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RESEARCH ARTICLE
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1 | INTRODUCTION

System identification is the branch of control theory which is concerned with designing methods and algorithms for inferring
parameterized mathematical models from input-output measurements. A fundamental criterion characterizing the quality of a
model parameterization is that of identifiability. This refers to the formal question of whether a given parameterized model can,
in principle, be uniquely determined from input-output data. More precisely, a parameterized model structure is a map from a
certain parameter space to a set of dynamic systems. Such a parameterized model structure is said to be (structurally) identifiable,
if no two different parameter vectors yield two models whose input-output behavior is the same. The concept of identifiability
has a number of implications for the design of informative experiments, the development of parameter estimation algorithms,
the analysis of identification methods and the significance of estimated models.

Contribution of the paper. The present paper deals with the problem of identifiability of switched ARX (abbreviated as SARX
) systems. More precisely, we we introduce formal definitions identifiability for SARX systems and show that a particular notion
of minimality, called strong minimality, is a sufficient condition for identifiability of SARX systems. We present conditions for
checking strong minimality which are reminiscent of the well-know minimality conditions for ARX systems. We also show
that minimality that SARX parameterizations are generically minimal and generically identifiable. Note that minimality and
identifiability are properties of the structure of the model parameterization and not that of the data generated by the system. Based
on our definitions, we derive checkable conditions guaranteeing these two properties. In addition to providing theoretical insights,
the results of the paper allow us to check identifiability of SARX parameterizations, and to find identifiable parameterizations.

In this paper, we consider only single-input single-output (SISO) SARX systems. We conjecture that the extension of the
result of this paper to the MIMO case is possible, but it is technically much more involved. This is consistent with the case of
ARX systems, for which identifiability of the MIMO case is much more involved, see for example' and the references therein.
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It is worth noting that identifiability and minimality SARX systems cannot be reduced to the corresponding properties of its
ARX subsystems. It can be shown that a SARX system can be minimal (resp. identifiable), even if none of the ARX subsystems
is minimal (resp. identifiable). That is, the relationship between identifiability and minimality of SARX systems and their ARX
subsystems is not straightforward.

Motivation. SARX systems are popular in the hybrid systems community, due to their simplicity and modeling power. In
particular, most of hybrid systems identification algorithms were developed for SARX systems 2345061 Degpite their popularity,
identifiability and minimality of SARX systems are not yet completely understood.

Identifiability is an established topic in system identification, there is a consensus that identifiability is an essential condi-
tion for proving correctness of algorithms for system identification® and adaptive control®. Indeed, mathematical correctness of
parametric system identification algorithms can be established only for identifiable parameterizations, since for non-identifiable
parameterizations the corresponding system identification problem is ill-posed. In turn, minimality is often sufficient for
achieving identifiability of input-output models.

The results of the paper are useful for the following purposes:

e They provide a strict mathematical proof that non-identifiable parameterizations are somewhat exceptional, in the sense
that they are not generic. We believe that it is interesting in its own right.

e They provide means to come up with parameterizations which are guaranteed to be identifiable. In turn, for such param-
eterizations it might be possible to prove statistical consistency of hybrid system identification algorithms, since the
underlying mathematical problem becomes well-posed.

Related work. Identification of hybrid systems is an active research topiclOHBIISIAIOITASIORI Many of the major contribu-
tions are formulated only for SARX systems#2U2112255 The relationship between SARX systems and state-space representations
was addressed by Paoletti et al* and Weiland et al*®, and in this paper we use some of those results.

To the best of our knowledge, the results of the paper are new. The paper of Vidal® contains persistence of excitation conditions
for SARX systems, which is related to identifiability. The main difference between the two concepts is that the former is a
property of the data, while the latter is a property of the parameterization. Vidal® also proposes a definition of minimality of
SARX systems which implies our definition. However, the two definitions are not equivalent.

The proofs of the main results of the paper are based on the results of“* which analyzes minimality and identifiability of linear
switched state-space representation. It should however be noted that the contributions of the paper are not trivial consequences
24, This is due to the rich structure of SARX systems which allows us to derive stronger results than for general
linear switched systems. For example, the relationship between minimality and identifiability is much more direct for SARX
systems than for linear switched systems.

Finally, we note that a preliminary version of the material presented in the current paper appeared in the proceedings of the 16th
IFAC Symposium on System Identification®. However, compared to the preliminary version, all detailed proofs of the SARX
minimality and identifiability results are provided here. They are mainly based on some technical results that give important
properties of state space representation which arise from SARX systems. These technical results can be also used for analysising

of the work o

other structural properties of SARX systems. Moreover, we present an algorithm for finding an identifiable parameterization of
SARX systems, the latter was not included in>Y, Furthermore, the organization of the paper has been improved in order to ease
the reading. A motivating example is also provided.

Outline. In Section[2] we define SARX systems and the corresponding system-theoretic concepts such as minimality and iden-
tifiability. In Section[3.1} we present sufficient conditions guaranteeing (strong) minimality of SARX systems. We also discuss
the relationship between minimality of a SARX system and that of its subsystems. In Section [3.2] we discuss the relationship
between minimality and identifiability. We show that minimality and identifiability are generic properties. Concluding remarks
are provided in Section 4]

Notations. Denote by T' = N the time-axis of natural numbers. The notation described below is standard in formal language and
automata theory2®27. Consider a set X which will be called the alphabet. Denote by X* the set of finite sequences of elements
of X. Finite sequences of elements of X are referred to as strings or words over X. We denote by € the empty sequence (word).
The length of a word w is denoted by |w], i.e. |w| = k means that the length of w is k; notice that |¢| = 0. We denote by X*
the set of non-empty words, i.e. X* = X* \ {€}. We denote by wv the concatenation of word w € X* with v € X* and recall
that ew = we = w. Furthermore, we denote by I, the d X d identity matrix and by O, the d X | zero matrix.
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2 | DEFINITION OF SARX SYSTEMS AND PROBLEM FORMULATION

This section aims at introducing the concepts of minimality, strong minimality, and identifiability for discrete-time SARX
systems. A formal description of this class of switched systems is recalled in Definition [T}

Definition 1 (SARX systems). A SARX system S of type (n,, n,), where 0 < n, < n, are integers, is a collection S = {h,} 0,
where Q is the finite set of discrete modes and for every g € O, h, is a pX (n,p+n,m) matrices, where p is the output dimension
and m is the input dimension of the system. We will call a SARX system a SISO SARX system if p = m = 1. The dimension of
the SARX system S is the number pn,, + n,m and is denoted by dimS.

Assigning semantics to SARX systems defined above requires that we first formalize the concept of input-output behavior for
SARX systems. For this let us introduce the following notion of hybrid inputs of SARX systems.

Definition 2 (Hybrid inputs of SARX systems). The hybrid inputs of SARX system S in Definition || are the elements of
U = QO xR™ For any t > 0, a sequence w of the form
w = (4o, ) -+ (q,,u) € U™, (1

where we recall that Ut denotes the set of non-empty finite sequences of elements of 1/, describes the scenario when discrete
mode g; € Q and continuous input u; € R™ are fed to S at time i, fori =0, ..., ¢.

Notation 1. In the sequel, without loss of generality, we will set Q = {1, ..., D} and we will use the following decomposition
for the matrices h,:

+n.,
hy = [B B2y
q q q q ’
where h; ERPP i=1,...,n, hé ERP j=n,+1,....n,+n,

In order to introduce the formal definition of SARX minimality, the following concepts of input-output map realization as
well as equivalence of SARX systems are needed.

Definition 3 (Input-output map realization and equivalence of SARX systems). The SARX system S is a realization of the
input-output map f : Ut — RP, if for all w € U'* of the form (TJ), the outputs

yi = f((CIo, uO) o (qi5ui))7i = 07 7t
of S satisfy the equation
Y: = hy, ¢ @)

where we define the regressors ¢, € R™PH%m a5

T
¢ = [sz—l Yoo ytT—ny u’, "'“zT—n“] ; ©)

and for all j < 0, we sety; = 0 and u; = 0. Two SARXS are called equivalent, if they are realizations of the same input-output
map.

For the input-output maps of interest /' : Ut — RP?, the value f(w), with w of the form (I), describes the output of the
system in Definition|l|at time #, generated as a response of the system to the hybrid input w. Another important concept is that
of minimality.

Definition 4 (Minimality of SARX systems). A SARX system S is minimal, if there exists no equivalent SARX of dimension
less than dim S.

Next, we define the concept of discrete-time linear switched system”2% (abbreviated by LSS) associated with a SARX. This
will be used to define the concept of strong minimality, which will play a central role in the rest of the paper. We will use the
notation and terminology from” for linear switched systems in state-space form, which we recall below.

