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Abstract9

Three-dimensional data are increasingly prevalent in forestry thanks to ter-

restrial LiDAR. This work assesses the feasibility for an automated recog-

nition of the type of local defects present on the bark surface. These sin-

gularities are frequently external markers of inner defects affecting wood

quality, and their type, size, and frequency are major components of grading

rules. The proposed approach assigns previously detected abnormalities in

the bark roughness to one of the defect types: branches, branch scars, epi-

cormic shoots, burls, and smaller defects. Our machine learning approach is

based on random forests using potential defects shape descriptors, including

Hu invariant moments, dimensions, and species. The results of our experi-

ments involving different French commercial species, oak, beech, fir, and pine

showed that most defects were well classified with an average F1 score of 0.86.
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1. Introduction11

Grading standing trees and roundwoods is a critical task in a wood supply12

chain before harvesting or processing in the wood industry (Fonseca, 2005).13

This question is especially concerned by the general trend towards digitiza-14

tion for forest wood-chain traceability, supply chain optimization, and trans-15

formation (Pickens et al., 1997; Lin and Wang, 2012; Gardiner and Moore,16

2014; Müller et al., 2019). After the overall shape characterization defining17

material yield, and wood quality information coming from the cross-sectional18

ends in the case of roundwood, wood quality is mainly assessed from singu-19

larities of the bark surface. The occurrence of such singularities indicates20

local variations of the material properties generally corresponding to de-21

creased normal distribution of the clearwood properties and characteristics,22

which detrimentally impact future products and their mechanical, physical23

or aesthetical functions. Nevertheless, the resulting grade made by an expert24

corresponds to a global assessment of the quality by taking many criteria25

into account through grading rules. After the attribution of the grade, the26

original causes are often forgotten.27

Alternatives using X-ray computed tomography (CT) can be considered28

as reference methods for such a characterization (Li et al., 1996; Zhu et al.,29

1996; Aguilera et al., 2008; Colin et al., 2010b). On the one hand, CT can30

achieve good accuracy for defect recognition (up to 95%; Li et al. (1996)),31

detect the defects as small as 1 millimeter in diameter by manually placing32

plot markers along the tracks of knot (Colin et al., 2010b), or automatically33

detect knots (Longuetaud et al., 2012; Krähenbühl et al., 2012, 2016). In-34

dustrial solutions are proposed by several companies (Microtec, 2019; Jörg35
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Elektronik GmbH, 2019). On the other hand, CT has its own limitations with36

investment cost and the need to fell the tree and cut it into logs. Besides the37

fact that grading rules are mainly defined from external observations where38

bark is present, recent studies confirmed a strong correlation between inter-39

nal and external defects (Thomas, 2009; Stängle et al., 2014; Racko, 2013;40

Pyörälä et al., 2018) with coefficients of determination (R2) greater than 0.6.41

From these results and practices, the question arose as to the use of three-42

dimensional (3D) technologies for describing the external envelope of trunks43

or logs with the objective of detecting bark surface defects.44

LiDAR (Light Detection and Ranging) can measure objects in three di-45

mensions through a technique in which a laser beam is emitted and the46

reflected light is received by a detector. The resulting product is a point47

cloud that contains the three spatial dimensions (x, y and z coordinates) of48

the scanned object. In forestry, terrestrial laser scanning (TLS) can provide49

information about an individual tree or a plot (Dassot et al., 2011). A va-50

riety of forestry applications have been developed in the last two decades.51

In particular, a number of studies has taken advantage of the potential of52

LiDAR for the replacement of conventional methods of measuring forest in-53

ventory parameters, such as tree height, diameter at breast height (DBH,54

trunk diameter measured at 1.3 m above ground level) (Hopkinson et al.,55

2004; Simonse et al., 2003), stand density, stand basal area, and volume for56

biomass assessment (Van Leeuwen and Nieuwenhuis, 2010; Yao et al., 2011;57

Dassot et al., 2012; Astrup et al., 2014).58

On standing trees, there have been attempts to estimate tree quality59

criteria from TLS (Kankare et al., 2014; Blanchette et al., 2015), airborne60
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LiDAR (Maltamo et al., 2009; Luther et al., 2014; Kankare et al., 2014), or61

both types of LiDAR (Van Leeuwen et al., 2011). The quality parameters62

targeted in these works mainly concerned the overall shape of the timber:63

ovality, curvature, taper, and the presence of branches. Research focused on64

the detection of external defects are scarce (Schütt et al., 2004; Stängle et al.,65

2014; Thomas et al., 2007; Kretschmer et al., 2013). Most of these studies66

were dedicated to the detection of large and very obvious defects. Thomas67

et al. (2007); Thomas and Thomas (2010) detected, on red oak and yellow68

poplar, defects with a diameter greater than 7.5 cm and protruding by at69

least 2.2 cm from the bark. Kretschmer et al. (2013) proposed an approach to70

detect and manually measure the branch scars on Scots pine by highlighting71

them on a 3D reconstruction of the bark surface: the bark surface is colored72

based on the distance to a fitted cylinder surface corresponding to a trunk73

part. The scars, with a diameter of at least 2 cm and protruding by at least74

1.5 cm from the bark, were detected. Existing research on the automated75

classification of defects on tree bark using TLS is even scarcer. Schütt et al.76

