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Introduction

The anisotropic Ising model on the square lattice is defined by the interaction energy

E = - j,k {E v σ j,k σ j+1,k + E h σ j,k σ j,k+1 }, (1) 
where σ j,k = ±1 is the spin at row j and column k and the sum is over all lattice sites. The free energy in the thermodynamic limit was computed by Onsager [START_REF] Onsager | Crystal statistics I. A two dimensional model with an order-disorder transition[END_REF] in 1944.

The investigation of the correlation functions was initiated by Kaufman and Onsager [START_REF] Kaufman | Crystal stastistics III. Short range order on a binary Ising lattice[END_REF] in 1949 and in 1963 Montroll, Potts and Ward [START_REF] Montroll | Correlations and spontneous magnetization of the two dimensional Ising model[END_REF] extended and simplified these results to show that all correlations can be written as determinants in an infinite number of ways. The simplest of these cases is the row correlation

C(0, N ) = σ 0,0 σ 0,N = a 0 a -1 • • • a -N +1 a 1 a 0 • • • a -N +2 . . . . . . . . . a N -1 a N -2 • • • a 0 , (2) 
with

a n = 1 2π 2π 0 (1 -α 1 e iθ ) (1 -α 2 e -iθ ) (1 -α 1 e -iθ ) (1 -α 2 e iθ ) 1/2 e inθ dθ, (3) 
where

α 1 = e -2Ev/k B T tanh E h /k B T, α 2 = e -2Ev/k B T coth E h /k B T, (4) 
and the diagonal correlation C(N, N ) also given by ( 2) and ( 3) with

α 1 = 0, α 2 = k = (sinh 2E v /k B T sinh 2E h /k B T ) -1 . (5) 
Both the free energy and the correlations have singularites at the critical temperature

T c defined by k = (sinh 2E v /k B T c sinh 2E h /k B T c ) -1 = 1. (6) 
In 1976 Wu, McCoy, Tracy and Barouch [START_REF] Wu | Spin-spin correlation functions for the two dimensioanal Ising model: exact theory in the scaling region[END_REF] discovered, in the scaling limit T → T c with N • (T -T c ) fixed, that the diagonal correlation C(N, N ) is given by a Painlevé III function. This was generalized in 1980 by Jimbo and Miwa [START_REF] Jimbo | Studies on holonomic quantum fields XVII[END_REF] who defined for T < T c

σ = t • (t -1) • d dt ln C(N, N ) - t 4 with t = k 2 , (7) 
and for T > T c

σ = t • (t -1) • d dt ln C(N, N ) - 1 4 with t = k -2 , (8) 
and in both cases derived:

t • (t -1) • d 2 σ dt 2 2 (9) = N 2 • (t -1) • dσ dt -σ 2 -4 • dσ dt • (t -1) • dσ dt -σ - 1 4 • t dσ dt -σ .
For T < T c the boundary condition for (9) at t = 0 is

C(N, N ; t) = (1 -t) 1/4 • 1 + λ 2 • (1/2) N (3/2) N 4[(N + 1)!] 2 • t N +1 • (1 + O(t)) , (10) 
with λ = 1, (a) n = a(a + 1) • • • (a + n -1) and (a) 0 = 1. For T > T c the boundary condition at t = 0 is

C(N, N ; t) = (1 -t) 1/4 • t N/2 • (1/2) N N ! • 2 F 1 [ 1 2 , N + 1 2 ], [N + 1], t + λ 2 • (1/2) N ((3/2) N ) 2 16 (N + 1)! (N + 2)! • t N +2 • (1 + O(t)) , (11) 
with λ = 1. We note for both cases of T < T c and T > T c that there are solutions of [START_REF] Pantone | Using GUESSFUNC[END_REF] with boundary condition where λ = 1. Those solutions do not correspond to the determinants for C(N, N ) but rather for the lambda extended Fredholm determinants obtained from the form factor expansions [START_REF] Lyberg | Form factor expansion of the row and diagonal correlation functions of the two dimensional Ising model[END_REF][START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF]. We also remark that for T > T c the term in [START_REF] Cosgrove | Chazy's second-degree Painlevé equations[END_REF] with λ = 0 is by itself an exact solution of (9) even though it is not a correlation function of the Ising model.

It is an outstanding open question to generalize [START_REF] Pantone | Using GUESSFUNC[END_REF] to the general two-point correlation functions C(M, N ) = σ 0,0 σ M,N .

In this paper we consider the correlation C(M, N ) with anisotropy

ν = sinh 2E h /k B T sinh 2E v /k B T , (12) 
for the special case ν = -k,

which corresponds to

sinh 2E h /k B T = ±i, k = ∓ i sinh 2E v /k B T . (14) 
Because k → 0 as T → 0 we refer to this case as T < T c for ν and k real even though E v and E h are complex (and hence unphysical).

We also consider the special case

ν = -1/k = -k > , (15) 
where sinh 2E v /k B T = ±i,

k > = ∓i sinh 2E h /k B T (16) 
and because k > → 0 corresponds to T → ∞ we refer to this case as T > T c . In both cases we find that there is indeed a generalization of [START_REF] Pantone | Using GUESSFUNC[END_REF]. For concretness we consider M ≥ 0 and N ≥ 0. We note that the formalism for M ≤ N and M ≥ N is different but, in the general, the symmetry under M ↔ N and E v ↔ E h yields the relation:

C(M, N ; k, ν) = C(N, M ; k, 1/ν). ( 17 
)
However the restrictions ( 13) and ( 15) are not preserved by ( 17) and we have instead:

C(M, N ; ν = -k) = C(N, M ; ν = -1/k). (18) 
In this paper we consider only M ≤ N with some remarks about M ≥ N at the end of subsection 3.3 and in the discussion section 7.

We recall previous results [START_REF] Mccoy | The anisotropic Ising correlations as elliptic integrals: duality and differential equations[END_REF] on C(M, N ) in section 2. In section 3 we use the program guessfunc developed by Jay Pantone [START_REF] Pantone | Using GUESSFUNC[END_REF] to find, from large series expansion, nonlinear differential equations for C(M, N ) with M ≤ N , both for T < T c (see equations (71) below) and for T > T c (see equations ( 73) and (79) below). In section 4 we transform these nonlinear differential equations into the canonical form of Okamoto [START_REF] Okamoto | Studies on the Painlevé equations.I Sixth Painlevé equation[END_REF] for sigma form of Painlevé VI. In section 5 we compare our equations with the ones obtained by Forrester and Witte for determinants [START_REF] Forrester | Application of the τ -function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits[END_REF] as given in [START_REF] Gamayun | How Instanton combinatorics solves Painlevé VI, V and III"s[END_REF] and show in (125), for ν = -k and T < T c , that C(M, N ) for M ≤ N is expressed as an N × N Toeplitz determinant. Appendix C shows when T > T c that C(M, N ) can also be expressed as an N × N Toeplitz determinant. In section 6 we show for T < T c , ν = -k and M + N odd that C(M, N ), M ≤ N , factors, and for C(0, N ) that these factors also satisfy an Okamoto sigma form of Painlevé VI equation. We conclude in section 7 with a discussion of several open questions. In Appendix B we give examples of C(M, N ) with ν = -k for both T < T c and T > T c . In Appendix D we present the one parameter family of boundary conditions for the general Painlevé VI sigma Okamoto form which are analytic at k = 0.

The correlation C(M, N ) for ν = -k

In [START_REF] Mccoy | The anisotropic Ising correlations as elliptic integrals: duality and differential equations[END_REF] it was shown for all M, N that the correlation C(M, N ) with M ≤ N can be written for all M, N as a homogeneous polynomial in the three elliptic integrals

K(k) = 2 π π/2 0 dθ (1 -k 2 sin 2 θ) 1/2 = 2 F 1 [ 1 2 , 1 2 ], [1], k 2 , (19) 
Ẽ(k) = 2 π π/2 0 dθ (1 -k 2 sin 2 θ) 1/2 = 2 F 1 [ 1 2 , - 1 2 ], [1], k 2 , ( 20 
) Π(-kν, k) = 2 π π/2 0 dθ (1 + k ν sin 2 θ) (1 -k 2 sin 2 θ) 1/2 , (21) 
where

k = (sinh 2E v /kT sinh 2E h /kT ) -1 = (s v s h ) -1 = α 2 -α 1 1 -α 1 α 2 , (22) 
ν = sinh 2E h /kT sinh 2E v /kT = s h s v = 4 α 1 α 2 (α 2 -α 1 )(1 -α 1 α 2 ) , k ν = 1 s 2 v , (23) 
which are valid for 0 ≤ k ≤ 1 and

-1 ≤ k ν, (24) 
2 F 1 ([a, b], [c], z) being the hypergeometric function.

