nodes. We consider federated SPARQL queries as queries that
are defined over a federation of SPARQL endpoints. Given a SPARQL query @,
a data source F; € F is said contribute to the query @ if at least one of the
variable bindings in the result set of Q can be found in F;.

3.2 SEMCAT definitions and problem description

In this paper, we focus on federation of SPARQL endpoints F(F,G). Dis-
covering and maintaining F is out of the scope of the paper. For instance, F
could be discovered and maintained by crawling the web as proposed by Google
Datasearch[4]. We define source selection as :

Definition 1 (Source Selection). Given a query Q, a source selection of Q
over F' is the set of sources Ey,, C E per triple pattern of Q) that potentially
contributes to the result set of Q.

Ideally, a source selection provides the minimal set of endpoints to contact
in order to produce the complet results of the query. We formalise the problem
of source selection service as follows:

Definition 2 (Source Selection Service Problem (SSS-P)). A source se-
lection service S is a SPARQL service hosting an RDF graph SC extracted from
G. Given a query Q, S computes the source selection of Q over G by evaluating
a rewriting of @ over SC.

Building a source selection service raises critical challenges:

SC' is constructed thanks to SPARQL queries, following the idea pro-
posed in Sportal [§8]. Computing summaries based on SPARQL queries overcomes
the poor adoption of service description conventions and the impracticability of
dumps practices for web automation.

SC is a summary of G . We expect the data transfer from F to SC to be
proportional to the size of the summary of graphs and not to the original size of
graphs, e.g. extracting a summary of 1000 triples from DBpedia should transfer
ideally 1000 triples.

Source selection is minimal, sound and complete. Source selection re-
turns, as possible, the minimal sources per triple pattern. According to the "ac-
curacy” of summary, source selection could be overestimated, i.e. contain false
positives. However, it should always produce sound and complete answer.

Source selection time complexity. The complexity of the source selec-
tion should be proportional to number of source selected per triple pattern.

3.3 Building SEMCAT Summaries

We rely on structural graph summarization to define SC. Structural graph
summarization is essentially a reduced version of the original RDF graphs where
nodes have been merged according to some notion of structural similarity [5].
Consequently, we consider summaries defined as an RDF graph homomorphism.

dba nyt

<dba/b_obama> <isa> <dba/president> <nyt/ba> <sameas> <dba/b_obama>

<dba/b_obama> <sameas> <wda/barack o> <nyt/ba> <said> "hello"
wda

<wda/barack o> <isa> <wda/person>

<wda/barack o> <birth> "1967"

SC (¢Yp, {dba,nyt, wda}) SC (Yn, {dba,nyt,wda})

<sl> <isa> <dba> <dba> <isa> <dba> <dba>
<sl> <isa> <wda> <wda> <isa> <wda> <wda>
<sl> <sameas> <dba> <dba> <sameas> <wda> <dba>
<sl> <sameas> <nyt> <nyt> <sameas> <dba> <nyt>
<sl> <said> <nyt> <nyt> <said> "lit" <nyt>

<sl> <birth> <wda> <wda> <birth> "lit" <wda>

SC (¢, {dba, nyt,wda}) SC (i1, {dba,nyt,wda})

<dba/ma> <isa> <dba/nt> <dba>
<wda/ o> <isa> <wda/on> <wda>
<dba/ma> <sameas> <wda/ o> <dba>
<nyt/ba> <sameas> <dba/ma> <nyt>
<nyt/ba> <said> "lit" <nyt>

<wda/ o> <birth> "lit" <wda>

<sl> <pl> <dba>
<sl> <pl> <nyt>
<sl> <pl> <wda>

Fig.2: Three RDF Graphs hosted by dba,nyt and wda and their 4 summaries

Definition 3 (RDF graph homomorphism). Let G, G’ be two RDF graphs.
A function v : Val(G) — Val(G') is a homomorphism from G to G’ iff for every
RDF triple (s,p,0) € G there is an RDF triple (1(s), ¥ (p),¥(0)) € G'.

A homomorphism from G to G’ ensures that the graph structure present in
G has an “image” in G'.

Definition 4 (SEMCAT summary). Let F(E, G) be a federation of SPARQL
endpoints, the summary of E using v, SC(¢) is a set of quads such that:

SCW’E) = {W(S),¢(p)7¢(0)a9)|(3apa 0) € Gi G,’I’LdEl € E}

For a federation F(E,G), we can define summaries with different "accuracy"
using different ¢ functions. Figure 2 describes summaries of three dummy graphs
dba,nyt, and wda.