Definition 5. A linear switched system (abbreviated by LSS) is a discrete-time system X represented by

X4 = Ay X, + B, uy,, x, fixed @
Vo =Cx.
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where, x, € R” is the continuous state at time 1 € T, u, € R™ is the continuous input at time t € T', y, € R? is the continuous
output at time t € T, ¢, € Q is the discrete mode (state) at time ¢, Q is the finite set of discrete modes, and x, € R" is the initial
state of Z. For each discrete mode ¢ € Q, the corresponding matrices are of the form Aq e R, Bq e R™™ and Cq e RP",

Notation 2. We will use (n, O, {(Aq, Bq, Cq) | g € O}, xo) as a short-hand notation for LSSs of the form (El[)

Definition 6 (Associated LSSof SARX). Let S = {h,},co be a SARX system of type (n,n,). The LSS
Xg=(n,0, {(Aq, Bq, Cq) | g € O}, xo) associated with the SARX S is given by:

pn,Xm
— y — — —
A=A al. c=h.  B=| 1, | x%=0 5)
Om(nu—l)xm
with

n,—1 n, +1 +2 +n,—1 n,+n,

[/’l; hz21 hq’ ] h [th hZ} th n hq y
A = Lin,-1yp O, -1 | A= O~ 1ypxn,~ym O, —1ypxcm || 6)

Om><p(ny—1) Omxp Ome(nu—l) Om><m

O(nl,—l)mxp(ny—l) O(Vl“—l)mxl) I(nu—l)m O(n“—l)mxm

and h,, decomposed as in NotationE}

Similarly to the case of SARX systems, we can define the concept of a LSS being a realization of an input-output map

f Ut — R’ Informally, a LSS is a realization of f, if the for any sequence of discrete modes and inputs w € U, the

output response of the LSS from its initial state to this sequence of inputs and discrete equals f(w). Formally, consider a

state x,,, € R". For any input sequence w € U™, let x5(x;,;, w) be the state of X reached from x,,, under input w, i.e.

X5 (x> W) 1s defined recursively as follows; xs(x;,;;, €) = x;,;, and if w = v(q,u) for some (q,u) € V', v € U™, then
X5 (Xjpips W) = A X5 (X, V) + Byu. If w € U, then denote by ys(x;,;,, w) the output response of X to w, from the state x

v). The function

i.e. if w = v(q,u) for some (q,u) € U, v € U*, then ys(x

ini init>
init>
init> init>
w) = C,xy(x

init>
init> init>
Vs - Ut >R, w (W) = y(xy, w),

is called the input-output map of E. An input-output map f : Ut — RP is said to be realized by a LSS X of the form @) if f
equals the input-output map ys of X. In this case X is said to be a realization of f. We say that two LSSs are equivalent, if their
input-output maps are equal.

Lemma 1. The SARX system S is a realization of the input-output map f if and only if the associated LSS X is a realization

of f.
Proof. See the paper of Weiland et al®3. O

The following corollary of Lemma [I] allows us to relate the problem of minimality of SARX to that of LSSs. The latter has
already been investigated by Petreczky et al*. Formally, the dimension of a LSS X of the form (@), denoted by dim X, is defined
as the dimension n of its continuous state-space. Let f : Ut — RP? be an input-output map and let £ be a LSS which is a
realization of f. Then X is a minimal realization of f, if for any LSS realization $of f,dimXZ < dim 3. Thatis, a LSS realization
is a minimal realization of f if it has the smallest dimension of state-space among all the LSS which are realizations of f. We
will say that a LSS X is a minimal, if it is a minimal realization of its own input-output map ys.

Corollary 1. Assume S is a SISO SARX. If the associated LSS Xg is minimal, then S is minimal.

Proof of Corollary[l] Assume that S is not minimal. Then there exists an equivalent S,, of type (n’y, n;) such that n/y+n; <n,+n,.
But this implies that dimXg = n’y + n; < n,+ n, = dim XZg, which contradicts to the minimality of Zg. O

Remark 1. It can be noticed that none of the linear subsystems of Xg in (5)—(6) is minimal. Indeed, for each g € Q, A, contains a
zero row, hence rankAq < n,+n,. This means that 4 = 0 is an eigenvalue of A " By the PBH criterion, (Cq, Aq) is an observable
pair if and only if the matrix [C], AI — AT| has rank n,+n, for all the eigenvalues of A,. We will show that for 4 = 0 this matrix
cannot be of full row rank. To see this, for A = 0 the matrix becomes [CqT, —AqT] . But C, equals the first row of A, multiplied by
—1. Hence, [CqT, —AqT] will have the same rank as A, and that is smaller than n, + n,. Thus, the linear subsystems X in (5)—(6)
are not observable and consequently, they are not minimal. However, as we shall see later, they are generically minimal.
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The result of Corollary [T| prompts us to propose the following definition.

Definition 7 (Strong minimality of SARX systems). A SARX system S is called strongly minimal, if the corresponding LSS
Zg is minimal.

Remark 2. By Corollary [I} strong minimality implies minimality. However, minimality does not imply strong minimality.
Indeed, consider the SARX system S with discrete modes Q = {1,2} such that the ARX subsystem associated with mode 1 is
Y; = —Y,_, +u,_; and the ARX subsystem associated with mode 2is y, = —2y,_, +2u,_;. The two ARX subsystems are distinct,
each of them is minimal, yet the associated LSS XZg is not minimal (in fact, it is not observable). The latter can be checked using
the minimality conditions of Petreczky et al?*.

Remark 3. Minimality of the ARX subsystems is not necessary for strong minimality (and hence minimality) of the whole
system. To see this, consider again the SARX system S with two discrete modes Q = {1, 2} such that the ARX subsystem in mode
lis of the formy, = 8y,_, —15y,_,+u,_, —3u,_,, and the ARX subsystem in mode 2 is of the formy, = y,_; +2y,_,+u,_; +u,_,.

The transfer function of the ARX in the first mode is ——— = — and the transfer function of the second ARX is -1 =

z2-8z+15 z-5 z2—-z-2 -2’
hence neither of them is minimal. Yet, by using the conditions of Petreczky et al**, it can be easily shown that the LSS Zg is

minimal. Since strong minimality implies minimality of SARX systems, we get that S is minimal.

In order to be able to speak of identifiability, we need the notion of parameterization of SARX systems.

Notation 3. Denote by SARX (n,, n,, m, p, Q) the set of all SARX systems of type (n,, n,) with input space R™, output space
R?, and set of discrete modes Q.

Definition 8. (Parameterization of SARX systems) Assume that ® C R is the set of parameters. A SARX parameterization is
a map
I : © - SARX(n,,n,,m, p,0) )

Example 1. Consider the discrete-time model of the intake manifold of a spark ignition engine as described in“" and=Y,

yt = g(¢17p[9 Ut)’

where ¢, = [ Vo1 Viep Up_y Uy ] T, the output y, is the normalized air charge, the input , is the opening of the throttle valve; p,
and v, refer respectively to the pressure inside the intake manifold and the speed of the engine. Here, p and v are viewed as external
30 and=Y for more details. Inspired by the Linear Parameter
Varying (LPV) parameterization of the intake model proposed in“?, one can consider approximating the intake manifold with a
SISO SARX system of type (2,2) by viewing p and v as piecewise constant signals, each of which is allowed, for simplicity, to
take only two possible values, (p;, p,) = (0.3,0.7), and (v,, v,) = (2, 5) respectively. Indeed, since p and v are external excitation
signals, one can select them in such a way that they are exactly piecewise constant with values prescribed as above. In that case,
the SARX model considered here coincides with th§ LPV one.

12, and introduce the bijective map ¢ : {1,2} X {1,2} - O = {1,2,3,4},
(i,j) = q = o, j). where p, = 0.3, p, = 0.7, v; = 2, v, = 5. Then the LPV parameterization in®Y reduces to a SARX one
I : @ = RY - SARX(2,2,1, 1, Q) with II¥**(g) = {hq(e)}qe o 1) = M(9)b, for ¢ = o(i, j) and

signals which take values in some bounded intervals. We refer to

Let us form a vector p; ;) = [10_3 D; pl.2 v; v

91 05 : 917
M(6)= 02 96 918 c R4XS
03 97 : 919

-
Here, p; ; is a vector of the form p; ;) = [10‘3 D; p% v; UJZ. where p;, =0.3,p, =0.7,v, =2,v, =5. p, € {311.75;737.25}
and p, € {2132.5;4877.5} he input-output map of such a system is hence defined by

T
Ve = hqtd)t

with ¢, = [y,_1 Yoo Uy u,_Q] T This example illustrates how the behavior of some physical systems can be modeled by SARX
systems.
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Definition 9 (Identifiability of SARX parameterizations). The parameterization IT**** is called identifiable, if for 6, # 6, € O,
the corresponding SARX IT****(6,) and II****(6,) are not equivalent.