2.1. C(0, 1) for ν = -k It was shown in [START_REF] Onsager | Crystal statistics I. A two dimensional model with an order-disorder transition[END_REF] and [START_REF] Kaufman | Crystal stastistics III. Short range order on a binary Ising lattice[END_REF], for T < T c where α 1 < α 2 < 1, that

C(0, 1) = √ 1 + νk • 1 + k ν • Π(-νk, k) - k ν • K(k) , (25) 
which is conveniently rewritten as

C(0, 1) = √ 1 + νk • 2 π π/2 0 dθ • (1 -k 2 sin 2 θ) 1/2 1 + kν sin 2 θ . ( 26 
)
For T > T c where 1 < α 2 and k > = 1/k

C(0, 1) = 1 ν • 1 + ν/k > • (1 + νk > ) • Π(-νk > , k > ) -K(k > ) = k > • 1 + ν/k > • 2 π π/2 0 1 -sin 2 θ (1 + k > ν sin 2 θ) (1 -k 2 > sin 2 θ) 1/2 • dθ. (27) 
In general C(M, N ) depends on two (complex) variables through the elliptic integral Π(-kν, k). However, as is seen in ( 2) and (3) the row correlation C(0, N ) reduces to C(N, N ) when α 1 = 0 (which from ( 23) is equivalent to ν = 0) because Π(-kν, k) degenerates to K(k).

There are two other special cases where Π(-kν, k) reduces to combinations of K(k) and Ẽ(k). One case is the isotropic case ν = 1 where

Π(-k, k) = 1 2 • K(k) + 1 2 • (1 + k) . ( 28 
)
Many examples of this reduction of C(M, N ) have been given by Shrock and Ghosh [START_REF] Ghosh | Exact expressions for row correlation functions in the isotropic d = 2 Ising model[END_REF][START_REF] Shrock | Off-axis correlation functions in the isotropic d = 2 Ising model[END_REF].

Another case of reduction of Π(-kν, k) is ν = -k, (29) 
where

Π(k 2 , k) = Ẽ(k) 1 -k 2 , ( 30 
)
and the C(M, N ), M ≤ N are reduced to homogeneous polynomials of the two ellptic integrals Ẽ(k) and K(k). For example for T < T c when ν = -k we see from [START_REF] Tracy | Introduction to random matrices[END_REF] that

C(0, 1) = 1 -k 2 • 2 π π/2 0 1 (1 -k 2 sin 2 θ) 1/2 • dθ = 1 -k 2 • K(k). (31) 
For T > T c from [START_REF] Kaneko | Painlevé VI transcendents which are meromorphic at a fixed singularity[END_REF] 

when ν = -k > = -1/k C(0, 1) = 0, (32) 
because of the vanishing of the square root factor. If we remove this factor by writing for

T > T c C(0, 1) = 1 + ν/k > • C(0, 1), (33) 
we find, in the special case ν = -k > , that

C(0, 1) = k > 2 • 2 F 1 ([ 3 2 , 1 2 ], [2], k 2 > ) = K(k > ) -Ẽ(k > ) k > . (34) 2.2. C(0, N ) for T < T c at ν = -k
More generally for T < T c we find, from ( 22) and [START_REF] Guzzetti | Matching procedure for the sixth Painlevé equation[END_REF], that if ν = -k then

α 2 = -α 1 = α and k = 2α α 2 + 1 , s h = i, s v = - i k , (35) 
where, for simplicity, we have defined α = α 2 . Thus for ν = -k the a n matrix elements (3) reduce to

a n = 1 2π 2π 0 1 -α 2 + α (e iθ -e -iθ ) {(1 -α 2 e 2iθ ) (1 -α 2 e -2iθ )} 1/2 • e inθ • dθ, (36) 
which, by sending α → -α and θ → -θ has the symmetry:

a -n (k) = a n (-k). ( 37 
)
By considering invariance under θ → θ + π and setting 2θ = φ, we see that

a 2m = 1 2π 2π 0 1 -α 2 {(1 -α 2 e iφ ) (1 -α 2 e -iφ )} 1/2 • e i|m|φ • d φ, (38) 
and:

a ±(2|m|+1) = ± 2π 2π 0 α(e iφ -1) {(1 -α 2 e iφ ) (1 -α 2 e -iφ )} 1/2 • e i|m|φ • dφ. ( 39 
)
We may reduce a 2m to a hypergeometric function as

a 2m = (1 -α 2 ) • α 2|m| • Γ(|m| + 1/2) π 1/2 |m|! • 2 F 1 [|m| + 1 2 , 1 2 ], [|m| + 1], α 4 , (40) 
which may be rewritten in terms of k using (5) of page 111 of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF]:

2 F 1 [m + 1 2 , m + 1 2 ], [, 2m + 1], k 2 = (1 + α 2 ) 2m+1 • 2 F 1 [m + 1 2 , 1 2 ], [m + 1], α 4 . ( 41 
)
We find that:

a 2m = α 1 + α 2 2|m| 1 -α 2 1 + α 2 • Γ(|m| + 1/2) π 1/2 |m|! • 2 F 1 [|m| + 1 2 , |m| + 1 2 ], [2 |m| + 1], k 2 = k 2 2|m| • 1 -k 2 • Γ(|m| + 1/2) π 1/2 |m|! • 2 F 1 [|m| + 1 2 , |m| + 1 2 ], [2 |m| + 1], k 2 . ( 42 
)
Similarly:

a 2m+1 = k 2 2m+1 Γ(m + 1/2) π 1/2 m! • k 2 2 m + 1/2 m + 1 • 2 F 1 [m + 3 2 , m + 3 2 ], [2m + 3], k 2 -2 F 1 [m + 1 2 , m + 1 2 ], [2m + 1], k 2 . ( 43 
)
The two hypergeometric functions in (43) combine and thus, with the symmetry (37), give the final result:

a ±(2m+1) = ∓ k 2 2|m|+1 • Γ(|m| + 1/2) π 1/2 |m|! • 2 F 1 [|m| + 1 2 , |m| + 1 2 ], [2 |m| + 2], k 2 . (44) 2.3. C(0, N ) for T > T c at ν = -k > = -1/k
In the following we will simply denote K(k), Ẽ(k) and Π(-kν, k) (see [START_REF] Mccoy | Nonlinear partial difference equations for the two-spin correlation function of the two-dimensional Ising model[END_REF], [START_REF] Mccoy | Ising field theory: quadratic difference equations for the n-point Green functions on the lattice[END_REF], ( 21)) by K, Ẽ and Π. For T > T c we find, from ( 22) and [START_REF] Guzzetti | Matching procedure for the sixth Painlevé equation[END_REF],

that if ν = -k > = -1/k then α 1 = -α -1 2 = -α, and k > = 2α α 2 + 1 , s h = -ik > , s v = i, (45) 
and we find the matrix elements (3) reduce to

a n = - 1 2π 2π 0 1 -α 2 e 2iθ 1 -α 2 e -2iθ
1/2

• e (n-1)iθ • dθ.

By sending θ → θ + π we see that a n = (-1) n-1 a n , and thus

a 2n = 0, (47) 
and

a 2n+1 = - 1 2π 2π 0 1 -α 2 e 2iθ 1 -α 2 e -2iθ 1/2 • e 2niθ • dθ = - 1 2π 2π 0 1 -α 2 e iφ 1 -α 2 e -iφ 1/2 • e niφ • dφ, (48) 
which we recognize as the matrix elements a -n of the diagonal correlation (3) for T < T c with α 1 = 0 and α 2 → α 2 . We further recognize because of (47) that

C(0, 2N + 1) = 0, (49) 
and that the 2N × 2N determinants for C(0, 2N ) factorize as:

C(0, 2N ) = (50) a -1 a 1 • • • a 2N -3 a -3 a -1 • • • a 2N -5 . . . . . . . . . a -(2N -1) a -(2N -3) • • • a -1 × a 1 a 3 • • • a 2N -1 a -1 a 1 • • • a 2N -3 . . . . . . . . . a -(2N -3) a -(2N -5) • • • a 1 .
For 2n + 1 > 0 we express (48) in terms of hypergeometric functions as

a 2n+1 = α 2n • Γ(n + 1/2) √ πn! • 2 F 1 [- 1 2 , n + 1 2 ], [n + 1], α 4 , (51) 
and:

a -(2n+1) = α 2n+2 • Γ(n + 1/2) 2 √ π(n + 1)! • 2 F 1 [ 1 2 , n + 1 2 ], [n + 2], α 4 . ( 52 
)
As a special case we note from (56) of [START_REF] Mccoy | The anisotropic Ising correlations as elliptic integrals: duality and differential equations[END_REF] by use of (45