(2004) presented a semi-automatic approach, based on a neural network, to77

detect and classify wood defects using both range and intensity information78

of TLS data.79

In a previous work (Nguyen et al., 2016b), we successfully developed an80

algorithm to detect the defects on trunks surface. Using a suitable spatial81

resolution of the 3D data, the detection can segment potential defects with82

a dimension as small as 1 cm and small protrusion on trunks of different tree83

species. This important improvement was obtained from two major compo-84

nents. First, the definition of the most relevant trunk centerline results from85
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a voting algorithm selecting the most frequent locations of the intersections86

of the inward pointing normals to the surface. Secondly, the reference dis-87

tance to the centerline is computed for each individual point by taking its88

neighborhood into account. The computation of reference distance for each89

individual point allows for more precisely detecting the abnormalities on the90

bark than more global reference surface based on primitive fitting such as91

cylinder (Schütt et al., 2004; Stängle et al., 2014; Kretschmer et al., 2013) or92

circle (Thomas et al., 2007; Thomas and Thomas, 2010).93

Returning to the main purpose of the work presented here, once potential94

defects are detected, an automatic procedure must be able to assign them95

to a defect type and to confirm their status. The main challenge in the96

classification of these defects is to deal with the variability of their appear-97

ance, even for the same type of defect. In the forestry domain, the defects98

are often defined by the biological origin (Colin et al., 2010a) that leads to99

a high intra-class variability and inter-class similarity. Figure 1 (c-f) and100

(g-i) give examples of the intra-class variability between branch scars and101

burls respectively. Inter-class similarity between an epicormic shoot and a102

burl is shown in Figure 1 (b) and (g). Factors contributing to the intra-103

class variability or inter-class similarity are the tree species, often linked to104

the characteristics of its bark, the shape and the age of the defect and all105

the history of its development in connection with the environment of the106

tree. Facing this huge variability, a major difficulty is to build a representa-107

tive database allowing the establishment of classification methods and their108

testing especially in studying the feasibility of such an approach as in this109

work. Several methods in the field of pattern recognition can be applied110
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to classify objects, such as neural networks (Bishop, 1995), support vector111

machines (Cortes and Vapnik, 1995), random forests (Breiman, 2001), Bayes112

classifier (Devroye et al., 1996), and deformable models (Terzopoulos and113

Fleischer, 1988). Most approaches are based either on parametric models or114

on machine-learning techniques. In the remote sensing domain, the machine-115

learning supervised classifiers are widely used because they are more flexible116

in handling the high variability in object appearance and are more robust117

than model-based approaches (Niemeyer et al., 2014). In particular, random118

forests are a supervised machine-learning method that is based on ensembles119

of classification trees. Random forests exhibits many interesting properties,120

such as high accuracy, robustness against over-fitting, noise or missing data121

in the training set (Dı́az-Uriarte and De Andres, 2006). Moreover, random122

forests is a non-parametric method that does not require the information123

on the distribution of data. These advantages make random forests a suc-124

cessful classification method since its introduction by Breiman (2001). In125

the domain of remote sensing, random forests were used in landcover clas-126

sification or urban area classification from airborne LiDAR (Chehata et al.,127

2009; Guo et al., 2011) or Landsat data (Yuan et al., 2005; Gislason et al.,128

2006). In the forestry domain, random forests were used to accompany the129

forest inventory, such as for biomass assessments (Mutanga et al., 2012), us-130

ing airborne LiDAR. Othmani et al. (2013) used random forests to identify131

the tree species from the analysis of tree bark pattern from the mesh derived132

from TLS data. Random forests were used to assess the timber quality of133

Scots pine by estimating tree properties, such as trunk diameters, tree height134

and branch heights using the parameters computed from TLS data (Kankare135
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et al., 2014).136

The main objective of this work is to classify the potential defects de-137

tected on trunk surface by previously developed algorithms (Nguyen et al.,138

2016b). The other objective is to evaluate the performance of a robust and139

commonly used machine-learning algorithm, random forests, for the classifi-140

cation of bark singularities. The targeted types of defects are branch, branch141

scar, burl, and small defects including sphaeroblast, bud cluster, and picot.142

These types were chosen to represent the existing diversity of defects; never-143

theless, some were grouped because of the difficulty in distinguishing them144

given their size or shape. We aimed to develop a method that works on the145

common commercial tree species, including hardwood species like sessile oak146

(Quercus petraea (Matt.) Liebl.), European beech (Fagus sylvatica L.), and147

wild cherry tree ( Prunus avium (L.) L.), or conifers such as silver fir (Abies148

alba Mill.), Scots pine (Pinus sylvestris L.), and Norway spruce (Picea abies149

(L.) H.Karst.). Here a special focus is given to the results concerning oak and150

European beech two hardwood species that have very different bark rough-151

ness, defect types and shapes. The first species has a furrowed bark and152

its most common defect types are burl and picot. The second has smooth153

bark and the most common defect type is branch scar with an eyebrow (or154

”Chinese mustache”) shape.155

2. Materials and Methods156

2.1. Defects on trunk surface157

Several defects on the trunk surfaces can be caused by exogenous factors158

depending on their environment, such as heat, frost, other trees, animals, and159
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human beings. Our study focused on the most frequent source of defects,160

which arises from tree branching. Branching defects are the result of the161

development and growth of the tree. Their scars are associated generally162

with protruding regions that result from the inclusion of the defect by the163

radial growth of the trunk. More precise definitions of what we considered164

as a branching defect were as follows:165

• A sequential branch was a branch that emerged after a winter’s rest of166

the original bud.167

• An epicormic branch was a branch that emerged after several winters168

from a latent bud.169

• A branch scar was a track of a branch, either sequential or epicormic170

that maintains when this branch has died and has been degraded.171

Branch scars on hardwood were often referred to as bark distortions.172

• A bud was a miniature leafy shoot protected by a covering of scales.173

• A burl was a group of juxtapositional defects of one or more type, such174

as bud, picot, branch or branch scar. By definition, a burl could have175

a great variability in shape and size and composition.176

• A bud cluster was a limited group of buds of less than six buds.177

• A sphaeroblast was a bud whose base produces xylem that progressively178

covers the apical meristem of the bud (mainly on beech) (Fink, 1999).179

• A picot was a small branch with its apex naturally pruned. Picots are180

defined and illustrated in Colin et al. (2010b).181
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Typical defects on trunk surface were represented in Figure 1. These182

defects were characterized by a large intra-class variability in size and shape.183

