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INTRODUCTION

Shape representation methods are usually split into main categories: region-based approaches or contour-based approaches [START_REF] Loncaric | A survey of shape analysis techniques[END_REF][START_REF] Jain | Statistical pattern recognition: a review[END_REF][START_REF] Zhang | Shape-based image retrieval using generic fourier descriptor[END_REF]. The choice of one representation instead of another one generally relies on the application under consideration. We focus on contour and more specifically on its polygonal description, consisting in a finite chain of straight line segments closing in a loop. Such a representation is widely used in several research fields such as graphic symbol recognition [START_REF] Cordella | Symbol recognition in documents: a collection of techniques?[END_REF][START_REF] Santosh | Document Image Analysis -Current Trends and Challenges in Graphics Recognition[END_REF][START_REF] Baird | The evolution of document image analysis[END_REF][START_REF] Santosh | Graphical symbol recognition[END_REF] or Geographic Information System [START_REF] Duckham | Efficient generation of simple polygons for characterizing the shape of a set of points in the plane[END_REF].

Segments often serves a common basis for both syntactic and structural approaches. Already in the 90s a string-matching technique to the problem of recognizing and classifying polygons has been defined by Maes [START_REF] Maes | Polygonal shape recognition using string matching techniques[END_REF] but this method is limited when the polygonal approximation of the object is inconsistent. Another 1 Université Paris Descartes, LIPADE, 45, rue des Saints-Pères, 75270 Paris, France: 2 Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France.

works focus for instance on the definition of a complete system for architectural drawing analysis [START_REF] Dosch | A complete system for the analysis of architectural drawings[END_REF] or symbol spotting [START_REF] Rusiñol | Symbol spotting in vectorized technical drawings through a lookup table of region strings[END_REF].

Main well-known drawbacks of polygonal approximation rely on sensitivity to the noise or to over-segmentation effect considering the raster contour. Highly concave curves tend also to provide a bad discontinuity behavior on the achieved polygonal representation.

Since the last decades, numerous works have been carried out to assess the polygonal contour best fitting a raster contour. For line extraction, the Hough transform [START_REF] Dana | Generalizing the hough transform to detect arbitrary shapes[END_REF] has been widely used. But, applications are reasonably limited in case of degraded images due to its high computational cost. However, robust vectorization algorithms exist in line drawing images as in engineering drawings [START_REF] Janssen | Adaptive vectorization of line drawing images[END_REF][START_REF] Hilaire | Robust and accurate vectorization of line drawings[END_REF][START_REF] Song | An object-oriented progressive-simplification based vectorization system for engineering drawings: Model, algorithm, and performance[END_REF]. The use of such low-level primitives varies widely in accordance with the complexity of the considered object. Efficient methods were also defined to take into account noise and/or over-segmentation by refining the process at different scales [START_REF] Debled-Rennesson | Multiorder polygonal approximation of digital curves[END_REF][START_REF] Dilip | Polygonal representation of digital curves[END_REF][START_REF] Kerautret | Meaningful scales detection along digital contours for unsupervised local noise estimation[END_REF][START_REF] Vacavant | A combined multiscale/irregular algorithm for the vectorization of noisy digital contours[END_REF], etc. Despite existing relevant approximation works finding the "best" polygon is always a challenge which highly depends on the application under consideration.

In other words, since polygonal contour descriptors are based on the boundary of a shape, they cannot capture the internal structure of a shape. Furthermore, these methods are generally not suited to handle disjoint shapes or shapes with holes because the boundary information is not available. Moreover, a common drawback is error-prone raster to vector conversion inducing loss of information, which may result in lower recognition rates. On the other hand, region-based methods are more suited to general applications. However, they are generally more computationally intense and most approaches need to normalize (centroid position, re-sampling) the image to process with affine properties. Such a normalization introduce errors, sensitivity to noise, and thus inaccuracy in the recognition process.