) for ν = -k > that C(0, 2) = k -2 > • Ẽ2 -(1 -k 2 > ) • K2 = k -2 > • Ẽ -1 -k 2 > • K • Ẽ + 1 -k 2 > • K , (53) 
which illustrates the factorization property of C(0, 2N ). For small k we have

C(0, 2) = 1 8 k 2 > + 1 16 k 4 > + 39 1024 k 6 > + 53 2048 k 8 > + 1235 65536 k 10 > + 1887 131072 k 12 > + 382291 33554432 k 14 > + O(k 16 ), (54) 
which using (45) is rewritten in terms of α as

C(0, 2) = 1 2 α 2 - 1 16 α 6 - 1 64 α 10 - 13 2048 α 14 + O(α 18 ). ( 55 
)
Using maple we find

Ẽ + 1 -k 2 > • K = 2 1 + α 2 • a 1 (56) 1 k 2 > • Ẽ -1 -k 2 > • K = 1 + α 2 2 • a -1 , (57) 
or equivalently using

α = 1 -1 -k 2 > k > , (58) 
we have:

a 1 = 1 -1 -k 2 > k 2 > • Ẽ + 1 -k 2 • K , (59) 
a -1 = 1 + 1 -k 2 > k 2 > • Ẽ -1 -k 2 > • K . ( 60 
)
To generalize and derive ( 59) and ( 60) we treat a 2n+1 /α and α a -(2n+1) separately. These calculations are detailed in Appendix A.

Quadratic difference equations for C(M, N )

In general for M = 0 the correlation C(M, N ) with M < N can be written as an N × N determinant which is not Toeplitz. We will not use this determinant representation but, instead, use quadratic difference equations [START_REF] Mccoy | Nonlinear partial difference equations for the two-dimensional Ising model[END_REF][START_REF] Perk | Quadratic identities for Ising model correlations[END_REF][START_REF] Mccoy | Nonlinear partial difference equations for the two-spin correlation function of the two-dimensional Ising model[END_REF][START_REF] Mccoy | Ising field theory: quadratic difference equations for the n-point Green functions on the lattice[END_REF] which relate the (high-temperature) correlation functions C(M, N ) for T > T c to the dual correlation C d (M, N ) for T > T c , defined as the low temperature correlation with the replacement:

s v → 1/s h and s h → 1/s v s 2 h • [C d (M, N ) 2 -C d (M, N -1) • C d (M.N + 1)] + [C(M, N ) 2 -C(M -1, N ) • C(M + 1, N )] = 0, (61) 
s 2 v • [C d (M, N ) 2 -C d (M -1, N ) • C d (M + 1, N )] + [C(M, N ) 2 -C(M, N -1) • C(M, N + 1)] = 0, (62) 
s v s h • [C d (M, N ) • C d (M + 1, N + 1) -C d (M, N + 1) • C d (M + 1, N )] = C(M, N ) • C(M + 1, N + 1) -C(M, N + 1) • C(M + 1, N ), (63) 
which hold for all M and N , except M = 0, N = 0, where we have:

C(1, 0) = (1 + s 2 h ) 1/2 -s h • C d (0, 1), (64) 
C(0, 1) = (1 + s 2 v ) 1/2 -s v • C d (1, 0). ( 65 
) with s h = sinh 2E h /kT and s v = sinh 2E v /kT .
From these quadratic difference equations we find [START_REF] Mccoy | The anisotropic Ising correlations as elliptic integrals: duality and differential equations[END_REF] for example for T < T c where k = (s v s h ) -1 :

C(1, 2) = s 2 v • (s -2 v + 1) 1/2 • s -2 h • (s -2 v s -2 h -1) • K2 + (s -2 h -1) • Ẽ K + E 2 + (s -2 v -1) (s -2 h + 1) • Ẽ Π -(s -2 h + 1) • (s -2 v s -2 h -1) • K Π , (66) 
and for T > T c where k > = s v s h :

C(1, 2) = (s 2 v + 1) 1/2 s 2 h s v • Ẽ2 -(s 2 h s 2 v -1) • K2 + (s 2 h s 2 v + s 2 v -2) • Ẽ K + (s 2 h + 1) • (s 2 v -1) • Ẽ Π + (s 2 h + 1) • (s 2 h s 2 v -1) • K Π . ( 67 
)
For T < T c and ν = -k, where s h = i, s v = -i/k, one has:

C(1, 2) = -(1 -k 2 ) 1/2 • k -2 • (1 -k 2 ) • K2 -2 • Ẽ K + Ẽ2 . ( 68 
)
For T > T c and ν = -k > where

s h = -i k > , s v = i one gets: C(1, 2) = 0.
(69) Further special cases are given in Appendix B.

Two-parameter family of nonlinear differential equations for C(M, N ) for ν = -k

We have obtained a nonlinear equation with the Painlevé property (i.e. fixed critical points) which is satisfied by C(M, N ) for ν = -k by using the program guessfunc developed by J. Pantone [START_REF] Pantone | Using GUESSFUNC[END_REF]. This program searches for nonlinear equations satisfied by series expansions. We have applied this program for many values of the integers M, N for the series expansions of C(M, N ) at ν = -k obtained from either the Toeplitz determinants for C(0, N ) of section 2, or from expressions deduced from the quadratic recursion relations of section 2.4. The results are as follows. 

σ = t • (t -1) • d ln C(M, N ) dt - t 4 , (70) 
we have:

[t • (t -1) • σ ] 2 + 4 • {σ • (t σ -σ) • ((t -1) σ -σ)} -M 2 • (t σ -σ) 2 -N 2 • σ 2 + [M 2 + N 2 - 1 2 (1 + (-1) M +N )] • σ • (t σ -σ) = 0. (71) 
Note that when M = N the diagonal correlation C(N, N ) does not depend on the anisotropy variable ν. There is no difference between the diagonal correlation functions C(N, N ) for ν = -k and for arbitrary ν. As expected the two-parameters (M, N )-family of nonlinear differential equations (71) actually reduces when M = N to the Jimbo-Miwa nonlinear differential equation ( 9) for the diagonal correlation C(N, N ) for T < T c .

Nonlinear differential equations for C(M, N

) for ν = -k, M ≤ N and M + N even: the high-temperature case

For T > T c and ν = -k > with M ≤ N and M + N even with t = k 2 > and

σ = t • (t -1) • d ln C(M, N ) dt - 1 4 , (72) 
we have:

[t • (t -1) • σ ] 2 + 4 • {σ • (t σ -σ) • ((t -1) σ -σ)} -M 2 • (t σ -σ) 2 + (N 2 + M 2 -1) • σ • (t σ -σ) -N 2 • σ 2 - 1 4 (N 2 -M 2 ) • (t σ -σ) - 1 4 • (N 2 -M 2 ) • σ - 1 16 • (N 2 -M 2 ) 2 = 0. ( 73 
)
As expected, when M = N , the two-parameters (M, N )-family of nonlinear differential equations (73) also reduces to the Jimbo-Miwa nonlinear differential equation (9) for the diagonal correlation C(N, N ) for T > T c .

Nonlinear differential equation for C(M, N

) for ν = -k > , M < N and M + N odd: the high temperature case

For T > T c and ν = -k > we found in (49) that C(0, 2N + 1) = 0. For C(0, 1) this vanishing occurs because of the vanishing of the factor 1 + ν/k > in ( 27) and we found, for instance in (34), that:

lim ν→-k> 1 + ν k > -1/2 • C(0, 1) = K - Ẽ k > . ( 74 
)
We have examined this phenomenon more generally by considering C(M, N ) for low values of M, N and find that for M + N odd

C(M, N ) = 0, (75) 
and that the limit

lim ν→-k> 1 + ν k > -1/2 • C(M, N ) = C(M, N ), ( 76 
)
exists and is nonzero. For example

C(0, 3) = 4 k 5 > • (k 2 > -1) 2 • K3 -(2k 2 > -3) • (k 2 > -1) • K2 Ẽ -(2k 2 > -3) • K Ẽ2 -(k 2 > + 1) • Ẽ3 . (77) 
We define

σ = t • (t -1) • d ln C(M, N ) dt - 1 4 , (78) 
and find:

[t • (t -1) • σ ] 2 + 4 • {σ • (t σ -σ) • ((t -1) σ -σ)} -M 2 • (t σ -σ) 2 + (N 2 + M 2 -2) • σ • (t σ -σ) -N 2 • σ 2 - 1 4 • (N 2 -M 2 -1) • (t σ -σ) - 1 4 • (N 2 -M 2 + 1) • σ - 1 16 • (N 2 -M 2 ) 2 + 1 8 • (M 2 + N 2 -1) = 0. ( 79 
)
Remark: All the previous sigma non-linear ODEs (71), ( 73) and (79) are valid for ν = -k and M ≤ N . However recalling the symmetry relations [START_REF] Mccoy | Nonlinear partial difference equations for the two-dimensional Ising model[END_REF] and especially [START_REF] Perk | Quadratic identities for Ising model correlations[END_REF], C(M, N ; ν = -k) = C(N, M ; ν = -1/k), it is straightforward to see that these sigma non-linear ODEs (71), ( 73) and (79) are also valid for the C(M, N ) correlation functions for M ≥ N but when ν = -1/k.