For instance, burls could range from a large bud cluster with at least six184

buds to a very extended mass of buds, picots, short or long branches with a185

diameter of several tens of centimeters.186

The impact of defects on the wood quality depended on their type and187

dimension. For defects of the same type, larger defects had a more important188

impact than smaller ones. In general, the most penalizing defects were branch189

scar, branch and burls. The impact of small defects such as bud cluster,190

sphaeroblast and picot is small, but some had to be taken into account in191

the highest quality class.192

2.2. Methodology193

The steps of our method are presented in Figure 2. After their acquisition,194

the TLS data were preprocessed to obtain a smooth mesh corresponding to a195

trunk portion. Next, the potential defects were detected by using a segmen-196

tation algorithm, which is an improved version of the previously published197

work (Nguyen et al., 2016b) and is summarized in section 2.5. Then, the po-198

tential defects were classified into defect types using trained random forests.199

Finally, the results were visualized by various colors on the mesh according200

to the defect type. The classification was validated by comparing the results201

with the ground-truth labels classified by an expert on the trunks before202

the TLS scans were carried out. Two methods were used by the expert to203

mark the defect type. The first method used small distinctive shape pinned204

in the vicinity of the defect. Thus, the defect type was recognized in the205

reconstruction of trunk surface. The second method measured the coordi-206
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: Some illustrations of the defect types considered in this study. (a, b) branches:

sequential branch (a), and epicormic shoot (b); (c-f) branch scars: on oak (c), on wild

cherry (d), on beech (e), and on beech (f); (g, h) burl: consisting of buds and an epicormic

shoot (g), buds and short epicormic shoots (h), and buds (i); small defects: (j) bud cluster,

(k) sphaeroblast, and (l) picot.

nates of the defects by a local coordinate (l, z) system on the trunk with l207

the position along a longitudinal axis Oz and l the signed arc length between208

the reference axis and the defect center. Two ping-pong balls were used to209

define the axis. A dedicated software was developed to recover the same210

coordinate system on the reconstruction of trunk surface, which allowed for211

measuring the defect coordinates and comparing with the ground truth. The212
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ground truth contained all of the defects with a diameter equal or greater213

than 0.5 centimeters and from 0.5 to 2 meters or 5 meters depending on the214

distribution of defects.215

Begin

Acquisition of TLS data

Preprocessing of TLS data

Segmentation of defects

Classification of defects

Visualization of result

End

Figure 2: Overview of the processing flow for classifying the surface defects onto a trunk.

2.3. Acquisition of TLS data216

The tree trunks exhibiting different defects were measured with a Faro Fo-217

cus 3D X130 laser scanner in the Champenoux and Haye forests in the Grand-218

Est region of France. To detect small defects, we chose a high-resolution set-219

ting and put the scanner close to the trunk. The utilized resolution was one220

half of the maximum value and the distance from the scanner to the trunk221

was approximately 3-4 meters. With this setting, the angular resolution of222

the scan was 0.018◦ in both horizontal and vertical directions, and the result-223

ing distance between two neighboring 3D points on the trunk surface in the224
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point cloud was around 1 millimeter. Such settings ensured a high-quality de-225

scription of the defects limiting the laser beam inclination resulting from the226

defect height and the distance to the tree. The trees were sampled according227

to several criteria. Among the main commercial species, selected trees must228

have a sufficiently large diameter (see Table 1) and represent a variability in229

bark roughness, which depends on the species and the age of the trees. In230

agreement with these criteria, we scanned 26 trees: nine sessile oaks, eight231

European beeches, three wild cherries, two Scots pines, three silver firs, and232

one Norway spruce. These scans were divided into 2 sets. One was used to233

train the random forests and another was used to test the method efficiency234

(Table 1). The training set contained 425 defects from 16 trees and the test235

set contained 183 defects from 10 trees.236

During this acquisition step, the objective was to maximize the number237

and type of defects per scan; thus, trunks were either scanned entirely with238

four scans from suitable points of view or partially with one or two scans on239

just one side. If the trunk was scanned from multiple points of view, the scans240

were merged into a single file per tree to recover the 3D view of the trunk.241

The registration was performed by the standard procedure available in the242

FARO SCENE software (Faro Technologies Inc., Lake Mary, FL), through243

the use of spheres.244

2.4. Preprocessing of TLS data245

LiDAR data are generally noisy, and the first processing step aimed to246

manage noise for enhancing the recognition rate. It included the reduction247

of noise and the smoothing of the trunk surface. Noise reduction is a difficult248

and complex process, due to different noise patterns from scan to scan. It249
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Table 1: Number and attributes of the sample trees.

Species
Number of trees Range of diameters

at breast height (cm)Training Testing

Oak 6 3 35 - 76

Beech 5 3 30 - 57

Wild cherry 2 1 22 - 33

Pine 1 1 34 - 57

Fir 2 1 23 - 45

Spruce 0 1 19

Total 16 10

depends on the condition of the scanning environment and also the charac-250

teristics of the trees. For example, we observed that when the trunk had251

branches or small epicormic shoots, there was much of noise caused by the252

multiple interceptions of the same laser beam by several branches and the253

bark. This is the situation when a laser beam hits both the contour of the254

branch and the bark resulting in a ghost point, with no reality, between the255

branch and the bark (Figure 3 (a)). We observed that the point density in256

noisy regions was often lower than in the relevant data regions. Thus, we257

proposed a simple approach to remove noise by clustering the point cloud by258

Euclidean distance with the idea that relevant data points are in the largest259

cluster where the point density is highest. The choice of the threshold on the260

minimal distance between clusters is critical. If the threshold is too small,261

there is a risk that the relevant data would be removed, especially in the high262

part of the trunk where the resolution is lower. After testing different values,263
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we set the threshold to 5 millimeters, which gave the best visual results for264

our scanning settings.265

a)

b)

Figure 3: Noise processing for a wild cherry trunk. Point cloud before (a) and after (b)

noise reduction process that only keeps the biggest cluster; the minimal distance between

two clusters is 5 millimeters.