The intuition behind the above definition is that if a parameterization is not identifiable, then there might exist different param-
eter values which yield the same observed behavior and hence they cannot be distinguished from each other by input-output
experiments. Hence, the problem of identifying the parameters of a SARX models from a non identifiable parameterization
is ill-posed. It would be tempting to try to reduce identifiability of SARX parametrizations to that of the parametrization of
the corresponding ARX subsystems. This would then allow us to use existing theory on identifiability of ARX parametriza-
tions. Unfortunately, identifiability of a SARX parametrization does not imply the identifiability of the corresponding
parametrization of ARX subsystems. The example below demonstrates this point.

Example 2. Consider the SARX parametrization IT**** with ® = R2, and consider the parametrization IT****((6,,6,)) =
{h,(0,,0,)},e0, Where

hl = [(91 +6,) —0,0, 1 _92]»
and

hy =[2+06,) —20, 1 —0,].

Define the set G = {(0,,0,) | 6, # 2}. Consider the restriction II**|; of IT** to G. Using Theoremone can check that for
any (6,,0,) € G, the SARX system II****((6,, 8,)) is strongly minimal. Hence, the parametrization IT****| is identifiable by
Theorem 2} Identifiability of II***¥|; can also be checked by considering the switching sequence 112 and input uy = 1, u, = 0,
t > 0 and noticing that then y,, y, = 1, y, = 0, y; = 20, + 0,0, — 20, from which 6, = (y%_zg‘). Hence, 6, and 6, can be
determined from the outputs y, and y;.
Note however, that for any (6,, 6,), the ARX subsystems of II****(6,, 8,) are not identifiable, since their dynamics does not
depend on 8,.

This implies that identifiability of SARX parametrizations has to be investigated separately. Recall now that identifiability of
ARX parametrizations is closely related to their minimality. Hence, we start by investigating mnimality of SARX models.

3 | MAIN RESULTS

In this section we present the main results of the paper. First, in Section[3.1]we discuss minimality of SARX systems. In Section
[3.2) we use the results of Section [3.1]to characterize identifiability of SARX systems. In the rest of the paper we consider only
SISO SARX systems, i.e., we tacitly assume that p = m = 1 unless stated otherwise.

3.1 | Minimality conditions for switched ARX systems

In this section we will analyze minimality of SARX systems.We start by Lemmas [2] [3| and [4] that provide some simple and
crucial properties of minimal SARX systems

Lemma 2. If the SISO SARX system S is minimal, then there must exist ¢ € Q such that hZ“My #0.

Proof. Assume the contrary, i.e. that hZ“Jr”" = 0 for all ¢ € Q. Define the vectors iiq e R by ﬁq = [h; h2”+"y_1]

q € Q. Define the regressors (f)t as

b, = [er—l ’ytT—ny u, . uzT—(nu—l)]T’
Yvhere we used the convention thaty; = 0 and u; = 0 for j < 0. It then follox:vs thaty, = h,¢, = iqug, for all t € T. Hence,
S = ({h,},e0) realizes the same input-output map as S. But the dimension of S is smaller than that of S, which contradicts the
minimality of S. O

Lemma 3. A SISO ARX system is minimal according to Definitiond]if and only if the numerator and denominator of its transfer
function are co-prime.

Proof. The proof follows from the classical linear theory, by observing that two ARX systems realize the same input-output
map if and only if they have the same transfer function (modulo zero/pole cancellation).
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Consider an ARX system y, = h, ¢, and assume that it is minimal. If its transfer function admits a zero-pole cancellation,
then the degrees of the numerator and denominator of the transfer function decrease by one. The latter means that the transfer
function can be realized by an ARX of type (n,— 1, n, — 1). The dimension of the latter is n, + n, — 2 and hence smaller than that
of the original system, which was supposed to be minimal. Moreover, this new ARX system will realize the same input-output
map as the original one.

Conversely, consider an ARX system S whose transfer function does not allow zero/pole cancellation. Let f be the input-
output map of S and assume that the ARX system S is a minimal realization of . Then the transfer function H, §(z) cannot allow
a zero/pole cancellation and it must be equal to the transfer function Hg(z) of S. Since neither Hg(z) nor Hg(z) allow zero/pole
cancellation, their equality implies the equality of the numerators and denominators respectively, viewed as polynomials. In
particular, the corresponding coefficients are the same and hence the parameters of the two ARX systems are the same too. In
particular, the dimensions of the two systems will be the same, and hence S is then a minimal realization of its input-output
map. O

Remark 4. Recall that in the classical literature, a SISO ARX is said to be minimal if and only if the numerator and the
denominator of its transfer function are co-prime polynomials. Consequently, Lemma [3]shows that our definition of minimality
is consistent with the traditional one.

Lemma 4. If at least one of the ARX subsystems of a SISO SARX system is minimal, then the system is minimal.

Proof. Consider S = {h,} ¢, and assume that for some ¢,, € O, the ARX 'y, = h a ¢, is minimal. Assume that S is not minimal
and hence there exists a SARX S,, = ({iLq }4e0) such that dimS,, < dimS and S,, realizes the same input-output map as S. It
then follows that the dimension of the ARX 'y, = h, ¢, is larger than that of y, = h 4, ;- It also follows that both y, = ilqm ¢, and
Y = h, ¢, realizes the same linear input-output ma]ﬂ This contradicts the minimality of y, = h, ¢,. O

The definitionf]of minimality for SARX systems might seem ambiguous because it does not exclude explicitly the possibility
of having two minimal SARX realizations of types (n,, n,) and (4, Ai,) respectively for the same input-output map with (n,, n,) #
(ﬁy, f1,). According to the lemma below, this is impossible at least in the SISO case.

Lemma S. Assume that S; and S, are two minimal and equivalent SISO SARX systems such that S, is of type (n,,n,) and S,
is of type (ﬁy, 7). Then (ny, n,) = (ﬁy, i,).

Proof. Pick any discrete state g and consider the transfer functions H;(z), i = 1,2, of the ARX system in mode g associated
with the SARX'S,, i = 1,2. Since S, and S, are equivalent, they produce the same response to any input if the discrete mode is
kept to be ¢g. Hence, the ARX systems corresponding to the mode g are also equivalent, i.e. H,(z) and H,(z) describe the same
input-output behavior. This means that the transfer functions H,(z) and H,(z) are equal as rational expressions, after possibly
performing zero/pole cancellation. The degrees of the numerators of H,(z) and H,(z) are respectively n, and /i, and the degrees
of the denominators of H,(z) and H,(z) are respectively n, and #,. Performing zero/pole cancellation does not change the
difference between the degree of the numerator and the degree of the denominator. Hence, we obtain that n, —n, = #i, — i1, must
hold. But since both S; and S, are minimal SARX realizations of the same input-output map, their dimensions must agree and
hence n, + n, = i, + f,. It is easy to see that the only solution to the system of equations
{ny—nu =h, — A,
n,+n, =n,+n

isn,=h,andn, = i,. O

As we have seen in the previous section, strong minimality implies minimality. By?*2%, strong minimality and hence mini-
mality, can be checked algorithmically. Indeed, strong minimality of a SARX system S means minimality of the associated LSS
Y. The latter can be checked by checking if the rank of each of the finite span-reachability matrix R(Zg) of Zg and the finite
observability matrix O(Zg) of Z considered in Theorem 2 22 equals the dimension of £g. We can also formulate sufficient
conditions for minimality which do not involve computing LSSs.

amely, the map which maps mput u,, ..., u, to the outputy, = q,,-U) -+ (q,,,1,)), where f 18 the input-output map o
'Namely, the map which maps input u, , to the output y, = f((¢,y» o) =+ (4, 1)), where f is the input-output map of §
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Theorem 1 (Sufficient conditions for (strong) minimality). Consider a SISO SARX system S = {h,} ., of type (n,,n,). For
all modes ¢, § € Q, define the polynomials

y

n}’ "u
(@) =2 = Y e @ = YT ()= Yy W, ()
j=1 j j=1

Jj=1
with y, , () defined recursively for j = 0,1,2 ..., as follows: y, , o(z) = 1 and

V0412 = 2w, (2) + (h, — hy)d,; ()

where the vectors d; € R™*"« are defined as follows: d;, = e, and when di=(d;,,....d;, ,0,... ,0)T with diy,....d;, €R,

J 2 8jn,s 2 Gjn,
diyy=(hd;.d;y, ..., dj’ny_l, 0,...,0)". Then S is strongly minimal, if the following conditions hold:

(A) there exists discrete modes g, and g, such that the polynomials )(%(z) and ¢, , (z) are co-prime, and

q0-91
ny+ny

(B) there exists discrete modes g, and g5, such that 0,,(2) and y, (z) are co-prime, hZ;M" # 0 and th # hﬂi_w hZ;
a2

Proof. See Appendix B} O

Remark 5. Theorem [l is analogous to the well-known result that if a SISO transfer has no zero-pole cancellation (i.e. its
numerator and denominator are coprime) and its denominator is of degree n, then all its minimal realizations are of order n.
Due to the presence of switching, the formulation of Theorem [I]is more involved. In addition, Theorem [I] does not imply the
classical results, since condition (B) of the theorem is always false if there is only one discrete state.