A Kramers-Wannier formal symmetry.

In [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] a representation of the Kramers-Wannier duality on σ has been introduced †:

(t, σ, σ , σ ) -→ 1 t , σ t , σ -t • σ , t 3 • σ . ( 80 
)
It had been noticed that this involutive transformation (80) preserves the sigma form of Painlevé VI equation [START_REF] Pantone | Using GUESSFUNC[END_REF]. This transformation just amounts to saying, for any function F (t), that the change of variable t → 1/t changes

σ = t • (t -1) • d ln(F (t)) dt - 1 4 , (81) 
† See equation ( 16) page 78 of [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF].

into σ/t where:

σ = t • (t -1) • d ln(F (t)) dt - t 4 . (82) 
and vice-versa.

• One first remarks that this involutive transformation (80) actually transforms the (low-temperature) nonlinear differential equation (71) into itself where M and N are permuted.

• One then remarks that this involutive transformation (80) also transforms the (high-temperature, M + N even) non-linear differential equation (73) into itself where M and N are permuted.

• One finally remarks that this involutive transformation (80) also transforms the (high-temperature, M + N odd) non-linear differential equation (79) into itself where M and N are permuted.

These three results must be seen as mathematical symmetries: the question of the physical interpretation of the non-linear differential equations ( 71), ( 73) and (79) when M and N are permuted, remains an open question.

Note that ν is left invariant by the Kramers-Wannier duality ¶, in contrast with k which becomes its reciprocal k → 1/k. Consequently, the selected condition ν = -k is not left invariant by the Kramers-Wannier duality. The high-temperature non-linear differential equations ( 73) and ( 79), valid at ν = -k have no reason to be deduced from the low-temperature non-linear differential equations (71), valid at ν = -k, using a Kramers-Wannier-like duality (80).

Along this line, let us note, for M + N even, that one can change the lowtemperature non-linear differential equation (71) into the high-temperature non-linear differential equation (73) using the involutive transformation:

(σ, σ , σ , M, N ) -→ σ + N 2 -M 2 4 • (t -1), σ + N 2 -M 2 4 , σ , N, M . (83) 

Sigma form of Painlevé VI: Okamoto parameters

The search for nonlinear differential equations with the Painlevé property is an ongoing field of research [START_REF] Cosgrove | Chazy's second-degree Painlevé equations[END_REF] and is far from being complete even for equations of second order. However for equations of the form (y ) 2 = F (y, y , x),

with fixed singularities at x = 0, 1, ∞, a solution was given by Cosgrove and Scoufis in (4.9) of [START_REF] Cosgrove | Painlevé classification as a class of differential equations of the second order and second degree[END_REF] where it is shown that the non-linear differential equation with six parameters The non-linear differential equation ( 85) is invariant in form under the transformation

(x • (x -1) • y ) 2 + 4 • {y • (xy -y) 2 -y 2 • (xy -y) + c 5 • (xy -y) 2 + c 6 • y • (xy -y) + c 7 • (y ) 2 + c 8 • (xy -y) + c 9 • y + c 10 } = 0, (85) 
y = ȳ + A x + B, (86) 
which transforms the six parameters c k into new parameters ck as follows

c5 = c 5 + A, c6 = c 6 -2B -2A, ( 87 
) c7 = c 7 + B, c8 = c 8 -2AB -A 2 -2B • c 5 + A • c 6 , (88) c9 
= c 9 + B 2 + 2AB -B • c 6 + 2A • c 7 , (89) c10 
= c 10 + AB 2 + A 2 B + B 2 • c 5 -AB • c 6 + A 2 • c 7 -B • c 8 + A • c 9 . ( 90 
)
The canonical form of sigma Painlevé VI given by Okamoto [START_REF] Okamoto | Studies on the Painlevé equations.I Sixth Painlevé equation[END_REF] which depends on four parameters n 1 , n 2 , n 3 , n 4 reads

h • {t • (t -1) • h } 2 + {h • (2h -(2t -1) h ) + n 1 n 2 n 3 n 4 } 2 -(h + n 2 1 ) • (h + n 2 2 ) • (h + n 2 3 ) • (h + n 2 4 ) = 0, (91) 
which when expanded and removing the common factor of h reads

{t • (t -1) • h } 2 + 4 h • (t h -h) • ((t -1) h -h) + 4 c 10 + 4 c 9 • h + 4 c 8 • (t • h -h) + 4 c 7 • h 2 = 0, ( 92 
)
which is of the Cosgrove form (85) with

c 7 = -(n 2 1 + n 2 2 + n 2 3 + n 2 4 )/4, c 8 = -n 1 n 2 n 3 n 4 , (93) 
c 9 = -(n 2 1 n 2 2 + n 2 1 n 2 3 + n 2 1 n 2 4 + n 2 2 n 2 3 + n 2 2 n 2 4 + n 2 3 n 2 4 -2n 1 n 2 n 3 n 4 )/4, (94) 
c 10 = -(n 2 1 n 2 2 n 2 3 + n 2 1 n 2 2 n 2 4 + n 2 1 n 2 3 n 2 4 + n 2 2 n 2 3 n 2 4 )/4. (95) 
We see from (87) if we choose

A = -c 5 , B = c 6 /2 + c 5 , (96) 
that c5 = c6 = 0, (97) 
and thus the general non-linear differential equation ( 85) is reduced to the Okamoto form with the Okamoto parameters determined from (93)-(95).

Okamoto parameters for T < T c and ν = -k

For T < T c and ν = -k we obtain the Okamoto parameters for (71) with the parameters which shift from (71) to the canonical Okamoto form determined from (96), to be

A = M 2 4 , B = 1 8 • N 2 -M 2 - 1 + (-1) M +N 2 . ( 98 
)
Thus we find from (88)-(90) that c7 = -

1 8 • N 2 + M 2 + 1 + (-1) M +N 2 , c8 = M 2 16 • N 2 - 1 + (-1) M +N 2 , c9 = - 1 64 • N 2 -M 2 - 1 + (-1) M +N 2 2 - N 2 M 2 8 , ( 99 
) c10 = - M 2 128 • N 2 -M 2 - 1 + (-1) M +N 2 • N 2 - 1 + (-1) M +N 2 + 2 M 2 N 2 ,
and thus, from (93)-(95), we obtain the Okamoto parameters (unique up to permutations and the change of an even number of signs)

n 1 = 1 2 • N - 1 + (-1) M +N 2 , n 2 = 1 2 • N + 1 + (-1) M +N 2 , n 3 = M 2 , n 4 = - M 2 , (100) 
with

h = t • (t -1) • d ln C(M, N ) dt - M 2 + 1 4 • t - 1 8 • N 2 -M 2 - 1 + (-1) M +N 2 , ( 101 
)
where t = k 2 .

Okamoto parameters for T > T

c , ν = -k > and M + N even
For T > T c , ν = -k > and M + N even we find for (73), from (96), that:

A = M 2 4 , B = 1 8 • (N 2 -M 2 -1). (102) 
. Thus with

t = k 2 > h = t • (t -1) • d ln(C(M, N ) dt - M 2 4 • t - 1 8 • N 2 -M 2 + 1 , (103) 
satisfies (91) with the Okamoto parameters: For T > T c we find for (79), from (96), that

n 1 = M -1 2 , n 2 = M + 1 2 , n 3 = N 2 , n 4 = - N 2 . ( 104 
A = M 2 4 , B = 1 8 • (N 2 -M 2 -2). (105) 
. Thus with

t = k 2 > h = t • (t -1) • d dt ln C(M, N ) - M 2 4 • t - 1 8 • (N 2 -M 2 ), (106) 
satisfies the Okamoto equation (91) with:

n 1 = M -1 2 , n 2 = M + 1 2 , n 3 = N + 1 2 , n 4 = - N -1 2 . ( 107 
)

Boundary conditions

In order to complete the specification ν = -k of C(M, N ) we must specify the boundary conditions for the nonlinear equations (71), ( 73) and (79). This is most systematically done by first determining the allowed boundary conditions on the canonical equation of Okamoto (91) which are analytic at t = 0. A detailed and explicit analysis of these boundary conditions is performed in Appendix D.