Due to the nature of a laser scan, the raw point cloud contains a cer-266

tain level of error. For example, the utilized scanner had a ranging er-267

ror of ±2 millimeters at 10 meters. The smoothing step was performed268
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to reduce surface roughness caused by ranging uncertainty. However, the269

smoothing intensity was limited to maintain the bark roughness or defect270

shapes. The following steps were performed for smoothing and creating271

a mesh from the trunk point cloud using the Graphite software (https:272

//gforge.inria.fr/frs/?group_id=1465):273

1. Smooth the point cloud (Lévy and Bonneel, 2013) using only one it-274

eration with 30 neighbors. Only one iteration was used because with275

more iterations the smoothing process may erase defects with a weak276

relief.277

2. Reconstruct the trunk surface (Boltcheva and Lévy, 2017) with the278

normal vector computed from 30 neighbors and the maximum distance279

used to connect neighbors of 5 millimeters. The radius value was chosen280

to be greater than the between-point distance in the point cloud but281

not too large to prevent the creation of wrong edges.282

3. Smooth the created mesh by using the remesh smooth function (Lévy283

and Bonneel, 2013). The used parameter was the number of points284

similar to the one of the original point cloud.285

2.5. Segmentation of defects286

Our strategy to classify the defects on trunk surface was first to detect all287

potentially defective areas using a segmentation algorithm. The algorithm is288

an enhanced version of our previously published one (Nguyen et al., 2016b)289

that focuses on defects with little protuberance from tree bark. In this study,290

we proposed a preliminary step for segmenting tree branches. The motivation291

for developing this approach came from the existing links between a defect292
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present in the woody part and the impact of that defect on the bark surface,293

expressed by a structured, and often protruding, irregularity. To detect these294

irregularities, we defined the centerline of the trunk as a reference. In the295

evaluation of the algorithm presented in Nguyen et al. (2016b), the presence296

of branches was identified as an inconvenience for detecting smaller defects297

in a branch vicinity. Thus, in this work, the branches were first segmented298

by an algorithm that separates the points into two disjointed sets (illustrated299

in Figure 4): (1) set T contains closer points to the trunk surface, and (2)300

set B contains the branches according to the following algorithm.301

• Estimation of the trunk radius rm, using the mode of the distance to302

the centerline of all points in the point cloud.303

• Division of the point cloud volume into slices with a thickness of l mil-304

limeter, following the centerline direction. Each slice was then divided305

into angular sectors with an angle of l
rm

radian. The value of l should306

be greater than the diameter of the largest branch. In our experiment,307

the l parameter was set to values between 50 and 100 millimeters.308

• For each angular sector, the nearest point to the center of the trunk309

was added to set T , and the other points of the portion were added to310

set B.311

• For each point P in set T , we found subset S of set B, such as the312

distance between point Si ∈ S and P was less than or equal to
√

2l,313

and we moved them in set T . This algorithm assured that no point314

on trunk surface left on the branches set B by accepting a branch part315

with a length of
√

2l on the trunk set T .316
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After the branch segmentation, the original method (Nguyen et al., 2016b)317

was applied to set T as follows. (i) For each point P in set T , we estimated318

a reference point P̂ from a linear regression linking the radius variation to319

longitudinal positions on a patch of neighboring points of P . (ii) The defect320

points were detected by thresholding the difference between the distance from321

P and P̂ , denoted as (δ). (iii) The threshold was automatically computed322

on the histogram of δ using the Rosin’s method (Rosin, 2001). Then, the323

detected defect points were merged with set B containing the branches to324

form a set of defect points D. The different potential defects were obtained325

by clustering the defect points D by using Euclidean distance.326

Pl √
2l

rm

l
rm

Figure 4: Illustration of the branch segmentation: the angular sector is defined by the

volume inside planes formed by blue lines. The points in this angular sector that had a

distance to P less than or equal to
√

2l were moved to the set of trunk points (T ). The

set of branch points (B) is in solid grey color.
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2.6. Classification of defects327

2.6.1. The random forests classifier328

The random forests (Breiman, 2001) classifier is an ensemble classifier329

that aggregates a set of classification and regression trees (CARTs) (Breiman330

et al., 1984) to make a prediction. In the training step, all trees were built331

with the same parameters but on different subsets of the training samples.332

These subsets were generated from the training samples by a bootstrap sam-333

pling, which randomly selected the same number of vectors from the original334

set. The remaining ”out-of-bag” (OOB) was used to compute the estimation335

error, which is known as the OOB error. Unlike CART, random forests does336

not consider all variables at each node to determine the best split threshold337

but a random subset of variables of the feature vector and the trees are built338

without pruning. The cardinality of the subset is an input parameter.339

Another important parameter of the random forests classifier is the num-340

ber of trees, which must be sufficiently large to capture the full variability341

of the training data and yields good classification accuracy. One of the ad-342

vantages of the random forests classifier is that it does not overfit when343

increasing the number of trees at the expense of slower running time. In the344

classification step, random forests tested the feature vector, describing the345

new object with each tree in the forest. Each tree made a classification, or346

in other words, gave a vote for a class. The random forests classifier chose347

the class on which the majority of trees voted.348

As mentioned above, the number of trees in the forest (nbTrees) and the349

number of variables (nbV ariables) used to select and test for the best split350

when growing the trees are two important input parameters needed to train351
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the random forests classifier. The OOB error can be used to find the optimal352

value for these parameters. We ran an experiment with the nbTrees from353

100 to 5,000 and the nbV ariables from 1 to the number of variables of the354

feature vector. For each value of nbV ariables, we could find the minimum355

value of nbTrees, which gave the minimum OOB error.356

The random forests has been implemented in a number of free and open357

source libraries. In this study, we used the implementation in OpenCV-358

3.3 (Bradski, 2000). The advantage of OpenCV is its compatibility with359

the implementation of our algorithms in C++ programming language. The360

source code and sample data are available at the following GitHub repository:361

https://github.com/vanthonguyen/trunkdefectclassification362

2.6.2. Feature vector363

In this step, we used the defects detected by our segmentation algorithm364

and constructed the feature vector based on our expertise on the defects.365

Before computing the features, the point cloud of the defect was converted366

from Cartesian coordinate system to a custom coordinate system {l, z, d},367

where l is the arc length computed from angle between the point and the368

plane Oxz and the distance from the point to the centerline, z is the height,369

and d is the difference between the distance and the reference distance from370

the point to the centerline (the distance between P and P̂ as presented in371

section 2.5). This conversion allowed us to measure the defect diameter along372

the curved surface of the trunk similar to a manual measurement. To reduce373

the inhomogeneity of point clouds due to the superimposition of data coming374

from several points of view or the non-uniform by TLS, the feature vector375

was computed from a subsampled point cloud. The subsampled point cloud376
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latter was computed by keeping only the closest point to the center of each377