In order to demonstrate the utility of Theorem|[I} we present the following examples.

Example 3. Let us apply Theorem|[I]to the SARX system S with two discrete modes Q = {1, 2} such that the ARX subsystem

in mode 1 is of the form y, = 8y,_, — 15y,_, + u,_; — 3u,_,, and the ARX subsystem in mode 2 is of the formy, =y, , +

2y, +u_; +u,_,. We obtain that n, = n, = 2, h; = [8 =15 1 =3] and h, = [1 2 1 1]. Hence, h""™ = —3 # 0, and

11(z) = 22 —8z+15, W12.1(2) = 2—=T0,(2) = z+2 ¢, ;(z) = z—6. Itis clear that the roots of y,(z) are 5 and 3 and hence v,(z)
hnu+ny hny

and y,(z) are co-prime and ¢, ;(z) and y,(z) are co-prime. Moreover, h;’ - ﬁ =2- % = —3 # 0. Hence, conditions (A)
and (B) of Theorem[I]hold and thus S is (strongly) minimal. 1

Example 4. Consider the SARX system from Example|l} and choose the parameter vector § = [91 020] as

6 =[0.0046, —0.0091, 0.0005, —0.0019, 0.4881, —0.9555,0.0519, —0.1973, —0.4881, 0.9555, —0.0519,
0.1973,6.4616, —12.6262,0.6924, —2.6043, —1.2564,2.6133, —0.0989, 0.5625]

It then follows that with this parameters, the SARX becomes S = {n,},c0, O = {G,j) | i,j = 1,2} with ng ) = np,) =
[8 -151 —3] and ng 5 = Ry = [1 21 1]. Note that the parameter vectors are the same as in Example [3| It follows that
Xan(2) = 22 =8z 415, ¢ 112 (2) = z—6. Hence, y, 1, and ¢, ), ) are co-prime and condition (A) of Theoremholds for

®

qo = (1, 1) and g, = (1,2). Moreover, v 5)(z) = z + 2 and y; ;,(2) = z? — 8z + 15 are also co-prime and hflyz) =2, h:’l};l =1
n, n,+n n, R R 15 . ’ ’
and h(]* = —15, h(l“ ])y = —3. Hence, h(]’z) - “;JW,;“” =2- > = —3 # 0, hence condition (B) of Theorem |1/ holds for

q, = (1,1) and gq; = (1, 2). That is, the SARX from I%Qamplewith the choice of parameters as in (9) is strongly minimal.

3.2 | Identifiability conditions for Switched ARX systems

In this section we study identifiability of SARX systems.

Theorem [2] which is one of the main results of the paper, describes the relationship between strong minimality and identi-
fiability. More precisely, it show that strong minimality is sufficient for identifiability. In order to restrict attention to strongly
minimal SARX systems, we introduce the following terminology.

Definition 10 (Minimality of SARX parametrizations). The parametrization II**** is called minimal (resp. strongly minimal),
if for all 8 € O, IT****(0) is minimal (resp. strongly minimal).
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If a SARX parametrization is strongly minimal, then the corresponding LSSs parametrization will be minimal. Hence, we can
apply the conditions and algorithms provided by Petreczky et al?* for analyzing the identifiability of the latter parametrization.
By Corollary [] the identifiability of the latter parametrization is identifiability of the original SARX parametrization.

In fact, for the SISO case (i.e. when p = m = 1), we can derive even stronger results, by showing that minimality is sufficient
for identifiability. To this end, we need the following definition.

Definition 11 (Injective SARX parametrizations). A SARX parametrization II**** is said to be injective if II*** is an injective
map.

An injective parametrization allows us to exclude the situation where two different parameter values lead to the same SARX
system. The ARX parametrization y, = 6%y,_, + u,_; with 6 € R is not injective, since any 6 and — always lead to the same
ARX system.

Theorem 2. Assume that p = m = 1. If a SISO SARX parametrization IT**** is injective and strongly minimal, then IT$*** is
identifiable.

Proof. See Appendix[C] O

Theorem [2| allows us to find an identifiable sub-parametrization of a SARX parametrization by checking finding a sub-
parametrization which is strong minimal. One way to check strong minimality is by checking if the conditions of Theorem|T|are
satisfied. This can easily be done, for parameterizations in which the coefficients of the SARX systems depend on the parameters
in a polynomial way. To this end, we introduce the following terminology.

Definition 12 (Polynomial parametrization). Let K = (pn,+mn,)|Q|. Then any SARX system of type (n,, n,) can be identified
with a point in RX, by identifying the system with its parameters { A ¢} qe0- Thus, SARX (n,, n,, m, p, Q) can be identified with
the space RX. A parametrization IT**** is said to be polynomial, if © is an affine algebraic variety and IT**** is a polynomial map
from O to SARX(ny, n,, m, p, Q).

Let IT**™ be a polynomial SISO SARX parametrization, i.e., p = m = 1. Below we present a procedure to find a sub-
set @ C O such that for each § € O, the SARX system IT***(9) satisfies the conditions of Theorem |1} hence it is strongly
minimal, and as a consequence the parametrization II***¥|4 : 6 3 0 —» IP™®) is strongly minimal. To this end, we
introduce the following notation. We will use the standard notation and terminology from commutative algebra, see®4. In par-
ticular, we will need the notion of an ideal, generator of an ideal, Grobner basi of an ideal, product of ideals from"Z. For
each 6 € ©, if II**(0) = {n,(0)},cp, then denote by y,(0)(z), v,(0)(z) and ¢, ;(8)(z) the polynomials y, (z),v,(2), P, ;(2),
g,q € Q, defined in Theoremfor n, = nq(H). Then, since IT**** is polynomial, the depe_ndence of nq(9) and the coefficients of
24(0)(2), v,(0)(z) and ¢, ;(0)(z) on € is polynomial. That is, there exist polynomials an" ER[X,,.... X, i=1,....n,+n,
in variables X, ..., X, and polynomials ;(qf(Xl, ces Xy 2), uqf(Xl, ces Xy 2), ¢£4(X1’ ..., Xy4,2z) in variables X, ..., X,z
such that n;(ﬂ) = n(’;’i(é), where n;(Q) denotes the ith components of n,(6), and i = 1,...,n, + n,, x,(0)(z) = ;(;(9, z),
0,(0) = vqf(H, z) and ¢, ;(0)(z) = qu;é(e, 2), 4,q € Q. In order to apply Theorem , it is necessary to have a sufficient condi-
tions for co-primeness of two polynomials in z, coefficients of which are polynomial functions of 8. To this end, assume that
0,X,,...,X,,2),i = 1,2 are two polynomials. Consider the ideal I(Q,, Q,) generated by the polynomials Q,, Q, and con-
sider the ideal J(Q,, 0,) = 1(Q,,0,) N R[X, ..., X,]. The ideal J(Q,, Q,) is finitely generated, and the set of its generators
S can be calculated from the polynomial Q,, Q, using standard algorithms from compute algebra, see“2 and the toolbox=~.

Lemma 6. If there exist g € S such that g(6) # 0, then the univariate polynomials Q,(0, z) € R[z], i = 1,2 are co-prime.

ProofofLemma@ Indeed, since g; € J(Q,,0,) € 1(0,0,), gX,,....X,) = O,(X,,.... Xz, 2)a(X,,..., X, 2) +
0,(X,,.... X4, 2)p(X,, ..., Xy, z) for some polynomials a,f in R[X,...,X,;]. In particular, g(0) = Q,(0,z2)a(b,z) +
0,(0,2)(6, z) and since g(0) # 0, 0,(0, 2) L2 + 0,(0, z)2%2 = 1, which by Bezout's identity implies that Q, (8, z), Q,(0, z)

. g(0) 8(0)
are co-prime. O

Lemma @ implies that forany # € {§ € ® | 3g € S : g(0) # 0}, the polynomials Q,(0,z) € R[z], i = 1,2 are co-
prime. We can apply Lemma@to find ® C O such that for any 6 € ©, the SARX system II***(6) satisfies conditions (A) and
(B) of Theorem [I] More precisely, we propose the following algorithm for finding a strongly minimal sub-parametrization of a
parametrization.
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Procedure 1 (Identiﬁable polynomial parametrization). 1. For each ¢,§ € Q, consider the ideal I( )(; , qﬁf; q) generated by
the polynomials ;(q R q,')f and calculate the Grobner basis .S, aq S R[X,, ..., X,] of the ideal I()([{, d);q) NRIX,, ..., X,]
using standard algorlthms , implemented, for example, in the toolbox"?