Relation to the determinants of Forrester-Witte

These results should be compared with the results of Forrester-Witte [START_REF] Forrester | Application of the τ -function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits[END_REF] as given in [START_REF] Gamayun | How Instanton combinatorics solves Painlevé VI, V and III"s[END_REF] as

D (p,p ,η,ξ) N (t) = det A (p,p ,η,ξ) j-k (t) N -1 j,k=0 , (108) 
where

A (p,p ,η,ξ) m (t) = (109) Γ(1 + p ) t (η-m)/2 (1 -t) p Γ(1 + η -m) Γ(1 -η + m + p ) • 2 F 1 [-p, 1 + p ], [1 + η -m], t t -1 + ξ • Γ(1 + p)t (m-η)/2 (1 -t) p Γ(1 -η + m) Γ(1 + η -m + p) • 2 F 1 [-p , 1 + p], [1 -η + m], t t -1 ,
which, using the identity (6) on page 109 of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] 2

F 1 ([a, b], [c], t) = (1 -t) -a • 2 F 1 [a, c -b], [c], t t -1 , (110) 
is rewritten as:

A (p,p ,η,ξ) m (t) = (111) Γ(1 + p ) t (η-m)/2 Γ(1 + η -m) Γ(1 -η + m + p ) • 2 F 1 ([-p, -p + η -m], [1 + η -m], t) + ξ • Γ(1 + p) t (m-η)/2 Γ(1 -η + m) Γ(1 + η -m + p) • 2 F 1 ([-p , -p -η + m], [1 -η + m], t).
From (2,27) of [START_REF] Gamayun | How Instanton combinatorics solves Painlevé VI, V and III"s[END_REF] 

h = t • (t -1) • d dt ln t (θ 2 0 +θ 2 t -θ 2 1 -θ 2 ∞ )/2 • (1 -t) (θ 2 t +θ 2 1 -θ 2 0 -θ 2 ∞ )/2 • τ (t) = t • (t -1) • d dt ln t (n1n2+n3n4)/2 • (1 -t) (n1n2-n3n4)/2 τ (t) , (112) with τ 
(p,p ,η,ξ) N (t) = (1 -t) -N • (N +p+p )/2 • D (p,p ,η,ξ) N = (1 -t) (n1+n2)(n3-n4)/2 • D (ν,ν ,η,ξ) N , (113) 
satisfies the Okamoto equation (91) with

n 1 = θ t + θ ∞ , n 2 = θ t -θ ∞ , n 3 = θ 0 + θ 1 , n 4 = θ 0 -θ 1 , (114) 
where

(θ 0 , θ t , θ 1 , θ ∞ ) = 1 2 • (η, N, -N -p -p , p -p + η), (115) 
are the eigenvalues of the linear system for isomonodromic deformation

dY dz = A 0 z + A t z -t + A 1 z -1 Y, (116) 
where A i are traceless 2 × 2 matrices and:

A ∞ = -A 0 -A t -A 1 . ( 117 
)
Using ( 115) in (114) we have:

n 1 = (N + p -p + η)/2, n 2 = (N -p + p -η)/2, n 3 = (η -N -p -p )/2, n 4 = (η + N + p + p )/2.
(118) Thus we see, for M + N even, that the parameters n k of (100) agree with the parameters n k (118) of [START_REF] Gamayun | How Instanton combinatorics solves Painlevé VI, V and III"s[END_REF] if

η = 0, p = M -N + 1 2 , p = M -N -1 2 ( 119 
)
and for M + N odd the parameters n k of (104) agree with the parameters n k (118) of [START_REF] Gamayun | How Instanton combinatorics solves Painlevé VI, V and III"s[END_REF] if:

η = 0, p = p = M -N 2 . ( 120 
)
For either choice we see that (113) reduces to:

τ N = (1 -t) -M N/2 • D N . ( 121 
)
5.1. The case M = 0, N = 1

When M = 0 and N = 1 we see from ( 112) with ξ = 0 that:

D 1 = A 0 (t) = 2 F 1 [ 1 2 , 1 2 ], [1], t . (122) 
Thus from ( 31) and ( 121)

C(0, 1) = (1 -t) 1/2 • D 1 = (1 -t) 1/2 • τ 1 , (123) 
and ( 112) reduces to

h = t • (t -1) • d dt ln t 1/8 • (1 -t) 1/8 • (1 -t) -1/2 • C(0, 1) = t • (t -1) • d dt ln C(0, 1) - t 4 - 1 8 , (124) 
which agrees with (101) as required.

The general case

For C(M, N ) for ν = -k the special case (123) generalizes to:

C(M, N ) = (1 -t) [(N -M ) 2 +1-(1+(-1) M +N )/2]/4 • D N . ( 125 
)
To verify (125) we use (121) to write:

C(M, N ) = (1 -t) [N 2 +M 2 +1-(1+(-1) M +N )/2]/4 • τ N = (1 -t) n1n2-n3n4+1/4 • τ N .
(126) Thus, substituting into (112) we find

h = t • (t -1) • d dt ln C(M, N ) t (n1n2+n3n4)/2 (1 -t) -(n1n2-n3n4)/2-1/4 = t • (t -1) • d dt ln C(M, N ) + (n 3 n 4 - 1 4 ) • t - 1 2 • (n 1 n 2 + n 3 n 4 ) (127) = t • (t -1) • d dt ln C(M, N ) - M 2 + 1 4 • t - 1 8 • N 2 -M 2 - 1 + (-1) M +N 2 ,
which agrees with (101) as required. Finally it may be verified that (125) satisfies the boundary condition (D.40).

Specialization of D N

It remains to specialize the matrix elements A m of (112) to the special cases ( 119) and (120). For m ≤ 0 we may directly set η = 0 in (112) and use the identity

Γ(1 + p ) • Γ(-p ) Γ(1 + m + p ) • Γ(-p -m) = (-1) m , (128) 
to find:

A -]m] = Γ(|m| -p ) • (-1) |m| • t |m|/2 |m|! • Γ(-p ) • 2 F 1 ([-p, -p + |m|], [1 + |m|], t). ( 129 
)
For m ≥ 1 the factor Γ(1 + η -m) in the denominator diverges for η → 0 and consequently the limit η → 0 must be taken carefully. Then, using the identity (128), we find for m ≥ 1 as η → 0:

A m = Γ(-p + m) • (-1) m • t m/2 Γ(-p) • m! • 2 F 1 ([m -p, -p ], [m + 1], t). ( 130 
)
For M + N even we thus use ( 119) in ( 129) for m ≤ 0 to find

A -|m| = Γ(|m| + N -M +1 2 ) • (-1) m • t |m|/2 Γ( N -M +1 2 ) • |m|! × 2 F 1 [ N -M -1 2 , N -M + 1 2 + |m|], [1 + |m|], t , (131) 
and for m ≥ 1 we use ( 119) in ( 130) to find:

A m = Γ(m + N -M -1 2 ) • (-1) m • t m/2 Γ( N -M -1 2 ) • m! × 2 F 1 [ N -M + 1 2 , N -M -1 2 + m], [1 + m], t . (132) 
For M + N odd we use (120) in ( 129) and ( 130) to obtain:

A -m = A m = Γ(m + N -M 2 ) • (-1) m • t m/2 Γ( N -M 2 ) • |m|! × 2 F 1 ([ N -M 2 , N -M 2 + m], [1 + m], t). (133) 
Similar Toeplitz elements can be found for the correlation functions obtained for T > T c -and ν = -k > . The expressions of A m for this case are given in Appendix C. We note that from (4.35) of [START_REF] Gamayun | How Instanton combinatorics solves Painlevé VI, V and III"s[END_REF] that for η = 0 that the matrix elements are obtained from: give a direct proof of (125) for C(0, 2), when ν = -k, by use of contiguous relation for hypergeometric functions. This provides a proof of the Okamoto equation ( 91) with (100) and (101) for C(0, 2) for ν = -k for T < T c . The relation for C(0, 1) has already been shown in section 5.1.