voxel of a regular voxel grid of the defect point cloud. The voxel size was378

chosen by the average point spacing, which was 3 mm in our study. The379

following features were used:380

1. Species: s.381

2. Ratio between the number of points of the defect and the volume of its382

bounding box: c (equation 1)383

3. Defect arc length: w = lmax − lmin.384

4. Ratio between w and defect height: w
h

where h equals zmax − zmin.385

5. Ratio between w and maximum of d: w
dmax

.386

6. Mean of difference between the distance from P and P̂ for all points P387

of the defect: d̄.388

7. Standard deviation of the difference between the distance from P and389

P̂ for all points P of the defect: σd.390

8. Hu moment invariants: I1, I2, I3, I4, I5, I6, I7 (see equations 4–10).391

9. Ratio between the eigenvalue λ1 and the eigenvalue λ3:
λ1
λ3

.392

10. Ratio between the eigenvalue λ2 and the eigenvalue λ3:
λ2
λ3

.393

11. Angle between the eigenvector −→v3 and the trunk axis at the height of394

defect: α.395

where λ1 is the eigenvalue associated with the eigenvector −→v1 of the defect396

having the smallest angle, with the radial vector of the trunk at the center397

of the intersection between the defect and the trunk. λ2 is the eigenvalue398

associated with the eigenvector−→v2 of the defect having the smallest angle with399

the tangential vector of the trunk at the center of the intersection between400
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the defect and the trunk. λ3 is the eigenvalue associated with the eigenvector401

−→v3 of the defect having the smallest angle with the trunk axis at the height402

of defect.403

The species was an important variable because each one had a specific404

bark roughness and a set of defects. For example, oak had burls but does405

not had sphaeroblast, which was conversely related to beech. In addition,406

for the same defect type, its shape could differ from one species to another.407

For example, a branch scar on oak and on beech was very different.408

Another relevant variable was the ratio between the number of points of409

the defect and the volume of its bounding box, which measured the com-410

pactness of the defect in the {l, z, d} coordinate system equation (1). This411

feature could discriminate a flat defect and a significantly protruding defect.412

c =
number of points

(lmax − lmin)(zmax − zmin)(dmax − dmin)
(1)

By using our expertise in the domain, the dimension was an important413

criterion to classify defects, in particular small defects such as small burl and414

bud cluster. For that reason, we included the arc length w as a feature. The415

ratio w
h

allowed us to distinguish between a branch scar and a bark zone,416

which had a roughness higher than the local average on oak tree because the417

branch scars often have width greater than height and bark zones have width418

smaller than height. The ratio w
dmax

helped to distinguish a flat object, such419

as bark portion, branch scar and a more protruding one such as sphaeroblast420

and picot. The mean and standard deviation of d were also included in the421

feature vector because they help to distinguish between a branch scar and a422

burl composed only of buds.423

21



The Hu moment invariants (Hu, 1962) had good characteristics for the424

object recognition because they were invariant with respect to translation,425

scale, and rotation. The Hu moment invariants {I1, . . . , I7} were computed426

from the normalized central moments nuij of orders (i + j) 2 and 3 (see427

equations (3)–(10)).428

muij =
∑
z,l

(z − z̄)i(l − l̄)jd (2)

nuij =
muij

mu
(i+j)/2+1
00

(3)

I1 = nu20 + nu02 (4)

I2 = (nu20 − nu02)2 + 4nu211 (5)

I3 = (nu30 − 3nu12)
2 + (3nu21 − nu03)2 (6)

I4 = (nu30 + nu12)
2 + (nu21 + nu03)

2 (7)

I5 = (nu30 − 3nu12)(nu30 + nu12)[(nu30 + nu12)
2 − 3(nu21 + nu03)

2]+

(3nu21 − nu03)(nu21 + nu03)[3(nu30 + nu12)
2 − (nu21 + nu03)

2]
(8)

I6 = (nu20−nu02)[(nu30+nu12)2−(nu21+nu03)
2]+4nu11(nu30+nu12)(nu21+nu03)

(9)

I7 = (3nu21 − nu03)(nu30 + nu12)[(nu30 + nu12)
2 − 3(nu21 + nu03)

2]+

(3nu12 − nu30)(nu21 + nu03)[3(nu30 + nu12)
2 − (nu21 + nu03)

2]
(10)

The eigenvectors and eigenvalues of the defect were computed from a429

principal component analysis (PCA) (Wold et al., 1987), which could be430

useful for distinguishing between the defect with a long axis (branch) and431

the flatter ones. Furthermore, because of the small number of branches in our432
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dataset, we did not distinguish between sequential branches and epicormic433

ones. Nevertheless, the angle between the eigenvector −→v1 of defect and the434

trunk axis could be used to classify these types of branch on beech, oak and435

fir, as epicormic branches were quasi-perpendicular to the trunk axis, while436

sequential branches were more fastigiated.437

2.6.3. Construction of the training dataset438

We used both manually segmented and automatically segmented defects439

to train the random forests. The manual segmentation was done by using440

a home-made software (DGTalTools-Contrib), based on the library DGTal441

(DGtal). The software allowed us to select the faces on the mesh to define442

the footprints of the defects (Figure 5). Each defect was then saved in a443

separate file and used for training the random forests. We also trained the444

random forests using the results of our segmentation algorithm, along with445

the verification given by the shape of paper labels set in the vicinity of the446

defects and identifiable in the scan. Bark (no-defect) class was introduced447

even though it is not a defect type; they were bark zones with a roughness448

higher than the local average. These bark zones are often miss detected449

as a defect by the segmentation algorithm. This is concordant with our450

approach as the detection step was built to provide all potential zones of451

defects assuming the risk of false positive that could be eliminated in the452

classification step. The training database includes the following classes and453

the number of defects of each class is summarized in Table 2:454

1. Branch, including sequential branch and epicormic branch.455

2. Branch scar.456

3. Burl.457

23



4. Small defects, including picot, sphaeroblast, bud and bud cluster.458

5. Bark.459

Figure 5: Manual segmentation of a defect

Table 2: Summary of the defects and barks encountered in the training set.