Identity summary: For this summary, ;4 is defined as the identity func-
tion. SC(1;q, E) is composed of all graphs in the federation. This is the most
accurate summary, but unrealistic.

1-triple summary For this summary, ¢, is defined as:

(¢1(5)a¢1(17)a¢1(0)) = (: sl,:pl,: 01)

where : s1, : pl and : ol are Literals. A 1-triple summary SC(¢1, F) contains
a single triple per endpoint. SC(y1, E') represents the set of all endpoints in
the federation, i.e. the catalog of the endpoints. The size of this summary is
proportional to the number of endpoints.

predicate-aware summary: 1, is defined as:

: : if
oty)yl = { Pl Boe e D

This function projects all subjects and objects to two constants : s1 and "lit”.
SC(1p, E) is the set of all predicates of E. In the worst case, if all sources have all
predicates, the size of this summary is proportional to the number of predicates
(#predicates) multiplied by the number of sources (#sources).
authorities-aware summary: psi; function is defined as:

@) = { (o P S e

Auth(s) is a function that returns the domain of an URI. ¢y, builds a summary
inspired by the hibiscus summaries [16]. In the worst case, a predicate could
have all authorities (#auth) as subjects and as objects If all sources have such
predicate then the size of the summary is (#predicates x #auth?) * #sources.
suffix-authority-aware summary: v, function is defined as:

(cc(auth(s),lt(s,2)), p, cclauth(o),lt(o,2))) if s,0 € I
(We(8): Yo p), ¥u(0)) = { (cclauth(s), it(5,2)). p. " t™) ifselocl

The function lt(string,2) returns the last 2 characters of the string and cc()
is the string concatenation function. This summary is an extension of v with
suffixes of URIs. The summary is more accurate than psi; summary, however, its
size grows quickly. If we consider only 26 different letters, the numbers of nodes
in the summary is now equal to #auth * 262. Therefore, the size of the summary
is bounded by (#predicates * (#auth*262)?) x #sources. The summary is more
accurate but it is much more bigger.

The different summaries behave as Russian dolls, for instance:

SC(n, SC (s, £)) = SC(¢n, F)

The extraction of the most accurate summary allows to build less accurate ones.

SC(Y1, E) < SC(yp, E) <= SC(n, E) = SC(s, E) < SC(¢ig, E)

3.4 Source selection on SEMCAT summaries

Source selection for a query @) as defined in section 3.2 computes a set of end-
points to contact per triple pattern of Q.

Triple-pattern based source selection (TPSS) As a triple pattern of Q
is defined on G, it cannot be executed directly on the summary to find the
endpoints to contact. To make a triple pattern executable of a summary, we need

Table 1: Source selection for query @; (Figure la) and ¢, summary (Figure 2)
Q triple pattern| TP Source selection| BGP source selection
tpl nyt nyt
tp2 dba,wda, nyt nyt

to extend v function to handle triple patterns, i.e. summarization functions are
defined for RDF triples, they cannot be applied on variables of triple patterns.
In the following, we extend the definition of function 1, to handle triple
patterns. As a triple pattern can have one the the following forms [21], where ?
denotes variables: (?s1 ?p1 ?01), (s1 ?p1 T01), (?s1 p1 701), (?s1 Tp1 01), (81 1
?01), (s1 7p1 01),(?s1 p1 01), (s1 p1 01). We distinguish the following cases:

$,p,0 if s,p,oeV
auth(s),p, o ifsel,oeV
) auth(s),p, auth(o) if s,0 € I
1/%(3),1/%(1?)71#11(0)) - auth(s),p, 7 it ifse 170 cl
s, p, auth(o) ifseV,oel
s, p, lit” ifseV,oeL

We define the source selection query for a triple pattern as:

Definition 5 (TPSS query). The source selection query for a triple pattern
(s,p,0) on a summary SC (¢, E) is defined by the query:

SS(1, (s,p,0)) = m4(1(s),¥(p),¥(0),9) and g € V

By abusing of notations, we consider 7, (q) as the projection operator on variable
x of a quad q. [SS(¥, (s,p,0))]sc(y, k) returns the source selection of (s,p,0).
Table 1 presents the the results of TPSS of query Q1 defined in (Figure 1a).

The source selection has different time complexity according to the form of
the triple pattern, and the summary.