A m = 1 2π 2π 0 dθ e imθ • (1 -ke iθ ) p (1 -ke -iθ ) p . (134 
To prove (125) for C(0, 2) we need to prove the following identity between the 2 × 2 determinants for C(0, 2) and D 2 obtained by using (42) and (44) for C(0, 2) and ( 131) and (132) for

D 2 √ 1 -t • 2 F 1 ([ 1 2 , 1 2 ], [1], t) -t 1/2 2 • 2 F 1 ([ 1 2 , 1 2 ], [2], t) t 1/2 2 • 2 F 1 ([ 1 2 , 1 2 ], [2], t) √ 1 -t • 2 F 1 ( 1 2 , 1 2 ; 1; t) = (1 -t) • 2 F 1 ([ 1 2 . 3 2 ], [1], t) -t 1/2 2 • 2 F 1 ([ 3 2 , 3 2 ], [2], t) -3 t 1/2 2 • 2 F 1 ([ 1 2 , 5 2 ], [2], t) 2 F 1 ([ 1 2 , 3 2 ], [1], t) , (135) 
which we rewrite

2 F 1 ([ 1 2 , 1 2 ], [1], t) t 2 • 2 F 1 ([ 1 2 , 1 2 ], [2], t) -1 2 • 2 F 1 ([ 1 2 , 1 2 ], [2], t) (1 -t) • 2 F 1 ([ 1 2 , 1 2 ], [1], t) = (1 -t) • 2 F 1 ([ 1 2 . 3 2 ], [1], t) t (1-t) 2 • 2 F 1 ([ 3 2 , 3 2 ], [2], t) 3 2 • 2 F 1 ([ 1 2 , 5 2 ], [2], t) 2 F 1 ([ 1 2 , 3 2 ], [1], t) . ( 136 
)
We then use (41) on page 103 of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] (

1 -t) • 2 F 1 [ 1 2 , 3 2 ], [1], t = 
(1 -t) • 2 F 1 [ 1 2 , 1 2 ], [1], t + t 2 • 2 F 1 [ 1 2 , 1 2 ], [2], t , (137) 
to rewrite the 11 elements of the righthandside of (136) and we use (33) on page 103 of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] with

a = 1/2, b = 3/2, c = 2 (1 -t) • 2 F 1 [ 3 2 , 3 2 ], [2], t = 2 F 1 [ 1 2 , 1 2 ], [2], t , (138) 
to rewrite the 12 element on the righthandside. Then we subtract column 2 from column 1 to find that the righthand side of (136) becomes:

(1 -t) • 2 F 1 ([ 1 2 , 1 2 ], [1], t) t 2 • 2 F 1 ([ 1 2 , 1 2 ], [2], t) 3 2 • 2 F 1 ([ 1 2 , 5 2 ], [2], t) -2 F 1 ([ 1 2 , 3 2 ], [1], t) 2 F 1 ([ 1 2 , 3 2 ], [1], t) (139) 
= 2 F 1 ([ 1 2 , 1 2 ], [1], t) t 2 • 2 F 1 ([ 1 2 , 1 2 ], [2], t) 3 2 • 2 F 1 ([ 1 2 , 5 2 ], [2], t) -2 F 1 ([ 1 2 , 3 2 ], [1], t) (1 -t) • 2 F 1 ([ 1 2 , 3 2 ], [ 1], t) 
.

We then rewrite the 22 element on the right hand side (140) using (137) and subtract row 1 from row 2 to obtain:

2 F 1 ([ 1 2 , 1 2 ], [1], t) t 2 • 2 F 1 ([ 1 2 , 1 2 ], [2], t) 3 2 • 2 F 1 ([ 1 2 , 5 2 ], [2], t) -2 F 1 ( 1 2 , 3 2 ; 1; t) -2 F 1 ([ 1 2 , 1 2 ], [1], t) (1 -t) • 2 F 1 ([ 1 2 , 1 2 ], [1], t)
.

Then we note that if 3 2

• 2 F 1 [ 1 2 , 5 2 ], [2], t -2 F 1 [ 1 2 , 3 2 ], [1], t -2 F 1 [ 1 2 , 1 2 ], [1], t = - 1 2 • 2 F 1 [ 1 2 , 1 2 ], [2), , t , (140) 
then (140) agrees with the left hand side of (136) as required. To prove (140) we use (43) on page 104 of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] (with a missing factor of z restored in the last term) with

a = 1/2, b = 5/2, c = 1 1 -t 2 • 2 F 1 [ 1 2 , 5 2 ], [1], t -2 F 1 [ 1 2 , 3 2 ], [1], t + t 2 • 2 F 1 [ 1 2 , 5 2 
], [START_REF] Kaufman | Crystal stastistics III. Short range order on a binary Ising lattice[END_REF], t = 0, ( 141) and (41) on page 103 with a = 1/2, b = 1/2, c = 1

1 -t 2 • 2 F 1 [ 1 2 , 1 2 ], [1], t - 1 -t 2 • 2 F 1 [ 1 2 , 3 2 ], [1], t + t 4 • 2 F 1 [ 1 2 , 1 2 ], [2], t = 0, (142) to eliminate 2 F 1 ([ 1 2 , 5 2 ], [2], t) and 2 F 1 ([ 1 2 , 1 2 ], [2], t).
The desired result is then obtained by use of (29) on page (103) of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] with

a = 1/2, b = 3/2, c = 1: 1 2 • 2 F 1 [ 1 2 , 1 2 ], [1], t + (2 -t) • 2 F 1 [ 1 2 , 3 2 ], [1], t - 3 2 • (1 -t) • 2 F 1 [ 1 2 , 5 2 
], [START_REF] Onsager | Crystal statistics I. A two dimensional model with an order-disorder transition[END_REF], t = 0. (143)

Factorizations

All symmetric N × N Toeplitz determinants can be factored into the product of two determinants by use of the procedure used by Wilf [START_REF] Wilf | Ascending subsequences of permutations and the shape of tableaux[END_REF] for determinants with N even of subtracting column j from column N + 1 -j for 1 ≤ j ≤ N/2 and then adding row N + 1 -j to row j for 1 ≤ j ≤ N/2. Thus, for example, we find:

D 2 = (A 0 -A 1 ) • (A 0 + A 1 ), (144) 
D 3 = (A 0 -A 2 ) • A 0 + A 2 2A 1 A 1 A 0 , (145) 
D 4 = A 0 + A 3 A 1 + A 2 A 1 + A 2 A 0 + A 1 • A 0 -A 1 A 1 -A 2 A 1 -A 2 A 0 -A 3 , (146) 
D 5 = A 0 + A 4 A 1 + A 3 2A 2 A 1 + A 3 A 0 + A 2 2A 1 A 2 A 1 A 0 • A 0 -A 2 A 1 -A 3 A 1 -A 3 A 0 -A 4 . (147) 
We note that, while the factors in D 2 , D 3 and D 4 can be put into a Toeplitz form, D 5 demonstrates that this does not hold in general.

For the special case (133) when T < T c with M + N odd, we find when M = 0, that D 3 further factors into three factors so that

C(0, 3) = -4 • (1 -t) 1/2 • t -2 • Ẽ • ( Ẽ -K) • ( Ẽ -(1 -t) • K), (148) 
and D N with N odd, N ≥ 5, factors into four factors, so that

C(0, N ) = constant • (1 -t) 1/2 • t (1-N 2 )/4 • f 1 f 2 f 3 f 4 , (149) 
For example, for C(0, 5), the f i 's read:

f 1 = (2t -1) • Ẽ + (1 -t) • K, f 2 = (1 + t) • Ẽ -(1 -t) • K, (150) 
f 3 = (t -2) • Ẽ + 2 • (1 -t) • K, f 4 = 3 Ẽ2 + 2 • (t -2) • Ẽ K -t • K2 . ( 151 
)
We have studied these four factors of C(0, N ) with N odd by the process previously described and found that all four factors satisfy the equation (91) with the identical Okamoto parameters

n 1 = N -1 4 , n 2 = N + 1 4 , n 3 = - 1 2 , n 4 = 0, ( 152 
)
where the relation of the factors f j to h is given by:

h 1 = t • (t -1) • d ln f 1 dt - N 2 + 3 16 • t + N 2 + 3 32 , (153) 
h 2 = t • (t -1) • d ln f 2 dt - N 2 -1 16 • t + N 2 + 3 32 , (154) 
h 3 = t • (t -1) • d ln f 3 dt - N 2 -1 16 • t + N 2 -5 32 , (155) 
h 4 = t • (t -1) • d ln f 4 dt - N 2 -5 16 • t + N 2 -5 32 . ( 156 
)
By comparing ( 153)-(156) for C(0, 5) with the four cases of boundary conditions in Appendix D, we see that the factors f 1 and f 2 are in case 1 with c

(1) 0 and c

(1) 1

given by (D.4) and (D.8) and from (D.20) the coefficient of t (N +3)/2 is a constant which must be specified separately for f 1 and f 2 . Similarly the factors f 3 and f 4 are in case 4 with c given by (D.7) and (D.11) and from (D.23) the coefficient of t N +1/2 is a constant which must be specified separately for f 3 and f 4 .