In this paper we consider a powerful aim consisting in describing the shape at several scales from width of discrete lines [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF]. Considering several widths allows to limit noise effect and limit artifact while limiting to some extent the influence of over-segmentation according to the processed widths. It allows to go progressively from an accurate representation to a more rough one while highlighting the main directions of the parts of the shape. Then we combine such description with a feature descriptor able to efficiently handle with holes or split parts of an object while integrating in its structure both relational parts and spatial variations [START_REF] Matsakis | A new way to represent the relative position between areal objects[END_REF]. This method can be assumed as hybrid; it combines a structural description of shapes with a statistical shape descriptor.

The outline of the paper is as follows. First the main frameworks required to define this new method are recalled in Section 2, that is discrete lines, blurred segments, and force histogram. The multi-polygonal structure is described in Section 3 as well as three basic matching strategies allowing to handle these representations. An experimental study performed on two common databases is given in Section 4 to show the interest of the proposed approach. Finally perspectives are provided in the conclusion.

BACKGROUND

Discrete Lines

The arithmetical definition of discrete lines [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF] is used in our method to decompose a discrete shape contour into discrete line segments.

A discrete line D(a, b, µ, ω), whose main vector is (b, a), lower bound µ and thickness ω (with a, b, µ and ω being integer such that gcd(a, b) = 1) is the set of integer points (x, y) verifying µ ≤ ax -by < µ + ω.

In this work, we study sequences of points, corresponding to shape contours, and we compute polygonal approximations containing all the points of the sequences.

More precisely, let us consider a sequence of points S b , it is named a blurred segment of width ν if there exists a discrete line D(a, b, µ, ω) containing all the points of S f and such that ω-1 max(|a|,|b|) ≤ ν. This discrete line is called the optimal bounding line of S b .

A linear algorithm was proposed in [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF] to incrementally obtain the characteristics of the optimal bounding line of a sequence of points. It relies on the linear and incremental computation of the convex hull of the scanned point sequence as well as on the arithmetical and geometrical properties of discrete lines.

Based on this algorithm, an interesting geometrical structure can be computed on a shape contour: the width-ν tangential cover. It consists in the sequence of all maximal blurred segments of width ν (M BSν ) located on the shape contour (see Fig. 1). The common zone of several M BSν can contain a point with high curvature, called dominant point. A method to detect dominant points from a width-ν tangential cover of a contour is proposed in [START_REF] Nguyen | A discrete geometry approach for dominant point detection[END_REF][START_REF] Nasser | Dominant point detection based on discrete curve structure and applications[END_REF], a polygonal representation of the contour is then deduced. Different values of width then induce several polygonal simplifications of a same contour (see Fig. 4).

Fig. 1 On the left, the width-1 tangential cover of a piece of a shape contour. On the center, the width-2 tangential cover of the same piece. On the right, the width-1 tangential cover of a noisy discrete circle.

Force Histogram

Force Histogram of a shape

The histogram of forces was initially defined to assess the spatial relation between two binary objects but it can be easily used to provide a discriminate signature (and descriptor) characterizing one object. We recall here basic notions aiming at describing such a kind of signature which efficiently integrates both whole shape and spatial description following a set of directions. A full description of the underlying theoretical developments can be found in [START_REF] Matsakis | Relations spatiales structurelles et interprtation dimages[END_REF][START_REF] Matsakis | A new way to represent the relative position between areal objects[END_REF][START_REF] Tabbone | Matching of graphical symbols in line-drawing images using angular signature information[END_REF][START_REF] Matsakis | A general approach to the fuzzy modeling of spatial relationships[END_REF]. The attraction force between two points at a distance d is given by:

∀d ∈ R * + , ϕr(d) = 1/d r
with r, the kind of force processed, e.g. r = 0 for constant forces, which are suitable considering one object and r = 2 for gravitational ones. The handling of segments is considered to decrease the computation time instead of directly studying any pair of points. Let I 1 and I 2 be two segments beared by a line of angle θ k from the frame, D θ k I1I2 the distance between them and |.| the length of a segment. The calculation of the attraction force fr of a segment with regard to another is given by:

fr(|I 1 |, D θ k I1I2 , |I 2 |) = |I1|+D θ k I 1 I 2 +|I2| D θ k I 1 I 2 +|I2| |I2| 0 ϕr(u -v)dvdu
Considering one raster object A, following a direction θ k it can be entirely described by the set of segments beared by a pencil of parallel lines of angle θ k from the orthogonal frame. Let us take one line, denoted D θ k η . The set of S segments corresponds to: A θ k (η) = ∪{I i } i=1,S and the mutual attraction of these segments is given by:

F (θ, A θ k (η), A θ k (η)) = i∈1..S j∈1..S fr(|I i |, D θ k IiIj , |I j |)
Due to superimposed segments, constant forces are suitable in our study. An approximation of gravitational force impact might be done using points while avoiding superimposed points and linked points at a null distance. The last constraint can be eventually removed by using a sub-pixel modeling. Another way can be to introduce progressive forces (as in [START_REF] Matsakis | Relations spatiales structurelles et interprtation dimages[END_REF]) but this generally leads to minor the impact of gravitational ones considering compact shapes.

Force histogram of a polygon

Using raster data all the pencils of lines D η θ which entirely describe A are then processed and the associated mutual attraction summed. Considering a polygonal description of A, noted P A , the calculation is based on a set of regular polygons having 3 or 4 vertices (see Fig. 2). All the lines D η θ bearing a polygonal point are projected on a perpendicular straight line to set the intervals describing A [START_REF] Matsakis | Relations spatiales structurelles et interprtation dimages[END_REF][START_REF] Matsakis | A new way to represent the relative position between areal objects[END_REF][START_REF] Matsakis | A general approach to the fuzzy modeling of spatial relationships[END_REF]. Then A consists in a set of trapezium (or triangle) whose height is given by q Object A Fig. 2 Set of triangles or trapezium describing an object A following a direction θ.

the width of intervals, combined with bases to calculate the associated attraction and summed (Riemann sum).

The calculation of F AA (θ), respectively F P A (θ), remains to an assessment of the forces exerted by an object with itself in the direction θ.

Let us consider a set of p directions Θ = {θ k } k=1,p∧θ k ∈[-π,+π) with a constant step. Finally the calculation of F AA onto Θ defines a spatial relational descriptor, denoted F A for raster data and F P A for polygonal one. The calculation of the complexity depends on the sorting of the projected vertices. That is in O(pv ln(v)) with v the number of vertices of the polygon.

MULTI-POLYGONAL MATCHING

Multi-Polygonal Structure

Let A and B be two shapes and let P A = ∪ ωi∈Ω (P Aω i ) and P B = ∪ ωi∈Ω (P Bω i ) be their multi-polygonal representation obtained using n increasing width Ω = {ω 1 , ω 2 . . . ωn} with ω i < ω i+1 and P Aω i the polygon calculated from the width w i . The force histogram (or distribution) is calculated on each representation from the set of points defining each polygon following p directions Θ (see previous section). Then the multi-polygonal descriptor associated to a shape A is denoted by:

F P A = ωi∈Ω F P Aω i

Multi-Polygonal Descriptor Properties

By axiomatic definitions of the function F , the following properties can be checked and easily introduced in the matching process following the specificity of the application under consideration:

-Translation as polygon are processed independently of their location in an image. Only points and the whole shape of the polygon are considered.

-Symmetry according to a mirror representation of the polygon. In this case processing the directions in the opposite direction allows to directly take into account the symmetry property.

-Homothety according to a normalized distribution. Considering real points, the global shape of the polygon is the same at different scales. Obviously considering discrete data, high disparities might occur at very low scales. However the whole representation of the force histogram remains stable in most of the cases due to the low sensitivity to noise of the approach [START_REF] Matsakis | A new way to represent the relative position between areal objects[END_REF][START_REF] Tabbone | Matching of graphical symbols in line-drawing images using angular signature information[END_REF].

-Rotation because the approach is isotropic. A rotation of the polygon relies on circular shifts on the achieved force histogram. An assessment of the rotation (not invariant) can be carried out by minimizing the distance between two superimposed force histograms at different shifts.