2. For each ¢.4 € O, consider ()([{ ’ “f;f) generated by the polynomials z; . vf; and calculate the Grobner basis S, i S
R[X, ..., X ] of the ideal I( ;{,{ , u’f )N R[X,,..., X,], using standard algorithms3Z, for an implementation see®?. Let
SB,q,é = {P . Q | Pe S } Where Q = nfn +ny( Sony fn +ny _ an’"ynny"'"l:)'

q
3. Let I, be the ideal generated by U 9c0 S04 and let I be the ideal generated by U ic0 SB.gq and let S be the Grobner
basisof theideal I ,- Iz = {P,-P, | P, € 14, P, € I5}. Note that S can be computed from the Grobner basis of 1, and I,
which, in turn, can easily be computed from the finite sets | J n9c0 Saqq and U 44e0 SB.qqUsINg a stanfiard algorithm for
computing Grébner basis from a generator set of an ideal?*“?, Define the parametrization: II'**|4 : © 3 6 — II**®(0),
where
O={0cO|IPES: PO #0).

Procedure |1{was implemented, the code is available in*

Lemma 7. The parametrization II****|4 calculated by Procedure E]is strongly minimal and hence it is identifiable

Proof of Lemma[/] Assume that § € 6 and let P € S be such that P(6) # 0. Then, since P € I 4+ 1g, P = P, P, for some
P, € I, and P, € I, and since P(0) # 0, P,(6) # 0 and P,(0) # 0. Since P, € 1, and P,(6) # 0, there must exist a polynomial
131 in the generator set U dc0Saqqof I A such that 131 (6) # 0. In particular, 131 € S, 4 forsome g, 4 € Q. By applying Lemma
@to X ,d)f it follows that ;(q(e)(z) (0 z) and (,bf 0,z2) = d)q q(H)(z) are co-prime, hence for ¢, = ¢q, g, = 4, condition
(A) of Theoremlholds Similarly, since P2 € Iz and P2(¢9) #0,it follows that there exists a polynomlal P, such that Py(0) # 0
and for some ¢,,¢; € Q, P, € S'B.gy.q,- The latter means that P,=P-n S +ny( "y, anzn b an?n ") for some P; € SB i’
From P,(0) # 0 it then follows that P3(0) #0and )’ y(e) IR 9) — )" 0)ny " (6) # 0 and nf ™ () # 0. From Lemma
@u follows that P;(0) # 0 implies that v ,(0)(z) and )(q (0)(z) are co-prime, hence condition (B) of Theoremlholds That is,
©(0) is strongly minimal. O

Example 5. Consider the parametrization from Example [I] and let us apply Procedure [I] to it. We re-parameterize this
parametrization as follows: define ¢ : R? 3 (Cl,{,’z)T = (.8 +8.0,0,...,0, DT € R?° and define the parametriza-
tion II**x : R2 5 &, 5T = II™(P(S,, ), where ITS*RX is the parametrization from Example It then follows that for
€ = (1,6 are of the form IIX(E) = {n,(D)}ye0, @ = (1,1, (1,2, 2, D, 2. D)},

1.2 () = [0.001¢, 0.001¢; +0.001¢, 0.0 16.0]", na.n(©) = [0.001¢; 0.001¢; +0.001¢, 0.0 4.0]"
nen(©) = [0.001¢, 0.001¢; +0.001¢, 0.0 4.0]", N2 () = [0.001¢; 0.001¢; +0.001¢, 0.0 16.0]"
and the polynomials )(q(g), vq(g), 4’41,42(9’
2,(0)(2) = =0.001¢,z + 2> = 0.001¢, = 0.001¢,, v,({)(2) = 0.001¢,z + 0.001¢, +0.001¢,, g € O
by, O(2) =162, (a1, 0)) € Zy, by (,()(2) = 42, (41, 0) € Z5,
Z; = {((1,2),(2,2)), (1, 1), (2, 1), ((1,2),(2,2)), (2, 1), (1, 1)), ((2,2), (1,2))}
Z, = {((1,1),(1,2)),((1, 1),(2,2)), (1, 2), (1, 1)), (2, 1), (1, 2)), (2, 1), (2,2)), (2, 2), (1, D) }.

Then S, , 4. Squ and S, 4. ¢4 € O can all be calculated using?. In this case Sags =6 +86).¢4.4 € 0,9 #Gand
Spai=90.(.DEZ,Sp, ;= 4‘13 + 3C12C2 + 34’14,“2 + Cz, (¢, 9) € Z,. It then follows that I, is generated by the Grobner basis
{¢, + &} and I is generated by the Grobner basis {¢] +3¢7¢, + 34,67 + ¢ ). Hence, S = {{] +4¢76 + 60767 + 46,8 + &)
It then follows that

O={z=(.0) | & +400+6076 +46,85 +¢ #0) ={z2= (.6 1 6 # =6

and the parametrization H‘7*Rx| CE (- H*ARX(C ) is strongly minimal and identifiable.

We can also apply ProcedureI]to more comphcated parametrizations, but the expressions for corresponding polynomials and
the Grobner bases are more involved. For example, define ¢ : R? &) B (§,8 + &k kys on s Ky, K9 + DT € R,
k; = 1,ifiis even, and k; = ({; —¢,) if i is odd, and define the parametrization IIiex : R2 5 (RS l'[s"“"(q';(Cl ,$5)), where
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II**** is the parametrization from Example(l} The expressions for the Grobner basis S, , ;. Sp, 40 4.4 € O is lengthy. However,
using the implementation of** of Procedure|1| we obtain that I , is generated by the polynomial 1, i.e., I, = R[X|, X,], and I,
is generated by {¢2, (5, 4’22} and hence I ;15 = I and thus §' = {Clz, £,6,, sz} and

O={z=.O) G #0. or &G #00rg; #0} ={z=(.5) 1§ #0or g, #0)
and the parametrization HSXRX|(:) : © 3 ¢ IISRX(¢) is strongly minimal and identifiable.

Remark 6 (Computional complexity). Procedure [I] relies on computing Grobner bases, and it is known that the computa-
tional complexity of the latter can be high. Hence, computational complexity of Procedure [I|might be an issue for applications.
However, even for linear systems, identifiability analysis relies on symbolic algorithms, in particular, on algorithms based on
calculation of Grobner bases, and there the same problem arises=>. For this reason, a detailed study of computational complexity
of Procedure[I] cannot be handled within this paper.

3.3 | On the genericity of minimality and identifiability

In the previous sections we have established that strong minimality is sufficient for minimality and that it is also sufficient for
identifiability. However, we have also demonstrated that for some minimal SARX systems, strong minimality does not hold.
Hence, one may wonder how typical strong minimality is.

Below we will show that strong minimality is a generic property, i.e. it holds for almost all SARX systems, if |Q] > 1.
This also means that identifiability is a generic property. In other words, strong minimality occurs very frequently. In order to
formalize these results, we need the following terminology.

Definition 13 (Generic set). A subset G of ® C R is generic, if G is non-empty and there exists a non-zero polynomial
P(X,,...,X,)in d variables such that G = {6 € ® | P(0) # 0}.

That is, a generic subset of ® is a non-empty subset whose complement in ® satisfies a polynomial equation.

Definition 14 (Generic identifiability and minimality of SARX parametrization). The parametrization II*** is said to be generi-
cally identifiable if there exists a generic subset G of ©, such that the parametrization II**|, : G 3 6 — II***(6) is identifiable.
Similarly, IT*® is generically minimal (respectively generically strongly minimal), if there exists a generic subset G of ®, such
that the parametrization II** ; : G 3 6 — IIP***(0) is minimal (respectively strongly minimal).

Intuitively, if a property is generic for a parametrization, then every member of the parametrization can be approximated with
arbitrary accuracy by another member which has this property. Another interpretation is that if we randomly generate parameters,
then the property will hold for the obtained random parametrization with probability one.

Example 6. Consider the parametrization II'*** from Example [2} The set G from Example [2| is generic. Hence, since
the parametrization II****| is strongly minimal and identifiable, the parametrization IT**** is generically strongly minimal,
generically minimal, and generically identifiable.