For (?s ?p ?0), SS(11(?s,?p, 70)) returns results in a time complexity pro-
portional to the number of selected sources, i.e. O(]SS(?s, 7p, 70)|).

For (?s p ?0), SS(¢p(?s,p,?0)) returns results in O(]SS((?s, p, 70)]).

For (s p ?0), SS(¥n(s,p, ?0)) returns the results in the worst case in O(#authx
#sources).

For (s p ?0), SS(vs(s,p,?0)) maybe return a more accurate selection but,
in the worst case, in O((#auth * 262) x #sources).

It possible to choose among different summaries according to the form of
triple patterns. Summaries that handle constants such ¥ or ¥4 cannot answer
in O(]SS((s,p,0)]), but will depend of the selectivity of the constants.

The TPSS overestimates the number of sources to contact because it is not
aware of the join variables, i.e.variables shared among triple patterns of the
query. For instance, for the triple #tp2 (?s7p?0) of query Qi (cf. figure 1a),
TPSS selects all the sources present in the summary (Table 1) even if a subset
of sources really contribute to the results of the query.

BGP-Based source selection query (BGPSS) For the sake of simplicity, we
focus on queries with conjunctive graph patterns (BGP queries). However, any
SPARQL query with union graph patterns, optional graph patterns, etc can be
rewritten following the same approach. A BGP query is a set of triple patterns.

Definition 6 (BGPSS Query).
Let Q@ a BGP query a set of triple patterns (s;,p;,0;), the source selection
query is defined as:

SS(’(/J,Q) =Ty, M(Si,pi,oi)EQ (¢(Sz)71/J(pz)71/}(0z)agz)agz eV

The evaluation of SS(v, Q) over SC(v, E) returns for all triple patterns tp;
of @ their respective selected sources in g;. As the homomorphic query of the
original query is executed on the summary, the source selection is optimal for
that summary.

Following this definition, the query 1 with 1, can be rewritten as:

SELECT DISTINCT ?gl, 7¢2 WHERE {
graph 7gl {?s <sameas> <http://dba.org>}
graph 7g2 {?s 7p 7o}

}

Then the execution of this query on the v, summary of the figure 2, return the
result of described in Table 1. As we can see, the BGP-aware source selection is
more accurate than the previous TP-based source selection.

Therefore, executing SS(1;q, Q) on SC(1;q, F) returns the exact source se-
lection for Q. executing SS (11, Q) on SC(¢1, E) returns all sources for all triple
patterns of Q.

The BGPSS requires to execute all triple patterns of the query on the same
summary because mappings of join variables are shared among the triple pat-
terns. This is not the case of TPSS where different summaries can be used.
In the worst case, each triple pattern scan the whole summary, so complex-
ity is the number of triple pattern multiplied by the size of the summary.
For example, executing a source selection on 1, is now in the worst case in
(#predicates * #auth?) x #sources multiplied by the number of triple patterns
in the query. However, in an average case, for a bounded authority and a bounded
predicate in a triple pattern, the worst time complexity is #auth*x#source which
is much more tractable. Concretely, there is a trade-off between the accuracy of
the source selection and the time for source selection. For example, for the BGP
query Q1 of figure 1a, executing the source selection query for Q1 on the ¥4 sum-
mary returns a better source selection than executing the source selection for
Q@1 on the vy. However, the source selection query for ()1 on the vy, generally,
returns the source selection much faster than with ;.

3.5 Implementing summaries with web preemption

We can implement 1) functions as a SPARQL 1.1 query. For example, computing
authorities-aware summary 1, can be done by executing the following SPARQL
query over the SPARQL endpoints of the federation.

CONSTRUCT { ?ps ?p ?po } where { ?s ?p 7o

FILTER isiri(?7s)

BIND (URI (REPLACE(STR(?s),
"“(https?://7.%x?)/.%", "$1")) AS 7?ps)

BIND(if (isiri (?0),URI(REPLACE(STR(?0),
"~“(https?://7.%7)/.«", "$1")),"lit") as ?po)}

However, executing this query over an endpoint is challenging;:

— A public SPARQL endpoint will interrupt the query after a time quota as
reported in[§].

— A TPF server [23] or SaGe [10] server return complete results for queries,
but FILTERS, BIND and CONSTRUCT operators are executed on client
side. Consequently, the query execution first transfers all mappings for the
(?s,?p, ?0) triple pattern from the server to the client, then the summary is
computed on client-side. This clearly require to transfer all the RDF graphs
of the federation to compute a summary.