Species Branch Branch scar Burl Small defects Bark

Oak 7 3 159 63 116

Beech 34 51 26 20 2

Wild Cherry 15 5 0 0 0

Pine 0 4 0 0 0

Fir 0 38 0 0 10

Total 56 101 185 83 128

2.6.4. Performance evaluation criteria460

To evaluate the performance of the classification algorithm, we used the461

F-measure, a performance measurement, that is frequently used for classi-462

fication problems. The F-measure is the harmonic mean of precision (PR)463

and recall (RE). We used the F1 score, mixing both with equal weights on464

PR and RE. The precision PR is the number of correctly classified positive465
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defects divided by the number of defects labeled by the system as positive466

(equation (11)). The recall is the number of correctly classified positive de-467

fects divided by the number of positive defects in the data (equation (12)).468

On a binary classification problem, the F1 is defined by equation (equation469

(13)).470

PR =
TP

TP + FP
(11)

RE =
TP

TP + FN
(12)

where TP, FP, FN are true positive, false positive and false negative respec-471

tively. Their definition is as follows:472

• TP is the number of actual defects correctly classified as defect.473

• FP is the number of non-defects incorrectly classified as defect.474

• FN is the number of actual defects incorrectly classified as non-defect.475

F1 = 2
PR.RE

PR +RE
(13)

For a multi-class classification problem, the F-measure must be extended476

from the binary classification by an average of the F-measure of each class.477

There are two approaches (Manning et al., 2008). One approach is the macro-478

averaged F-measure (equation (14)), which is the unweighted mean of F-479

measure for each label. The other is the micro-averaged F-measure (equation480

(15)), which considers predictions from all instances together and calculate481
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the F-measure across all labels. Arithmetically, the micro-averaging favors482

bigger classes.483

Fm1 =

∑n
i=1 F1i

n
(14)

Fµ1 = 2
PRµ.REµ
PRµ +REµ

(15)

PRµ =

∑n
i=1 TPi∑n

i=1 (TPi + FPi)
(16)

REµ =

∑n
i=1 TPi∑n

i=1 (TPi + FNi)
(17)

where n is the number of classes.484

We also used the confusion matrix (Provost and Kohavi, 1998) to evaluate485

the performance for a more detailed analysis of the misclassification between486

classes.487

3. Results488

In this section, we present the results of the segmentation algorithm fol-489

lowed by the results of the classification algorithm in comparison with the490

ground-truth data. We first present a global analysis of the performance491

related to exhaustiveness independently of the defect type focused on the492

differences coming from tree species. Then, the analysis of the results fo-493

cuses on defect types independently of the species which are nevertheless494

considered in the discussion.495

26



Table 3 shows the results of the segmentation algorithm for each individ-496

ual tree in the test database in terms of defect detection. We can see that497

the segmentation algorithm detected almost all of the defects, with 179 de-498

tected out of 183 (97.8%) in total. However, the number of false positives was499

very high (765), which will then be removed by the classification algorithm500

through a refined analysis of each detected areas. Moreover, Table 3 also501

shows that these false positives were mostly removed by the classification502

algorithm at the expense of some defects lost. The classification algorithm503

removed not only 694 (90.7%) false positives but also 28 (15.3%) actual de-504

fects.505

We also observed that the segmentation algorithm produced more false506

positives on trees with furrowed barks, such as oak and pine, than on trees507

with smooth barks, such as beech and wild cherry. By contrast, the classi-508

fication algorithm removed the false positives more efficiently on trees with509

furrowed bark than on trees with smooth-bark. For example, in Table 3, we510

can see that on pine the number of false positives from the segmentation and511

classification are 105 and 2 respectively while on Beech 2 these numbers are512

70 and 12, respectively. The difference is illustrated in Figure 6.513
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Table 3: Results of the segmentation (seg.) and classification (cla.) steps compared with

the observed defects.

Tree name Observed
True positive False positive False negative

Seg. Cla. Seg. Cla. Seg. Cla.

Oak 1 8 8 8 9 0 0 0

Oak 2 25 24 19 147 7 1 6

Oak 3 24 23 20 79 7 1 4

Beech 1 30 30 24 55 19 1 6

Beech 2 29 29 21 70 12 0 8

Beech 3 24 22 18 47 14 2 6

Wild Cherry 8 8 8 10 0 0 0

Pine 4 4 4 105 2 0 0

Fir 14 14 14 129 8 0 0

Spruce 17 17 15 114 2 0 4

Total 183 179 151 765 71 5 34
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a)

b)

c)

d)

Figure 6: Defects detected by the segmentation algorithm (a, c) and refinement by the

classification algorithm (b, d) for two logs: Beech 2 (a, b) and Pine (c, d).

Concerning the performance according to defect types, Figure 7 illustrates514

classification results by coloring the mesh in agreement with the defect type.515

Table 4 shows the performance criteria by defect types resulting from the516

classification. The overall macro- and micro-averaged scores were 0.86 and517

0.73, respectively. However, the algorithm did not perform equally well on all518

classes of defect. The branch had the best F1 score of 0.89, followed by the519

burl with an F1 score of 0.76. The algorithm performed less well on branch520

scar and the small defect types with F1 scores of 0.61 and 0.46, respectively.521

For allowing a better understanding of the differences, Figure 8 represents522

the confusion matrix of the classification result. The matrix shows the match-523
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a)

b)

c)

d)

Figure 7: Examples of the classification results on the mesh of Oak 3 (a), Beech 1 (b),

Wild cherry 3 (c), and Spruce (d). is Branch type including both sequential and

epicormic branches, is Branch scar, is Burl, is Small defect including bud

cluster, sphaeroblast and picot. On the mesh of the Spruce, the detected defects (circled)

are the paper marks and pushpins that were used by the expert to mark the defect type

before the scan was carried out. These false positives were ignored in our evaluation.