Theorem 3 (Generic minimality). If |Q] > 1, II** is a polynomial parametrization and IT**** contains a strongly minimal
SARX system, (i.e. for some 0 € ©, II***(0) is strongly minimal), then II**** is generically strongly minimal.

Proof. See Appendix D} O
Notice that Theorem [2]implies the following corollary result.

Corollary 2. Consider the SISO case, i.e. p = m = 1. If a SARX parametrization is injective, polynomial, and generically
strongly minimal, then it is generically identifiable.

Proof. If II**™ is generically strongly minimal, then there exists a generic set G C O such that the parametrization IT*®| :
G 3 6 — II*™(9) is strongly minimal. Hence, by Theorem [2] II***¥|; is identifiable. This means that IT*** is generically
strongly identifiable. O

Corollary [2]and Theorem [3yield the following result.

Corollary 3. Assume that p = m = 1. If a SISO SARX parametrization is polynomial and it contains a strongly minimal
element, then it is generically identifiable.
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The trivial SISO SARX parametrization Iy is the SARX parametrization defined as follows: ® = R!!"+n) and I, is
the identity map. From Corollaries [2and [3] we obtain that

Corollary 4. The trivial parametrization is generically minimal and in the SISO case, it is generically identifiable.

Proof. By Remark 3] there exists a strongly minimal SARX system, i.e. Iy, contains a strongly minimal element. Moreover,
I,y is clearly injective and polynomial. We can therefore apply Corollary [3|to conclude. O

Example 7. From Example [4]it follows that the parametrization defined in Example [I| contains a strongly minimal element,
hence it is generically strongly minimal and generically identifiable.

4 | CONCLUDING REMARKS

In this paper we have studied minimality and identifiability of linear SARX systems. Formal definitions of these two concepts
have been introduced and discussed with respect to their standard characterizations for ARX systems. Sufficient and necessary
conditions have been derived for minimality and identifiability of SARX systems. In particular, it has been shown that minimal
SARX parametrizations are also identifiable.
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APPENDIX
A ON MINIMALITY AND INDENTIFIABILITY OF LSSs

In this section we recall from“# the notion of identifiability for LSSs, and its relationship with minimality. In addition, we recall
from“# sufficient and necessary conditions for identifiability of LSSs. We start with defining the notion of parametrization of
LSSs. To this end, we need the following notation.

Notation 4. Denote by X(n, m, p, Q) the set of all LSSs with state-space dimension 7, input space R™, output space R?, and set
of discrete modes Q.

Definition 15 (Parametrization of LSSs). Assume that ® C R? is the set of parameters. A parametrization of LSSs belonging
to Z(n,m,p, Q) is amap II" : ©® — X(n, m, p, Q). For each 8 € O, we denote I1**(9) by

Z(0) = (n,0.{(A,(0). B,(0).C,(0)) | g € O}, x,(0)).
Next, we define structural identifiability of parametrizations.

Definition 16 (Structural identifiability of LSSs parametrizations). A parametrization IT" : ® — Z(n, m, p, Q) is structurally
identifiable, if for any two distinct parameters 6, # 6,, the input-output maps of the corresponding LSSs IT*%(0,) = Z(0,) and
I1'%%(6,) = Z(6,) are different, i.e. yyg ) # Vo,

The condition yy ) # yy(,) Means that there exists a sequence of inputs and discrete modes w € U'", such that yy, ,(w) #
Ys(o,(w). In other words, a parametrization is structurally identifiable, if for every two distinct parameters there exists an input
and a switching signal, such that the corresponding outputs are different. This means that every parameter can be uniquely
reconstructed from the input-output map of the corresponding LSS.

Itis an intuitive fact that minimality is somehow a necessary condition for structural identifiability?*. If we allow non-minimal
parametrizations, then either the parametrization is not identifiable, or all the parameters occur in the minimal part of the systems,
and hence we can replace the parametrization by a minimal one. For this reason, we will restrict attention to minimal LSSs when
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studying identifiability. In turn, structural minimality of parametrizations allow a simple characterization of identifiability, due
to the fact that minimal LSSs are unique up to isomorphism.

Definition 17 (Structural minimality of LSSs parametrization). The parametrization IT*® is called structurally minimal, if for
any parameter value § € ©, (0) is a minimal LSS realization of its input-output map ys,.

Hence, by Petreczky et 2> Theorem 1 "I jg structurally minimal if and only if for every parameter # € ©, X() is span-
reachable and observable. Since the latter concepts admit rank characterizations, structural minimality is a property that can be
checked algorithmically.

Theorem [] below recalls a necessary and sufficient condition for structural identifiability of a structurally minimal
parametrization established by Petreczky et al?®,

Theorem 4 (Identifiability of structural minimal parametrizations). A structurally minimal parametrization IT** is structurally
identifiable, if and only if for any two distinct parameter values 6,6, € ©, 6, # 0,, there exists no LSS isomorphism S :
2(0,) - Z(6,).

The following important corollary which is an immediate consequence of the Theorem [ can be useful for checking
identifiability of parametrizations.

Corollary 5. Assume that IT*S is a structurally minimal parametrization, and for each two parameter values 6,6, € 0, 2(6,) =
2(6,) implies that 8, = 0,. Here, equality of two systems means equality of the matrices of the linear subsystems for each
discrete state ¢ € Q and equality of the initial state. Then IT*® is structurally identifiable if and only if the assumption that
S 1 2(0,) = 2(0,) is an LSS isomorphism implies that .S is the identity matrix.

B PROOF OF THEOREMI|

For the proof of Theorem we will need a number of auxiliary results. Below, we consider S = {h,},co. We denote by A, the
corresponding matrix of the LSS Zg. We will denote by e; the ith standard basis vector of R"*".

Lemma 8. Let X| = Spanf{e,, ..., ey, }. It then follows that for any g € Q,
1. Aje; = héel +e; forallj=1,....n,+n, j#n,and Aqeny = h;yel.
2. The space X, is A, invariant and Span{A;e1 [i=0,....,n,—1} = X,
3. Aéenyﬂ €X,+e, 41,0 =0,....n,— 1, and AZ“eny+1 € X,.
4. For any 4 € O, xpé,q’j(Aq)e1 = A{,el, where Wq,q,o(z) =1and
Woq 1 (D) = 2954,,(2) + (g = hpwy g j(Apey,

where the vectors d; € R™*" are defined as follows: dy = e, and if d; = (d, . ....d;, ,0,...,00". d, ., ....d;

J > j,nya > Jj J!ny € R’
then

iy = (hyd,.d

j,l""’d

Jjiny—1°

0,...,007

Proof. Partfollows by a simple computation. Partfollows from Partby taking into account that A e, € Span{e, }. Part
follows from the definition of A, by induction. Indeed, Aqeny = hZ" epte, n € X, + € +2 and if Aéeny g €EX + € +j+1s
then AJ*e, € X, + Age, ;0 C X+ 4y "

! erte, o S Xite, .
Finally, y, , ;(A;)e; = Aje; we will prove by induction. For j = 0, the equality is trivial. Notice that Age; = h; e +e, =

Aze; + (h; - h;}?el for ?111 i = l,....,n, — 1, and Aqe”y = hZ"e1 = Aéeny + (th - h;y)el. Hence, for any x = Z,ni] x;e;,
Ax=Ax+ 37 xi(hy = ey = Agx + ((hy — hy)x)e;. Hence, if yy , ;(Age, = Ale| holds, then

Altley = A, ((Apey = Ay (Apey + (hy = hwy g j(Age) ey (B
Finally, notice that d; = Agej forall j = 0,...,n,. Indeed, dy = e, and if d; = Z:’;l d;e;then A d;, = (221 alj,,.h;)e1 +