Such properties rely on each polygonal representation P Aω i but they can be easily extended to the whole description F P A as they are calculated from the same located shape and so apply along a common principle at each associated level F P A ω i . It is important to notice that if a shape contains several holes having or not parts of shapes implying a set of external and internal polygons, it is always possible to calculate the associated distribution due to the bi-linearity property. That is trapezium describing the holes are not integrated in the calculation of F . In other words, it is not useful to process holes during the matching step as they are directly taken into account inside of the force histogram.

Matching Strategies

Three schemes able to match two multi polygonal distributions (MPD) F P A and

F P B
are defined in this section. Let M be a metric, or a similarity ratio, calculating a score between two distributions.

Weighted histogram matching

The first scheme, denoted by M 1 relies on the calculation of a global distribution

G(F P A

) related to a shape A by aggregating the distributions achieved at each level. Let θ k be a direction, which corresponds to the k th bin of the distribution. A weighted scheme similar to [START_REF] Dubois | A general approach to parameter evaluation in fuzzy digital pictures[END_REF] is used here as follows (assuming that ω 0 = 0).

G F P A (θ k ) = i=1,n (ω i -ω i-1 )F P Aω i (θ k )
And so on, considering all the p directions (see section 2.

2) to define the average distribution G(F P A

). The distance ∆ M1 between two MPD A and B is directly given by:

∆ M1 (A, B) = M G F P A , G F P B
Considering raster data, a similar scheme was successively applied to classify chest radiograph image view but considering F-signatures computed on a set of image binarisation [START_REF] Santosh | Angular relational signature-based chest radiograph image view classification[END_REF]. Here the modeling is based on polygon handling and the weight is set from the difference between successive width values.

Level polygonal feature set matching

The second scheme, noted M 2 , relies on an assessment level per level of both distributions which are weighted as in M 1 by the difference of two successive levels, that is:

∆ M2 (A, B) = 1 n i=1,n (ω i -ω i-1 )M F P Aω i , F P Bω i
The interest of this scheme is to study the similarity of pairwise distributions at each level ω i . The aggregation is quite similar as the one of Krishnapuram et al. [START_REF] Krishnapuram | Quantitative analysis of properties and spatial relations of fuzzy image regions[END_REF] who modeled standard relationships between fuzzy sets described by level cuts. However we do not ensure a convex hull representation and we put no hypothesis about polygonal level membership.

Key direction matching

At last, a third scheme M 3 is based on the matching of a set of meaningful direction values, denoted by Φ, consisting in local minimum and maximum points extracted from the derivative of each distribution. Let us consider a distribution A at width ω i , Φ A ωi corresponds to the set of directions corresponding to the loci of both extrema and minima of F P Aω i , that is:

Φ A ωi = {θ k |θ k ⊂ Θ\{θ 1 , θp}∧ (F P Aω i (θ k-1 ) < F P Aω i (θ k ) > F P Aω i (θ k+1 ) ∨F P Aω i (θ k-1 ) > F P Aω i (θ k ) < F P Aω i (θ k+1 ))}
Due to the circular representation (modulo the size p), θ 1 and θp are separately processed. Considering two objects A and B, the matching is similar to M 2 but limited to the set of suitable directions Φ A ωi and Φ B ωi extracted at each level ω i :

∆ M3 (A, B) = 1 n i=1,n (ω i -ω i-1 )M F P Aω i Φ A ω i ∪Φ B ω i , F P Bω i Φ A ω i ∪Φ B ω i
In some extent, the underlying idea of the well-known curvature scale space method [START_REF] Mokhtarian | Silhouette-based isolated object recognition through curvature scale space[END_REF] is followed. However the derivative does not require Gaussian filters to smooth the distribution in order to focus on key points. The computation of force histogram integrates the whole shape according to progressive directions and the studied distributions are most of the time regular with no high disparities.