ing between predicted and observed defect types and allows a finer analysis524

of the differences. We can see that one branch was classified as branch scar.525

A more detailed analysis showed that it was a short dead stub branch of a526

wild cherry (the large green region in Figure 7 (c)). Another branch was527

classified as a burl because an epicormic branch is often originated from a528

small burl, and the distinction by the algorithm is difficult in young develop-529

ment stages. While the recall of the algorithm on the branch scar was very530

high (0.84), the precision was not as good (0.48) because there were 49 bark531

portions recognized as branch scar while there were 69 branch scars in total.532

Some burls were confounded with the bark portions and small defects be-533
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Table 4: Precision, recall and F1 score of the different defect types

Defect type Precision Recall F1

Branch 1.00 0.80 0.89

Branch scar 0.48 0.84 0.61

Burl 0.73 0.81 0.76

Small defect 0.56 0.39 0.46

Bark 0.95 0.90 0.93

Beech (micro avg.) 0.70 0.70 0.70

Beech (macro avg.) 0.70 0.70 0.70

Oak (micro avg.) 0.90 0.90 0.90

Oak (macro avg.) 0.66 0.68 0.67

All (micro avg.) 0.86 0.86 0.86

All (macro avg.) 0.75 0.74 0.73

cause a burl consisting of only buds may have a similar look to a small defect534

(see Figure 1 (i) and (j)) or a bark portion since both are quite flat. The535

confusion matrix shows that the small defects were often confounded with536

bark portions and branch scars. It is to be noted that the number of bark537

portions miss-classified as small defects was 15 and the number of small de-538

fects miss-classified as bark portions was 16. There was only one branch scar539

miss-classified as small defect but 11 small defects miss-classified as branch540

scars.541

Although no spruce data were used to train the random forests, the predic-542

tions on this spruce (Figure 7 (d)) were good, as 15 out of 18 were detected.543

However, two branch scars were detected as small defects and two branch544
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Figure 8: Confusion matrix with the absolute value and normalized value (precision). The

color of cells is a function of normalized value.

scars were detected as burls.545

4. Discussion546

4.1. Defect detection547

In summary, our algorithms had a very good performance in defect de-548

tection, even with the small defects corresponding to a slight modification of549

the bark roughness. These good results are both due to the robust estima-550

tion of the trunk centerline, and the fitting on a local longitudinal patch, of551

the regular radius variation, allowing for the calculation a local reference dis-552

tance. Our approach outperforms the detection based on a radius resulting553

from the fitting of geometrical primitives such as circle or cylinders proposed554

in other works (Thomas et al., 2007; Kretschmer et al., 2013) especially for555

cross-sections with less circular shape as already discussed in Nguyen et al.556
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(2016b). It is clear that several factors can impact the detection, such as557

scan resolution and quality and missing data resulting from occlusion. Our558

algorithm can detect small defects such as picot which often have a diameter559

between 0.5 centimeter and 1 centimeter, thus outperforming all previous560

works with size ranging from 7.5 centimeters (Thomas et al., 2007) to 2.0561

centimeters (Kretschmer et al., 2013). Moreover, Kretschmer et al. (2013)562

only focused on the branch scars and their method was not automatic.563

Because of their shapes, French and North American foresters have named564

large branch scars of beech and wild cherry trees ”Chinese mustache” (or565

eyebrow). It often covers a large peripheral area, and the two parts of the566

mustache are often thin. This may result in an over-segmentation (Figure 9567

(a)). Two or more large defects can also be close enough to form a large shape.568

Although the human eye will dissociate the large shape as multiple separated569

defects, the algorithm saw it as a defect, which consequently created an570

under-segmentation (Figure 9 (b)). The under-segmentation can also occur571

on the trunk of conifer in the case of connected branch scars (Figure 9 (c)).

(a) (b) (c)

Figure 9: Examples of over-segmentation on beech (a), under-segmentation on beech (b)

and on spruce (c). Within each image, all connected green areas belong to the same defect.

572

As the segmentation is the step preceding the classification, the perfor-573
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mance of the classification algorithm also depends on the performance of574

the segmentation step. Thus, any improvement in segmentation will result575

in a better classification. The most important parameters were the patch576

size and the bin width of the histogram used to find the threshold by the577

Rosin’s method (Rosin, 2001), and the voxel size used to compute the cen-578

terline. Their choices were described in detail in Nguyen et al. (2016a). As579

mentioned earlier, the over and under-segmentation can occur in the seg-580

mentation step especially through the defect clustering through a Euclidean581

distance filter. These errors can affect the classification, and consequently,582

the assessment of the tree quality. In addition to the influence of misclassifi-583

cation, the over-segmentation increased the number of defects and decreased584

their dimension. By contrast, the under-segmentation decreased the number585

of defects and increased their dimensions.586

4.2. Defect classification587

Visually, we can see that our algorithms were able to detect and classify588

most of the defects (Figure 7), including small defects such as picot and bud589

clusters. Based on Table 4, the overall classification result was good, with590

a micro-averaged F1 score of 0.86 and a macro-averaged score of 0.73. The591

result was promising, particularly on the classification of branch and burl.592

However, we did not obtain a very high F1 score (0.46) on the small defect593

because, first, we could not totally remove all the false positives and, second,594

there was some confusion between the classes due to the very high intra-class595

variability and the interclass similarity.596

For example, the confusion between branch scars and burls can be ex-597

plained by the fact that some burls containing only buds have a shape that598
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looks like a branch scar because both are flat. In the field, human eyes can599

easily distinguish these two defect types; however, in the point cloud or mesh,600

it could be difficult to distinguish them. For small-sized defects, the confu-601

sion between burls and small defects can merely be explained by the initial602

definition of burl and small defect. When a burl is composed only of buds it603

might have a similar shape to a bud cluster. In our database, small defect604

types include several biological defect types: a bud cluster with less than six605