Z:’iz d;;_1e; = d, ;. Hence, by replacing v, . /(A;)e; = A{;e1 by d; in (BI), we obtain that

i+, _
Al e =y, i (Agey.
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Hence, by induction we get the last statement of the lemma. O

i

Lemma 9. If h"ﬁ” # 0, then {eT A} | j =0, .. .n, + n, — 1} spans R+ Moreover, ¢! = eT Any_ i =1,...,n,, and
y

enTyH. = eny)(q(Aq)yqu(Aq),j =1,...,n,, where ;(q(z) =z — ijl h{lz »~/ and the polynomial yj,q(z), Jj=1,...,n,is defined

recursively as follows:

n,—1

1
3/1,4(2) = TJr,,yZ

and

i ny+n,—i+j
VgD = = (@ Z vj4(Dhy ).
hq
Proof. In this proof we will view A, as a linear map xI'e xTA ,» defined on the space of row vectors xT € R+ From

thestructureofA 1tthenfollowsthateTA —e fOI"j—{2 ...,n }U{n +2,...,ny+nu}.Hence,eZAj,j=0,...,ny—1

spans X, = Span{e1 e, env}. Notice that elTAq = Z:':Jlrn h’ T + h, A :Jrn . Hence
n +n )’
2 hiel =elA, - 2 hiel (B2)
i=n, +1 =1
belongs to the linear span of e{ Aj, j=0,... ,ny.
Y.
We proceed to prove that xTAJ j=0,. 1 span X, = Span{e 41 +n }. From this the first statement of the lemma
follows. Notice that efy A= =0and e,{ +/A n} ol forall j =2,...,n, Hence,
+i+,
X' Al = Z At :H. (B3)
From (B3) and h;yﬂ“ # 0 it then follows that
1 -1
T T 4"
eny+1 n,+n, g, % ACI (B4)
h,
andifel  ,...,eT have already been obtained from the linear combinations of xTA i=n,—j, ...,n,—1,then
n,+1 ny,+j q u u
J
T T (n,—j—1 n +nu—j—l+i
Cnrjrl = hnu+n (X Ag Z hy eny+i)' (BS)
Hence, xTAé, j=0,...,n,—1span Xz-_A
Finally, the statement ejr = enT AZY j, j = 1,. Jny, follows from the definition of A The statement that e i =
y
el x(A)y;,(A).j=1,...,n,canbe shown as follows. From (B2) it follows that x™ = eI’ ;(q(Aq). From (B4)) and (BJ) it follows
y ’ y
that e: = xTyqu(A ) forall j=1,...,n, Combining the above statements implies the second statement of the lemma. [
)

Lemma 10. Assume that h;“+n" # 0. The characteristic polynomial of A, coincides with its minimal polynomial and it equals
— MMy _ i n,—i
)(Aq(z) = z"(z Zl hqz ).

Proof. From Lemma@it follows that R+ is a cyclic subspace with respect to the linear operator Aq cxT - xTAq
By Theorem 4-Chapter VII of the book of Gantmacher2?, it then follows that the minimal polynomial of the linear operator A,
equals its characteristic polynomial and it is of degree n, + n,. Note that in the standard basis e1 yene ,efu ny? the basis of the
linear operator Aq 1s AZ. Hence, the minimal polynomial and characteristic polynomial of AqT coincide. But these polynomials
are the same for the matrices A, and AqT.

Moreover, from Lemma|9} it also follows that ef is the generating element of the cyclic space R'"*+") Hence, by Subsection
,

4.1-Chapter VII of the book of Gantmacher, a polynomial y(z) is a minimal polynomial of A, if y(A q)e:}_ = enTyt//(Aq) =0

2The definition of cyclic subspaces can be found in Section 4-Chapter VII of the book of Gantmacher=¢
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and it has the smallest possible degree. By the discussion above, the degree of the minimal polynomial of Aq must be n, + n,.
Hence, the minimal polynomial of Aq is the unique monic polynomial y(z) of degree n,, + n,, such that e: w(A,) =0
If we show that eT A4, (A,) = 0, then the statement of the lemma follows. To this end, notice that if yie X, =

} then y" A;* = 0. In addition, eTA C =l A, ijl Riel +xT, where x™ = Y hiel € X,.

i=ny+l

Span{ eT

o n+n

Hence, by takmg into account the remark above and that e =e, Any : Ji=1,...,n,

my

)’
n,+n, ; n n n, +n —i
ey A = ) el Ay +x" Ay = Y hie) A
y

i=1 i=1

The latter is exactly equivalent to efy X Aq(A 2 =0. O

Now, to complete the proof of Theorem we will show that if Part (A) holds, then Xg is reachable, and if Part (B) holds, then
Xg is observable.

Proof of Part (A)
We will show that if the conditions of (A) hold, then (A @’ A""B ) isa controllable pair. By Sun and Ge”¥ it then follows that
the LSS Xg is reachable. From Lemmait follows that AélB = Aﬁ, ol = h”‘+rAjrre, te, i forj=1....n,-1
and hence

n, ny+j o on,—j
A}B, Z hy AP ey
From Lemmait also follows that U7 (Aqo)el = Aél e and hence the polynomial d)%sql (z) satisfies

nu —
A‘h Bq - "bqo»ql (Aqo)el :

From Lemma(g] it follows that ¢, , (A, )e; € X, and X, is A, invariant, where X = Span{e,, ..., e, }. In addition, from the
, Y
construction of A @ it follows that with respect to the basis e, ..., e, , the matrix representation of the restriction of A @ O X,
¥

is of the form 1
1 ny= ny
i [h%. ne ] Mo ]
90 I

n,—-1 O(ny—1)><1
The above matrix is in companion form and it is known that its characteristic polynomial equals its minimal polynomial and
it equals ;(qo(z). Thgt is, ;(qo(z) is the minimal polynomial of the linear operator A @ restricted to X ;. Moreover, from Lemma
it follows that Afloel, J =0,....,n, — 1 generate the space X, i.e. X, is a cyclic subspace w.r.t. to A, . Then by Subsection
4.1-Chapter VII of the book of Gantmacher=°, X4,(2) 1s a minimal polynomial of e, with respectto A4, , i.e. x, (A, )e; = 0 and
)(qo(z) has the smallest degree among all the polynomials y(z) such that 1//(Aqo)e1 =0.

Suppose now that Xao (z) and d) (z) are coprime, but (A%’ AZ‘I‘ Bql) = (Aqo’ (i)q(AqO)el) is not a controllable pair. Then the
vectors A{mx, j=0,....n, -1, x= d)‘h)s o, (A, )e; are linearly dependent, i.e. there exists a non-zero polynomial x(z) of degree
at most n, — 1 such that K(Aqo)x = 0. By substituting x = d)q()*‘Il(Aq[))el’ we get K(Aqo)(;bqoﬂ1 (Aqo)e1 = 0. That is, for the
polynomial ¢(z) = k(2), , (2), (A, )e; = 0. This implies by Gantmacher-“ that the minimal polynomial y, (z) divides
@(z) = K(z)d)qmql (z). Since X4,(2) and d)lm’q1 (z) are co-prime, then this is possible only if )(qo(z) divides x(z). But the degree of
k(z) is strictly smaller than the degree of Xay (2), hence k(z) cannot be divisible by )(qo(z). We arrived to a contradiction. That
is, we can conclude that (A A ‘B, ) is a controllable pair.

Proof of Part (B)

‘We will show that (Cq3, qu) is an observable pair. By Sun and Ge28 this is sufficient for observability of Xg.

To this end, using the notation of Lemma [J]define the polynomial

P(2) =0, (D) + Y by, (D)2, (2).
Jj=1

Then from Lemma Ellt follows that C, = e WA, ) Assume that (C A, ) is not an observable pair. Then C, Aq ,Jj =
0,...,n,—1are linearly dependent. Hence there exists apolynomlal k(z) of degree less than n, such that C, k(4,)) = 0. Hence,
we obtaln thate; u/(A JK(A,) = 0. In other words, the polynomial P(z) = ¥ (z)x(z) is an anmhllatmg polynom1al with respect

to the operator A o DX P XA, Iof el . Since by Lemmaﬁ e, AJ 0> J =0,....n, + n, generate the whole space, it then follows
y

3For the definition, see the book of Gantmacher=¢.
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that P(z) is the annihilating polynomial of the whole space, i.e. P(A, ) = 0. It then follows that P(z) is divisible by the minimal
polynomial of A @ which coincides with that of A 4, From Lemma it follows that the minimal polynomial of A 0 is 2" )(qz(z).

We will argue that if the conditions of Part (B) hold, then ¥(z) and z" Xq,(2) are co-prime. Indeed, if ¥(z) and z" Xq,(2) are
not co-prime, then there exists an irreducible polynomial g(z) which divides both (z) and z" Xq,(2)- If g(z) is an irreducible
polynomial which divides z" )(qz(z), then it either equals z or it divides ;(qz(z). If q(z) z and it divides (z), then O is a
root of W (z), i.e. ¥(0) = 0. Notice that by induction it follows that for j = 1, .. - 1,7;,0 =0 and Yn, 40 = _+»

‘12
nu+ny nu+ny

Hence, from the definition of y(z) it follows that yr(0) = h + W,,y Xy, 0 = hq; — W,,y hq Hence, y(0) = 0 implies that
‘72

n“+ny

n, hy, . . .. Cq.e . T
hqj = HW} h ”, which contradicts to the condition of (B). If ¢(z) divides ;(qz(z) and it divides y(z), then it divides v%(z) =

W(z) — (Zl . h23+'y, 0, (2 x,,(2). But this contradicts to the assumption that v,,(2) and Xq,(2) are co-prime.
Hence, by the discussion above, (z) and z" )(qz(z) are coprime, so if z"« )(qz(z) divides P(z), it then must divide x(z). But
the degree of k(z) is strictly smaller than that of z" ;(qz(z), hence z"y, (z) cannot divide x(z). We arrived to a contradiction.