EXPERIMENTAL STUDY

Databases and metrics

Two well-known shape databases provided by Sharvit et al. [START_REF] Sharvit | Symmetry-based indexing of image databases[END_REF] are used to test our methods. The first database B1 consists in nine categories with 11 shapes in each cluster and the second one B2 consists in 18 categories of 12 shapes. Considering B1 a few of the shapes are occluded (airplanes and hands) and some shapes are partially represented (rabbits, men, and hands). There are also distorted objects (tools) and heterogeneous shapes in the same cluster (animals) (see Fig. 3). The database B2 contained also shapes having similar disturbance.
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-transform, the between the two a shape recogniiency of the prosted on several et al. [START_REF] Mokhtarian | Silhouette-based isolated object recognition through curvature scale space[END_REF] kindly ttp://www.lems. ve been used. tegories with 11 hape is matched against all the other shapes of the database (at all 9801 shape comparisons are made) and we count in the nth (n from 1 to 11) nearest neighbors the number of times the test image was correctly classified. A few of the shapes are occluded (clusters airplanes and hands) and some shapes are partially represented (clusters rabbits, men, and hands). There are also distorted objects (cluster 6) and very heterogeneous shapes in the same cluster (animals). Furthermore, to demonstrate scale invariance and robustness to noise, the experiments were tested again with the database of Fig. 7 increased in scale by 400%, scaled down by 50%, and degraded with salt-and-pepper noise (common in binary images) with different degrees. We can remark that the results of the matching are quite similar to those obtained with the original database (compare Figs. 9-11 with Fig. 8). More significantly, we have run the experiments on a certain shape which has been scaled and rotated (see Fig. 12). When two shapes are similar the distance is close to zero and we can see from Fig. 12 that with only one exception, the distance measures are small. The exception is due to pixelation errors resulting from the scaling of the smallest image which has been scaled down by a factor of 32 from the largest. Also a shape from a different class is included in the Fig. 12 to have a reference of how small the metric is for the scaled/rotated dogs. On average the distance is 9 times greater between the dogs and the rabbit images than between the dogs theirself. We also compare our method with two recent approaches which give rise interesting results for several test databases (see [START_REF] Baird | The evolution of document image analysis[END_REF] and [37] for comparative studies):

• The approach of Bernier and Landry [START_REF] Baird | The evolution of document image analysis[END_REF] based on a polar representation of the contour points with respect to the centroid of the shape. • The approach of Zhang and Lu [37] defined on the generic Fourier descriptor transform from a polar-raster sampled shape image. Such databases are widely used to compare feature descriptors which are more adapted to classify raster pattern due to noise, artifacts and distorted parts. For instance, the generic Fourier descriptor [START_REF] Zhang | Shape-based image retrieval using generic fourier descriptor[END_REF] provides high recognition rates on these databases. Here we consider only polygonal representations of shapes which are obviously more sensitive to noise effect and pattern distortions. The aim is to show the interest of such multi-polygonal structure through the matching strategies M 1 , M 2 and M 3 . Several metrics and similarity ratio ∆ will be tested as Jaccard, Tanimoto, Chi 2 and Hellinger. Due to the weak number of samples the evaluation process is similar to a leave one out considering the distance of each sample with the remaining database (as k = 1) to avoid a bias.

Evaluation

Multi-scale structure

We provide in Fig. 4 an example of polygonal decomposition following four widths to better visualize the structure used in this paper. Two samples belong to the same cluster (fish) and another belong to the cluster hand.

It may be noted that the small elements (polygonal contour in green in Fig. 4) of the structure are better preserved at low width (for instance the fins of the Shape ⍵=1 ⍵=2 ⍵=4 ⍵=3 fishes) and a larger width concentrates rather meaningful directions of the shape (the palm of the hand is smoothed as well as fish fins).

Few shapes and the force histogram calculated on associated polygon defined from the width ω 1 are given in Fig. 5. The difference between the shapes can be directly seen in the distributions. For instance the arm raised induced a directional perturbation visible on the second force histogram. The last two force histogram samples indicate the main direction of the shape (plane and tool) while integrating the width of the objects (see the pick of the tool force histogram).

Number of directions

Tests are done on Sharvit B1 to study the impact of the underlying parameters. Five increasing widths are considered for the multi-polygonal representation of all the shapes. The influence of the number of directions p is studied (see Table 1 The achieved results (using the Jaccard index) show a good behavior of the three methods except for a large number of directions. Many spatial directions introduce more irrelevant information during matching and thus reduce the impact of significant directions.