Discussion

In this paper we have discovered for the special case ν = -k and for arbitrary positive integers M ≤ N , that the correlation C(M, N ) satisfies an Okamoto sigma form of the Painlevé VI equation (91) with parameters (100) for T < T c and (104), and (107) for T > T c . These non-linear differential equations have been obtained using extensively Pantone's program and checked with a large set of exact expressions of the C(M, N ) in terms of Ẽ and K. Moreover the nonlinear differential equation for T < T c is the same equation satisfied by a particular case of the N × N Toeplitz determinants of Forrester-Witte [START_REF] Forrester | Application of the τ -function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits[END_REF] and Gamayun, Igorov and Lisovyy [START_REF] Gamayun | How Instanton combinatorics solves Painlevé VI, V and III"s[END_REF]. This is perhaps surprising because no Toeplitz form for C(M, N ) is in the literature except for M = 0, M = N and the results of Au-Yang and Perk [START_REF] Auyang | Critical correlations in a Z-invariant inhomogeneous Ising model[END_REF] for C(N -1, N ). We have also investigated in Appendix D the boundary conditions which must be applied to the nonlinear differential equations to obtain solutions which are analytic at k = 0.

In the course of this investigation we have found several open questions:

1) We have seen that all the correlations C(M, N ) considered are members of a one parameter family of Painlevé VI functions but the principle for determining the specific value of the boundary condition is not known.

2) In section 6 we exhibited, for the row correlation functions, a remarkable phenomenon of a Painlevé VI sigma function which satisfies an equation with one set of Okamoto parameters and a specific boundary condition constant is equal to a sum of four ‡ Painlevé VI sigma functions which all have the same Okamoto ‡ A similar phenomenon for Painlevé V with a sigma function being the sum of two (see equation (6.23) in [START_REF] Tracy | Introduction to random matrices[END_REF]) sigma functions was found by Tracy and Widom [START_REF] Tracy | Introduction to random matrices[END_REF].

parameters (which are different from the previous set) and have four specific boundary condition constants. One would like to find the conditions yielding such a remarkable phenomenon.

3) We also saw in section 6 for T < T c , M + N odd and M ≤ N , that C(M, N ) with M = 0, always factors into two terms. It is not known if these terms have the Painlevé property of having no movable critical points and, if they do have this property, are they expressible as known Painlevé functions ? These factorizable cases need much further study.

4) The case M ≥ N with ν = -k remains to be understood. By [START_REF] Perk | Quadratic identities for Ising model correlations[END_REF] this is equivalent to M ≤ N with ν = -1/k and, when this constraint holds, we see from [START_REF] Cosgrove | Chazy's second-degree Painlevé equations[END_REF] that Π(-ν k, k) becomes singular. This has the effect that some (but not all) correlations for M ≥ N are no longer homogeneous polynomials in K and Ẽ. For example for

T < T c C(2, 0) = 1 -t + (1 -t) • K2 -2 (1 -t) • Ẽ K + Ẽ2 , (157) 
C(3, 0) = √ 1 -t • (1 -t) 2 + 2 • (t -1) 2 • K2 + 4 • (t -1) • Ẽ K + 2 (1 + t) • Ẽ2 . (158) 
Consequently the corresponding non-linear ODEs are much more involved than Okamoto sigma form of Painlevé VI equations. It is not even clear that all these non-linear ODEs can be encapsulated in closed formulae depending on M and N , like this was the case with the two-parameters families of equations ( 71), ( 73) and (79).

More generally, the discovery of these four two-parameters families of Okamoto sigma form of Painlevé VI equations is a strong incentive to find non-linear ODEs with the Painlevé property, for two-point correlation functions C(M, N ) that are not restricted to selected conditions like ν = -k or ν = -1/k for the anisotropic model. we find:

2 F 1 [n + 1 2 , - 1 2 ], [n + 1], α 4 = 1 2 • (1 + α 2 ) 2n-1 • 2 F 1 [n - 1 2 , n + 1 2 ], [2n + 1], k 2 > + 1 -α 4 2 • (1 + α 2 ) 2n+1 • 2 F 1 [n + 1 2 , n + 1 2 ], [2n + 1], k 2 > . (A.3)
Using (A.3) in (51) we obtain:

a 2n+1 α = Γ(n + 1 2 ) 2 √ πn! • α 1 + α 2 2n-1 • 2 F 1 [n - 1 2 , n + 1 2 ], [2n + 1], k 2 > + α 1 + α 2 2n+1 (α -2 -α 2 ) • 2 F 1 [n + 1 2 , n + 1 2 ], [2n + 1], k 2 > . (A.4)
Thus, by using (A.2) and the inverse

α ±2 = 2 -k 2 > ∓ 2 1 -k 2 > k 2 > , (A.5)
we obtain the final result:

a 2n+1 = Γ(n + 1 2 ) √ πn! • k > 2 2(n-1) • 4 • (1 -1 -k 2 > ) (A.6) × 2 F 1 [n - 1 2 , n + 1 2 ], [2n + 1], k 2 > + 1 -k 2 > • 2 F 1 [n + 1 2 , n + 1 2 ], [2n + 1], k 2 > .
For α a -(2n+1) (see ( 52)) we proceed in a similar fashion, and use (33) on page 103 of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] to write: and thus α a -(2n+1) = (A.9)

2 F 1 [n + 1 2 , - 1 2 ] 
α 2 • Γ(n + 1 2 ) 2 √ π(n + 1)! • α 1 + α 2 2n+1 • n + 3 2 • 2 F 1 [n + 1 2 , n + 3 2 ], [2n + 1], k 2 > - α 1 + α 2 2n+3 • n + 1 2 • (α -2 -α 2 ) • 2 F 1 [n + 3 2 , n + 3 2 ], [2n + 3], k 2 > ,
which by use of (A.2) and (A.5) becomes: 

α a -(2n+1) = Γ(n + 1 2 ) 2 √ π • k > 2 2n+1 • 2 -k 2 -2 1 -k 2 > k 2 > × n + 3 2 • 2 F 1 [n + 1 2 , n + 3 2 ], [2n + 3], k 2 > -n + 1 2 • 1 -k 2 • 2 F 1 [n + 3 2 , n + 3 
C ± = 2 -t ± 3 • (1 -t) 1/2 • Ẽ2 ± (1 -t) 3/2 • K2 -2 • (1 -t) ± 2 • (2 -t) • (1 -t) 1/2 • Ẽ K. (B.7)
For T > T c with M + N odd examples of C(M, N ) of (76): We have shown in section 5 that the correlation functions for T < T c and ν = -k are given in terms of Toeplitz determinants (see eqs. (125), (131-133)) using the results of Forrester-Witte [START_REF] Forrester | Application of the τ -function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits[END_REF]. Using the same method, one can easily generalise these equations to T > T c and ν = -k > .

C(1, 2) = 1 t • (t -• K2 -2 • (t -2) • K Ẽ -3 • Ẽ2 , (B.8) C(1, 4) = 16 9 t 4 • 5 • (t -1) 3 • K4 -12 • (t -2) • (t -1) 2 • Ẽ K3 -4 • (t -2) 3 • Ẽ3 K + 6 • (t -1) • (t 2 -7t + 7) • Ẽ2 K2 -9 • (1 -t + t 2 ) • Ẽ4 , (B.
One verifies that

• For T > T c and M + N even

C(M, N ) = (-1) (N -M )/2 • (1 -t) (N -M ) 2 /4 • D N , (C.1)
the Toeplitz matrix elements are given for m ≥ 1 by:

A m = Γ( N -M -1 2 + m) Γ( N -M +1 2 ) (m -1)! • (-1) m-1 • t (m-1)/2 × 2 F 1 [ N -M -1 2 , N -M -1 2 + m], [m], t (C.2)
and for m < 1 by The Toeplitz matrix elements for m ≥ 1 are

A m = Γ( N -M +1 2 -m) Γ( N -M -1 2 ) (1 -m)! • (-1) m-1 • t (1-m)/2 × 2 F 1 [ N -M + 1 2 , N -M + 1 2 -m],
A m = Γ( N -M 2 -1 + m) Γ( N -M
2 ) (m -1)!