Hence, (Cq3, A qz) must be an observable pair.

C PROOF OF THEOREM (2|

In order to prove Theorem 2] we will relate identifiability analysis of SARX systems to that of the associated LSSs (see Section|[A]
for the definition of a parametrization and identifiability of LSSs). This is possible due to the following corollary of Lemmal(T]

Corollary 6. A SARX parametrization II'*** of the form (7)) is identifiable, if and only if the LSS parametrization I, : ® >
6 — Zysarxg) is identifiable. Here, Zpsarx(g) is the LSS of the form (5)—(6) obtained from the SARX II****(9).

Proof of Corollaryl6] Consider two SARX systems S, = {h; Y400 | = 1,2 of type (n,, n,). Notice thateach S;, i = 1,2, realizes
the same input-output map as the associated LSSs X .
Assume that the parametrization IT*** is identifiable, but II,, is not identifiable. Then there exist two parameters 6,6, € O,
6, # 0,, such that II,(6,) and IL,(6,) realize the same input-output map. Since IL, (6;) = Zysarx(g ), i = 1,2, by the remark
above it follows that II****(6,) and II****(0,) are equivalent. This contradicts the identifiability of TI****.

Conversely, assume that II,, is identifiable, but IT**** is not identifiable. Then there exists parameters 8,6, € ©, 6, # 0,,
such that II****(6,) and IT****(0,) are equivalent. This means that ZHSARX(GI) =1II,,(0,)and Zns,mx(ez) =1II,,,(0,) realize the same
input-output map. But this contradicts the identifiability of II,,,. O

In order to prove Theorem 2] we will need the following result which is interesting on its own right.

Theorem S. Consider two SISO SARX systems S| = {h,},co and S, = {g,},o of type (n,,n,) and assume that for some
qg € Q, either h # 0 or hny+n # 0. If there exists an isomorphisnﬂ between the associated LSSs Esl and Zsz, then this

isomorphism is the identity map.

Theorem [5] implies, under some mild conditions, that the transformation of two different SARX systems to state-space
representations cannot result in isomorphic systems.

Proof of Theorem[)] Assume that ¥ = (1,0, {(A, B,.C,) | ¢ € 0}, x,) and T = ', 0, {(A;, B;,C;) | ¢ € Q}.x,) with
n=n=n= n,+n, and p = m = 1. Consider an isomorphism S between Xg and Zg . Denote by e; the ith standard unit vector
of R". Then e], ..., el form the standard basis in R"*". The proof depends on the following series of technical results.

Proposition 1.
e[ A, =¢ SA, (C6)
Proof. From the construction of Zs,.a i = 1,2 it then follows that Cq = elTAq, C:; = elTA;. From the definition of isomorphism

between LSSs, it follows that C;S = Cq, g € Q. Hence, we obtain that

!
eTA =eTA S.
1779 17°7q

4See the work of Petreczky et al2* for the definition of isomorphism between LSSs
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But A'qS = S A, by the definition of a LSS isomorphism, and hence we obtain the claim of the proposition. O
Proposition 2. The columns of A, span the space
Spanfe,,....e, ., } \ {e, 11}

Proof of Proposition[2] Indeed, Age, = h;’el, Aqeny = thel, Age; =ej + h{,el forall j € {1,...,n =1} \ {n,}. Hence, if
either hZ}' # 0 or hy # 0, then e, belongs to the column space of A , and hence e; = Ae; | — hé_le | belongs to the column
space of A, for j € {2,...,n} \ {n, +1}. O

Proposition 3. Foranyi=1,....n,+n,, if eiTAq = el.TSAq, then el.T = el.TS.

Proof of Proposition[3} Indeed, if el A, = el SA,, then this implies that (¢! — e S)A, = 0. By Propositionthis implies that
(el — elTS)e ;=0forallje{l,..,n,+ ny} \ {ny + 1}. Notice that from the construction of Zg,, X, and the definition of a
LSS morphism it follows that enerl = B; =SB, = Se, ,,. Hence, (¢ — e[ S)e, ,; = 0and thus

T _ T -0 =
(e, —e¢;S)e; =0,j=1,....n,+n,.
This is just an alternative way of formulating the conclusion of the proposition. O

Proposition 4. IfeT_ls = e.T_l, then ejTAq = ejTSAq forallj = {2,....n,+n,} \ {n,+1}.

Proof. Notice that eTA = e L erA; =e_ 1, j=n,...,2,and eTA = e " e.TA; = ejT_l, for j =n,+n,,...,n, +2. Hence,
by using AqS SA , we derlve
el S=elAS=clSA (C7)
- Ja =
forallj € {2,....,n,} U{n,+2,....n,+n,}. Since e JT S = ejT_l,and ejTAq = ejT_l forall j = (2,...,n,+n,}\ {n,+1}, from
(C’7) we obtain the claim of the proposmon O

The rest of the proof of Theorem [5] proceeds as follows. We will prove that
T _ ¢, T :_
e —Sej,j—l,...,ny+nu, (C8)

which is just another way of saying that S is the identity matrix. To this end, from (C6) and Proposition E] it follows that
(C8) holds for j = 1. Moreover, the n, + 1th row of A, and A are both zero, hence, 0 = el ny+1 , 0= e A and thus
0= e, +1A;S = en +15A,. From this we get that e Ay =e, 1S4, and by Proposition (3 thls 1mphes that @ holds for
Jj =n,+ 1. Notice that 1f@ holds for j = k € {1 ,n, + n -1} \ {n,}, then by Proposmon ek+1A = ek+1SA By
Proposition 3] the latter implies that (C8) holds for j = k + 1. Hence by induction we get that (C8)) holds for all ;.

Proof of Theorem[2] We will show that the LSS parameterization IL;,, : ©® 3 6 > Epsax () is identifiable. By Corollary [6] this
is sufficient for identifiability of IT®***.

Since IT**® is strongly minimal, the LSS parameterization IL,,, is minimal%, In order to show identifiability of I, according
to Petreczky et al?® Coollary 1 it js enough to show that the only isomorphism between elements of IT,,, is the identity. Consider
now two elements ¥; = Zysarxg,), 0; € 0,1 = 1 2 of IL,,,. Notice that II****(6, ) is minimal, since it is strongly minimal, and thus
if IP*(0,) = {h,},cp- then by Lemmal R # 0. But then from Theoremlt follows that the only isomorphism between
X, and %, is the identity map.

O

D PROOF OF THEOREM (3|

Let K = (pn,+mn,)|Q|. Then any SARX system of type (n,, n,) can be identified with a point in RX, by identifying the system
with the collection of its parameters {h,} 0. h, € RPPHH™),

First, we construct a polynomial P,;,(X|, ..., Xg), such that P, (S) # O if and only if S is strongly minimal. To this end,
consider the LSS Xg and consider the observability and controllability matrices O(Zg) and R(Zg) as defined in??. Define

P,(X,, ..., Xg) = det(O(Zg)" O(Zy)),
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and
P (Xp, ..., Xg) = det(R(ZHR(ES)T),
with the notation det(-) referring to determinant. Then P,  and P, . are polynomials in the entries of the matrices of Xg.
Moreover, by applying the results of Petreczky et al??,
o P, (S)# 0 & O(Zg) has full rank & Xg is observable
o P ..(S) #0 & R(Zg) has full rank & Xg is reachable.

Define now P,;,, = P,,..P,,. Then P,

contr® obs*

(S) # 0 if and only if Xg is both observable and reachable, i.e. if and only if Xg is

min
minimal.
Finally, consider a polynomial parametrization IT*** such that IT*** contains a strongly minimal element. The fact that II**®*
is a polynomial parametrization implies that there exists polynomials IT*** in variables X, ..., X,, i = 1,..., K such that

TP (0) = (IT7*™(0), ..., IT*(0)) for all 0 € ©. Here we used the identification of a SARX system of type (n
in RX. Consider the polynomial

,»1,) with a point

OpinX s oy Xg) = P MEN(X (0o, X )y o X X))

Notice that the set of parameters from ® which do not yield a minimal SARX system all satisfy the equation Q,,;,(6) = 0. From
the assumption that II**** contains a strongly minimal element it follows that for some 6 € ©, Q,,,,(8) = P, (II***(8)) # 0.
Hence, the set G = {6 € © | Q,,;,(0) # 0} is a non-empty subset of ® and it is clearly generic. That is, IT*** is generically
strongly minimal, and hence minimal.
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