Distance and Similarity

Following the previous study, p is set to 32 directions (16 is also a good compromise). Five usual similarity ratio and distance are studied (see Table 2). We also add a contour based approach Sa which consider circular directions (here 360) defined from the centroid of the shape as in [START_REF] Bernier | A new method for representing and matching shapes of natural objects[END_REF]. The three methods are few sensitive to usual metrics (or similarity). This good behavior, as well as the good recognition rates, shows that the information stored in the force histogram distributions, which integrates both the organization of the spatial relationships and the disparities of the shape in the same distribution, are discriminating and robust at the metric.

Methods

Increasing number of cuts

The impact of increasing number of widths is considered (see Fig. 6). A step set at 0.5 between each width is considered. The number of directions p is set to 16 and Tanimoto index is applied.

An increase in recognition rates is obtained for all three methods. The method M 1 is sensitive to the number of processed polygons. So, the weighted sum of force histogram becomes less discriminating when polygons of increasing width are added. The method M 2 remains stable most of the time, showing the interest of a matching level per level, that is following the same width. The behavior of the method M 3 is interesting as the score increases gradually, showing the influence of main directions at high level.

Test on Sharvit B2

Another test is carried out on the database B2. We consider values of parameters similar to those used to make tests on B 1 , that is p = 32, five widths and the Jaccard index. We also consider a polygonal representation method, denoted by KM , which provide a polygon close to the raster contour of a shape [START_REF] Dilip | Polygonal representation of digital curves[END_REF]. The force histogram is calculated on it to make a comparison. The results are close to those ones obtained using B1 despite an increasing number of samples showing the good behavior of our approaches. Handling with a multi-level approach seems to better take into account the main directional regions of a shape than a relevant method KM where the polygonal contour fits well the pattern but only at one scale.

Methods

Discussion

Both methods M 1 and M 2 provide interesting results while having a robust behavior independently of the metric used.

Most of the recognition rates obtained with M 2 are better than those ones of M 1 showing the interest of handling the polygons, level per level, instead of averaging the amount of associated force histograms.
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 73 Fig. 7. A database of 99 shapes made available by Sharvit on his website [30].
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 4 Fig. 4 Multi-Polgonal representation following width.
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 5 Fig. 5 Force histogram calculated on Polygons (width ω 1 ).
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 6 Fig. 6 Recognition rates. Increasing number of cuts.

Table 1

 1 ). Recognition rates obtained using the Jaccard index.

	Directions	128	64	32	16
	M 1	68.9 84.4 83.3	83.3
	M 2	72.2 85.6	85.6	87.8
	M 3	67.8 76.7 81.1	80.0

Table 2

 2 Recognition rates. Metrics and Similarity

		M 1	M 2	M 3	S A
	Jaccard	83.3	85.6	81.1	74.4
	Tanimoto	83.3	85.6	81.1	74.4
	L 1	82.2	85.6	82.2 74.4
	Chi 2	84.4 85.6	82.2	73.3
	Hellinger	84.4 85.6	82.2	66.7

Table 3

 3 Recognition rates (32 bins -Jaccard Index)

		M 1	M 2	M 3	KM	S A
	Rate	84.3 86.7	81.5	83.4	63.0

Considering M 3 the results are a bit disappointing even few directions are processed (lower than 13% in average). This emphasizes that the relational curve between the key directions remains a discriminant information. Furthermore this method has an interesting behavior when the number of processed polygons increases.

CONCLUSION

Original methods aiming at representing a shape from a set of distributions associated to polygons have been proposed in this paper. These approaches combined two powerful concepts: discrete lines and force histogram. Achieved results on two databases are very promising. Furthermore the methods are fast and ensure a robust matching.

New developments integrating the interval between key directions or enabling to process with a different number of polygons per representation are under consideration. As the larger the value of the width, the rougher the aspect of the polygon is, further investigations are also dedicated to the search of the optimal description of each sample of a database.