buds, sphaeroblast, and picot. A bud cluster may have a shape similar to a606

small burl. The confusion was high, even for expert eyes.607

With the objective of wood quality assessment, subclasses considering608

the size of defects with the same biological origin can be useful to refine609

the analysis in future studies but need a suitable assessment of the defect610

characteristics by algorithms, which is beyond the scope of this paper. More611

generally, it addresses the problem of a combination of defects that occurs612

rather frequently because they have the same origin and correspond to dif-613

ferent stages of development or because they result from a spatial proximity,614

as in examples illustrating under-segmentation in Figure 9. Improvements615

could be a more refined algorithm for merging close protruding areas and616

a detailed definition of the defect types, adding size classes linked to the617

resulting quality impact as already mentioned.618

4.2.1. Influence of species and bark roughness619

As a non-intuitive result (coming from the easier visual assessment of the620

defects on smooth bark), a lower F1 score was observed on beech compared621

with oak (Table 4). In the segmentation step, on trees with furrowed bark,622

there were many more false positives, resulting of the misdetection of bark623
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portions as defects. This is in agreement with our hypothesis. However, the624

false positives on trees with furrowed bark had a common shape created by625

the pattern of the rhytidome, and they were easily detectable and removed626

by the classification through the definition of the Bark class. In contrast, on627

trees with smooth bark, the false positives were created by bark portions,628

very similar to actual defects in terms of protrusion and spatial distribution.629

Moreover, on species with smooth bark, and particularly on beech, we also630

observed many wrinkles or cambium alterations revealed by the elliptical631

shape (Nectria disease) of bark (Figure 10). These alterations were often632

misclassified by our algorithm as branch scars rather logically in the absence633

of more relevant type definition corresponding to these singularities. Thus,634

the classification algorithm has a higher performance on furrowed bark trees635

than on smooth bark trees.636

4.2.2. Parameters of random forests and future improvements637

Random forests have only two principal parameters: the number of trees638

in the forest (nbTrees) and the number of variables (nbV ariables) used to639

select and test for the best split when growing the trees. Their performance640

was slightly influenced by the number of trees if it was chosen sufficiently641

high (1,000 trees in our experiment). With the number of trees over 1,000,642

the performance gain was minimal. nbV ariables was chosen following the643

OpenCV recommendation, which was
√
variables. We also noticed that644

random forests are very robust to over-fitting so the feature selection is less645

critical. Random forests can give a good performance, even with a small646

training dataset (Rodriguez-Galiano et al., 2012); however, it depends also647

on the intra-class variability of the defect class. Because burl and branch scar648
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Figure 10: Examples of equivalent bark appearances considered either to be a branch scar

((a) and (b)) or a non-defect ((c) and (d)). This has been determined according to our

own biological expertise. This figure illustrates the difficulty distinguish between defects

and non-defects. The region in (c), while having a shape similar to a branch scar as in

(a), is a scar resulting from slight damages due to Nectria attack affecting just the bark

and not the wood below. The region in (d) has been considered as non-defect since it was

formed by the covering of a dead bud during the very first years of tree development with

no consequence for the wood quality.

have a high intra-class variability, in future work, we would like to add more649

training data of these types. As the incident angle of laser beams changes650

with the different heights of the trunk, it is also important to have the defect651

data from different trunk heights.652

Another suggestion to improve the performance of the classification is to653

remove species in the feature vector and separately train random forests for654

each species, considering that the information on the species is a prerequisite655

brought by an operator or by another identification step (Othmani et al.,656

2013). This approach might have a better performance but requires more657

37



training data. Our test carried out with data of the most present species658

(beech) in our database did not clearly outperform random forests trained659

with all species. The Fµ1 were 0.71 for random forests trained with only660

beech defects and 0.70 for random forests trained with all species defects.661

4.3. Use for grading trunk quality662

The performance of defect classification can influence the grading result663

of standing trees. Nonetheless, the impact of the misclassification of class664

on the quality assessment is difficult to assess. The most important is the665

classification of large defects. Once there is an occurrence of these large666

defects, the occurrence of smaller defects is less important. However, in the667

case of highest quality trunk, the classification performance is more critical668

because one misclassification, even of a small defect, can result in a change669

to a higher or lower quality class. Thus, a further development of the current670

method is needed to measure the defect dimension which is required to assess671

the impact of defects by a standard (AFNOR, 1999a,b, 2012).672

Regarding the current scanning setting, the spatial resolution does not673

allow for classifying between a picot and a less important small defect, such674

as bud cluster. Only one picot is allowed in the case of highest quality trunk.675

Thus, in the case that there is only the occurrence of small defects, an addi-676

tional expert inspection could be suggested to verify the classification result677

in the case of high commercial value. Beyond grading issues, the informa-678

tion about defect type and position on the log can be used to optimize the679

transformation, with the objective of increasing the volume of high-quality680

products but such exceeds the scope of this paper even if it is a real prospect.681

As a common problem for the remote sensing technologies, the quality of682
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TLS data can be limited by the occlusion, especially when there are branches683

on the trunk or false positive created by moss (Musci L.) or lichens. In684

general, scanning the tree from multiple views can reduce occlusions, as the685

occlusion on the high part of the tree is difficult to avoid.686

5. Conclusions687

In this paper, we have presented a random forests-based classifier to iden-688

tify defects on trunk surface from TLS data. The potential defects were689

detected by our segmentation algorithm (Nguyen et al., 2016b). Each de-690

tected defect was then classified into one of the four defect classes or bark691

using the random forests classifier. Our experiment showed that from the692

high-density data acquired by TLS, we can detect and classify most of the693

defects on tree bark. The overall Fµ1 score of the classification algorithm was694

0.86. These preliminary results are thus very promising. We could further695

improve the score with the addition of more data and with the definition696

of defect subclasses considering not only their biological type but also their697

size and impact on wood quality. An interesting option will be to train the698

random forests separately for each tree species. The information about the699

defect type in addition to its dimension and position can be used to assess700

the quality of roundwood or standing tree. This is the first step towards701

developments for helping experts in the assessment of the quality of standing702

trees or timber logs in forests or for enhancing the knowledge coming from703

true shape scanners in the primary wood processing industry.704
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