An affordable solution is to follow the approach of SaGe-agg [7] to imple-
ment this query without interruption and low data transfer. In SaGe-agg, the
SAGEserver is able to compute partial aggregates per quantum, thanks to the
decomposability property of aggregate functions.

We extended the SAGE server to handle BIND operation to express sum-
mary functions in SPARQL. We extended also the SAGE server to handle CON-
STRUCT per quantum, i.e. a graph is constructed during one quantum and
transferred to client at the end of the quantum. As BIND statements summarize
subjects and objects, most of the element of the graph are likely to be dupli-
cates. Consequently, the compression of the graph is mostly done on server-side
and data transfer is dramatically reduced, as demonstrated in the experimental
study.

If all the summary query can be processed in one quantum, then the transfer
is optimal. If not, some triples can be transferred several times from the server
to the client. This is an overhead intrinsic to the web preemption approach.

This overhead mainly depends on the summary function and the order of
scanned triples. To illustrate, suppose we are computing the 1, summary. It is
important to scan triples following a PSO index or POS index. As triples are
ordered by predicate, followed by subject or object, it is very likely that all du-
plicates are eliminated during the same quantum. The following table illustrates
this processus for POS index:
birthyear 1967 http://dbp/Bob ﬂ) birthyear lit http://dbp
birthyear 1967 http://dbp/Alice birthyear lit http://dbp

The result of the CONSTRUCT is only one triple:birthyear lit hitp://dbp.
The s summary is less likely to remove all duplicates in a quantum. SAGE
should provide low overhead for authorities-aware summaries.

4 Experimental Study

We want to empirically answer the following questions: (i) What is the data
transfer and execution time of computing different kind of summaries on online
SPARQL servers? (ii) How good is the source selection for TP-based and BGP-
based source selection? (iii) What is the execution time of the source selection
for a source selection service?

We extended the SAGE server to support the execution of summaries func-
tions. The SAGE server now supports CONSTRUCT, REDUCED keyword,
BIND operations and custom functions for efficient computation. All extensions
and experimental results are available at https://github.com/momo54/semcat.

Dataset and Queries: We consider a workload (SP) of 14 SPARQL queries ex-
tracted from the LargeRDF Benchmark [14]. These queries run on the 9 datasets
presented in figure 3a (orig).

Summaries and source selection We compare the performances of the TPSS
and BGPSS services on v, ¢, and v, summaries, named respectively void, hib
and suf. In the experimentations, the TPSS engine uses the same summary for
all triples of the query.

Server configuration: We run experimentations on personal computer 4 GHz
Intel Core i5 four CPU, 8 Go 2133 MHz LPDDRS3.

FEvaluation Metrics: (i) Summary Data transfer: is the number of triple trans-
ferred from a SPARQL server to SEMCAT to compute a summary. (ii) Summary
Ezecution time: is the time required by SEMCAT to compute the summary per
a SPARQL server. (iii) Summary size: is the number of triples in the summary
per graph. (iv) SSQ: is the sum of sources selected per query. For example, if a
query has two triple patterns tpl and tp2 and the source selection for tpl is sl
and the source selection for tp2 is sl1,s2, then SSQ is 3. (v) SSt: is the source
selection time, i.e. time to perform the source selection of a query.

4.1 Building ¥ summaries

For this experiment, we setup a SAGE server configured with a quantum of 60s.
We ingested the nine datasets and we executed the different summary func-
tions as SPARQL queries on the server. We measured the data transfer and the
execution time as shown in Figure 3.

Figure 3a presents the number of triples in the summary (unique), the num-
ber of triples retrieved to compute this summary (transferred) and the original
size of the graph (orig). For most endpoints the data transfer is optimal, in one
quantum, the SAGE server is able to scan all the graph and return the sum-
mary. For large graphs, several quantums are necessary and duplicates appear
for DBpedia and geonames. However, the overheads remains marginal.

Figure 3b presents the time required to compute the summary. We observe
that the time remains slightly the same whatever the summary. This is normal
because computing the summary requires to scan the complete graph and the
scan speed remains the same whatever the summary function.