• (-1) m-1 • t (m-1)/2

× 2 F 1 ([ N -M 2 , N -M 2 -1 + m], [m], t), (C.5)
and for m < 1

A m = Γ( N -M 2 + 1 -m) Γ( N -M 2 ) (1 -m)! • (-1) m-1 • t (1-m)/2 × 2 F 1 [ N -M 2 , N -M 2 + 1 -m], [2 -m], t . (C.6)
One verifies that these expressions for the correlation functions are totally compatible with the ones given in Appendix B obtained by the quadratic difference equations (see section 2.4).

3. 1 .

 1 Nonlinear differential equations for C(M, N ) for ν = -k and M ≤ N : the low-temperature case For T < T c and ν = -k with t = k 2 and

  has the Painlevé property † and is birationally equivalent to Painlevé VI. Both equations (71) and (79) are of the form (85) and hence are sigma forms of Painlevé VI. ¶ The Kramers-Wannier duality changes s h → s * v = 1/sv, sv → s * h = 1/s h and thus s h /sv → s h /sv. † Namely has fixed critical points.

) 4 . 3 .

 43 Okamoto parameters for T > T c , ν = -k > , M < N and M + N odd

) 5 . 4 .

 54 Direct proof for C(0, 2) when ν = -k The relation of C(M, N ) for ν = -k to the determinant D N (125) was obtained from the nonlinear equations for C(M, N ) for ν = -k and D N . In this section we

2 ], [2n + 3 ], k 2 >. 5 / 2 •t 4 • ( 5 - 16 9 t 4 •

 2325245164 (1 -2t) • Ẽ3 -(1 -t) • (3 -t) • Ẽ2 K + (1 -t) • (3 -t) • Ẽ K2 -(1 -t) 2 • K3 , 5t -t 2 ) • Ẽ4 -8 • (2 -t) • (1 -t) • Ẽ3 K + (1 -t) 3 • K4 + 2 • (1 -t) • (3 -t) • (3 -2t) • Ẽ2 K2 -4 • (2 -t) • (1 -t) 2 • Ẽ K3 = C + • C -,where: (B.6)

5 / 2 •

 52 (3t -1) • (t -1) 2 • K3 -(t -1) • (6t 2 -17t + 3) • Ẽ K2 -(20t 2 -31t + 3) • Ẽ2 K + (t 2 -16t + 1) • Ẽ3 . (B.10)Appendix C. Correlation functions as Toeplitz determinants for T > T c

  [2 -m], t . (C.3)• For T > T c and M + N odd, we know that C(M, N ) = 0. After removing the vanishing factor (1 + ν/k > ) 1/2 , one obtains:C(M, N ) = (-1) (N -M +1)/2 • (M + N ) • (1 -t) ((N -M ) 2 -1)/4 • D N (C.4)
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Appendix A. Calculations of the a n 's.

For a 2n+1 of (51) we first use (36) on page 103 of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] to write

], [n + 1], α 4

], [n + 1], α 4 , (A. [START_REF] Onsager | Crystal statistics I. A two dimensional model with an order-disorder transition[END_REF] and then by use of (5) on page 111 of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] and

To obtain the final desired result we first carry out the multiplication to write

with

and

and then note the identities which may be discovered by use of series expansions on Maple and then proven by the use of contiguous identities

to find the desired result

which is to be compared with the result for a 2n+1 of (A.6).

Appendix B. Examples of C(M, N

) and C(M, N ) for ν = -k

Appendix D. Boundary conditions

The study of solutions of PVI analytic at t = 0 was first done be Kaneko [START_REF] Kaneko | Painlevé VI transcendents which are meromorphic at a fixed singularity[END_REF] for generic parameters in the Hamiltonian formalism where four solutions were found. Here we concentrate on the non-generic cases which allow one parameter families of solutions. This is most systematically done by determining the allowed boundary conditions on the canonical equation of Okamoto (91) which are analytic at t = 0. Thus we set in (91)

From the constant term we find

2) and from the t term:

We solve (D.3) for c 1 in terms of c 0 and n k by setting the term in brackets to zero and using this in (D.2) we find that the resulting fourth order equation in c 0 factors into four factors linear in c 0 and thus we have the four solutions for c 0 of

and thus for c 1 the companion values are:

Case 4 is invariant under all permutations of the n k . Case 1 is obtained from case 4 by changing the signs of n 3 and n 4 . Case 2 is obtained from case 4 by changing the signs of n 1 and n 4 . Case 3 is obtained from case 4 by changing the signs of n 2 and n 4 . These sign changes are symmetries of the equation but not of the solutions. The values of c 0 and c 1 for each of the four solutions may now be used to compute the term of order t 2 in the series expansion of (91) and we find that (91) holds if c 2 satisfies a linear equation. Thus we obtain:

, (D.12)

, (D.

(n

, (D.

(

. (D.15)

Continuing the recursive procedure we find from the t 3 term in (91)

This recursive solution may be extended to arbitrary order and for the general case c (i)

n+1 will have factors in the denominator of c

(1)

n+1 :

We thus conclude that as long as there are no vanishing factors in the denominator there are four distinct solutions of the equation (91) which are analytic at t = 0 and have no arbitrary constants. These form a four dimensional representation of the symmetry group of the equation. The statement that the solution is analytic at t = 0 is the boundary condition. This corresponds to the case (18) on page 7 of [START_REF] Guzzetti | Matching procedure for the sixth Painlevé equation[END_REF] where the subgroup of the monodromy group generated by M 0 M t and M 1 is reducible.

Appendix D.1. Arbitrary constants

This recursive solution will break down at an order n where c

n has a zero in the denominator. This will give a solution only if there is a corresponding zero in the numerator which indicates that the corresponding recursive equation is automatically satisfied independently of the value of c (i) n which now becomes an arbitrary parameter that must be specified as an additional boundary condition.

There are two ways in which these vanishing factors in the numerator can happen. Either c (i) 2 = 0 or N (i) n = 0. In this paper we will apply this analysis to the correlations C(M, N ) with ν = -k. The behaviors of solutions of cases 1 and 4 are quite different from cases 2 and 3 and we treat them separately.

Appendix D.1.1. Cases 1 and 4 for T < T c .

For T < T c the Okamoto parameters for C(M, N ) are given by (100) so that

and thus from (D.4) and (D.7) 

k and c

k , will always vanish unless there is also a vanishing factor in the denominator. When for some k the denominator in c

(1,4) k does vanish then c

(1,4) k for that k is not determined from the recursive procedure and is an arbitrary constant. For k = 2 and T < T c we explicitly see from (D.12) and (D.15), and for k = 3 from (D. [START_REF] Erdélyi | Higher Transcendental Functions[END_REF]) and (D. [START_REF] Mccoy | Nonlinear partial difference equations for the two-spin correlation function of the two-dimensional Ising model[END_REF], that the factor in the denominator Thus for t → 0

Thus from (101) we find for t → 0

which agrees with the series expansions of C(M, N ) for T < T c .

Appendix D.1.2. Cases 2 and 3 for T > T c with M + N even.

For T > T c with M + N even we see with the Okamoto parameters for C(M, N ) of (104) that for cases 2 and 3 we have from (D.5) and (D.6)

and from (D.9) and (D.10)

Furthermore the denominator in c

n vanishes when n = N + 2 and the denominator of c For T > T c and M + N odd we see with the Okamoto parameters of (107) that for cases 2 and 3 we have from (D.5) and (D.6)

and from (D.9) and (D.10)

n also vanishes when n = N + 2 and the denominator of c For T < T c the correlations are in case 1=4 where the arbitrary constant is at order t N +1 . Several examples are

where λ is chosen so that λ = 1 agrees with C(M, N ).

In general one has:

We note for λ = 0 that C(M, N ; 0) = (1 -t) 

where both λ and λ are chosen such that, when λ = 1 and λ = 1, there is agreement with C(M, N ). In general:

We note that λ and λ are not the same. When λ = 0 the term O(t N +3 ) does not in general vanish. This is in contrast with the case λ = 0 where, for some constant ρ

is an exact solution to the nonlinear differential equation. The constant K

M,N is a normalization constant which cannot be determined from the non linear equation.

In the specific examples (D.35)-(D.39), (D.42)-(D.45) the numerical coefficient of λ 2 has been chosen so that λ = 1 is the desired correlation where C(M, N ) is given as a finite homogenerous polynomial in K and Ẽ, and in the case of C(0, N ) as an N × N Toeplitz determinant. However, in general no explicit formula for K M,N or K Similarly, one can see that C(M, N ; λ)

M.N • t N +2 + O(t N +3 ) , (D.47) and, for some constant ρ, that

is an exact solution to the nonlinear differential equation (79).