Summary data transfer Execution times and call numbers

10° | W void-transfered
e void-unique
mm hib-transfered
= hib-unique
m suftransfered
105 { mm sufunique
. orig

nb triples
timeins

chebi drugbanfamendo Imdb swdfood kegg nyt dbpedigeonames chebi drugbanfamendo Imdb swdfood kegg nyt dbpedigeonames

(a) Summary data transfer and sum- (b) Summary execution time
mary size

Fig. 3: Results for a federation of nine SPARQL endpoints using void, hib and
suf summaries. orig is the size of the original RDF graph

4.2 The number of sources selected per query (SSQ)

Figures 4a, 4b present, respectively, the selected sources by BGPSS engine and
TPSS engines. As expected, for both source selection engines, a more accurate
summary improves the accuracy of the source selection, i.e. produces less SSQ.
For instance, the suf summary (15), returns the best results. The void summary
(1p) makes no difference between engines. For hib and suf, the BGPSS engine
improves the source selection compared to TPSS engine. For instance, for S2
using the hib summary SSQ is 7 with TPSS and pruned to 3 with BGPSS, for
5S4 is pruned from 20 to 5. In total, the SSQ for all queries is improved with
BGPSS engine except for S14 and S11. The SSQ of S8 remains unchanged.

The suf summary with BGPSS, as hib with BGPSS, improves most of
the queries SSQ. Compared to hib with BGPSS only the SSQ of 4 queries
51,511,513 and S6 is improved. Overall, the suf summary with the BGPSS
clearly dominates the source selection accuracy.

4.3 Execution time Source selection

Figues 4a and 4b present, respectively, the execution time of BGPSS engine and
TPSS engine. We run the experiment with RDFLib, Virtuoso (without quota)
and SAGE. For space limitations, only the execution time obtained with Virtuoso
is presented. All the results are available at *anonymized*.

As in previous experimentations, TPSS uses the same summary for all triple
patterns of the query, i.e. do not choose the summary according the characteristic
of the triple pattern.

For both source selection engines, the suf summary is clearly more expen-
sive than the others. This is normal as the size of the suf summary impacts
significantly the evaluation of any triple pattern, especially the (?s, ?p?0) triple

Queries Queries

. void . void
251 = hib 25 = hib
. suf . suf

20 20 20 20 2000

204 20

Source selected
=
5
Source selected
e}

=
5
5

Sl S10 S11 S12 S13 Sl4 S2 S3 S4 S5 S6 ST S8 S9 Sl S10 S11 S12 S13 S14 S2 S3 S4 S5 S6 ST S8 S9

(a) SSQ for BGPSS (b) SSQ for TPSS
Queries Queries
) - void
. =
- uf
10!
< £ 100
¢ * 1072
1073
SL S10 S11 S12 §13 S14 S2 S3 S4 S5 S6 S7 S8 SO o S1 S10 S11 S12 513 S14 S2 S3 S4 S5 S6 S7 SB S9
(c) ET for BGPSS (d) ET for TPSS

Fig. 4: Source selection and execution times

pattern. Concerning the void summary, the execution time is better with TPSS
engine than with BGP engine. Joins with the void summary are just useless
and slow down the execution. Concerning the hib summary, the execution time
with the BGPSS engine is better than suf. Using the authority makes the joins
selective. But when used in the suf summary, the performances are degrad-
ing quickly. The suf summary creates a dense graph that negatively impacts
performances of joins.

Overall, considering the accuracy of the source selection and the execution
time, the hib summary (1) delivers a good trade-off.

5 Conclusions

In this paper, we highlighted the need for a source selection service to make
endpoints findable. Such service requires web automation for its creation and
maintenance. Thanks to web preemption, we demonstrated how to query end-
points and collect efficiently summaries just relying on SPARQL queries. We

define different summary functions. We presented how a query) on endpoints
can be rewritten as a query Q' on summaries that returns the source selection
of @ on endpoints. If all endpoints support web preemption, then any federated
query terminates and delivers complete results.

We empirically demonstrated the different trade-off between the accuracy of
the source selection, the execution time of the source selection and the size of
the summary. An interesting conjecture could be that one dimension has to be
sacrificed to preserve the others.

This approach raises several perspectives. First, it is clearly an open gar-
den, i.e. it exists other summary functions and certainly many different way to
combine summaries. We can imagine a BGP-based source selection combining
different summaries. Bindings obtained on one summary can be transformed to
be injected into other summaries. Second, in this paper we focused on source se-
lection, the next step is to extend the summary functions to also collect statistics
for join ordering.

References

1. Ziya Akar, Tayfun Gokmen Halag, Erdem Eser Ekinci, and Oguz Dikenelli. Query-
ing the web of interlinked datasets using void descriptions. LDOW, 937, 2012.

2. Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describ-
ing linked datasets with the void vocabulary. 2011.

3. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
Int. J. Semantic Web Inf. Syst., 5(3):1-22, 2009.

4. Dan Brickley, Matthew Burgess, and Natasha Noy. Google dataset search: Building
a search engine for datasets in an open web ecosystem. In The World Wide Web
Conference, pages 1365-1375, 2019.

5. Sejla Cebiric, Frangois Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana
Manolescu, Georgia Troullinou, and Mussab Zneika. Summarizing Semantic
Graphs: A Survey. The VLDB Journal, 28(3), June 2019.

6. Olaf Gorlitz and Steffen Staab. Splendid: Sparql endpoint federation exploiting
void descriptions. In Proceedings of the Second International Conference on Con-
suming Linked Data, volume 782, pages 13—24. CEUR-WS. org, 2011.

7. Arnaud Grall, Thomas Minier, Hala Skaf-Molli, and Pascal Molli. Processing
SPARQL Aggregate Queries with Web Preemption. In 17th Extended Seman-
tic Web Conference (ESWC 2020), The Semantic Web: ESWC 2020, Herkalion,
Greece, June 2020. Springer, Cham.

8. Ali Hasnain, Qaiser Mehmood, and Syeda Sana e Zainab ang Aidan Hogan.
SPORTAL: profiling the content of public SPARQL endpoints. Int. J. Seman-
tic Web Inf. Syst., 12(3):134-163, 2016.

9. Mark Kaminski, Egor V. Kostylev, and Bernardo Cuenca Grau. Query nesting,
assignment, and aggregation in SPARQL 1.1. ACM Trans. Database Syst., 42(3):1-
46, August 2017.

10. Thomas Minier, Hala Skaf-Molli, and Pascal Molli. Sage: Web preemption for
public SPARQL query services. In The World Wide Web Conference, WWW 2019,
San Francisco, CA, USA, May 13-17, 2019, pages 1268—-1278, 2019.

11. Gabriela Montoya, Hala Skaf-Molli, and Katja Hose. The odyssey approach for
optimizing federated sparql queries. In International Semantic Web Conference,
pages 471-489. Springer, 2017.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and complexity
of SPARQL. ACM Transations on Database Systems, 34(3):16:1-16:45, 2009.
Bastian Quilitz and Ulf Leser. Querying Distributed RDF Data Sources with
SPARQL. In Sean Bechhofer et al., editors, ESWC 2008, volume 5021 of LNCS,
pages 524-538. Springer, 2008.

Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. Largerdfbench:
a billion triples benchmark for sparql endpoint federation. Journal of Web Seman-
tics, 48:85-125, 2018.

Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-Cyrille
Ngonga Ngomo. A fine-grained evaluation of sparql endpoint federation systems.
Semantic Web, 7(5):493-518, 2016.

Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. Hibiscus: Hypergraph-based
source selection for sparql endpoint federation. In European semantic web confer-
ence, pages 176-191. Springer, 2014.

Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL
query optimization. In Database Theory - ICDT 2010, pages 4-33, 2010.

Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
Fedx: Optimization techniques for federated query processing on linked data. In
International semantic web conference, pages 601-616. Springer, 2011.

Harris Steve and Seaborne Andy. SPARQL 1.1 query language. In Recommendation
wsC, 2013.

Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben Verborgh.
Comunica: A modular SPARQL query engine for the web. In Denny Vrandecic,
Kalina Bontcheva, Mari Carmen Suérez-Figueroa, Valentina Presutti, Irene Celino,
Marta Sabou, Lucie-Aimée Kaffee, and Elena Simperl, editors, The Semantic Web
- ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA,
October 8-12, 2018, Proceedings, Part II, volume 11137 of Lecture Notes in Com-
puter Science, pages 239-255. Springer, 2018.

Jiirgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth, and Axel Polleres.
Comparing data summaries for processing live queries over linked data. World Wide
Web, 14(5-6):495-544, 2011.

Pierre-Yves Vandenbussche, Jiirgen Umbrich, Luca Matteis, Aidan Hogan, and
Carlos Buil Aranda. SPARQLES: monitoring public SPARQL endpoints. Semantic
Web, 8(6):1049-1065, 2017.

Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Lau-
rens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. Triple
pattern fragments: A low-cost knowledge graph interface for the web. J. Web Sem.,
37-38:184-206, 2016.

