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Electroencephalogram (EEG) signals are useful in understanding the human brain diseases like epilepsy which is characterized by an enduring predisposition to 
generate epileptic seizures and by neurologic, cognitive, psy-chological and social consequences of these conditions. That is why this paper proposed a novel full 
processing chain of EEG signals analysis for epileptic seizures detection that applied a new alternative approach for EEG rhythms decomposition. EEG signals are 
decomposed into their different background rhythms using discrete Jacobi polynomial transforms (JPTs) and a 28-dimension feature vector is extracted in 
frequency and time do-mains. Due to the high dimension and redundancy of these features, the linear discriminant analysis (LDA) is applied for dimensionality 
reduction and informative and discriminative low dimension feature vectors are computed and feed as inputs of the support vector machines (SVM) classifiers. 
The validation of this processing chain is done experimentally using an online available database which consists of five hundred EEG signals. Analysis 
demonstrated that the EEG rhythms decomposition using JPTs can be implemented as a single-step process and provides more abundant information for class 
discrimination. In addition, twelve experiments closely related to clinical applications are examined and promising results are achieved with maximum accu-
racies between 96.25–100 %. Overall, it is found that the proposed processing chain will be useful in providing an accurate and objective scheme for automatic 
EEG rhythms decomposition and epileptic seizures detection that can be integrated into implantable devices intended to predict the onset of seizures and trigger a 
focal treatment to block the seizures progression.   

1. Introduction

Epilepsy is increasingly recognized as a major public health issue
since the detection of seizures in epilepsy is a topic of much concern, and 
his major problem is the diagnosis accuracy [1]. Despite the advent of 
modern neuroimaging techniques like positron emission tomography 
(PET), magnetic resonance imaging (MRI) and single photon emission 
computed tomography (SPECT), the use of electroencephalogram (EEG) 
signals for epilepsy diagnosis is still convenient. The human EEG is 
basically non-linear and non-stationary, and may contain useful infor-
mation about the brain state [2]. However, it is very difficult to get these 

useful information directly from these signals by visual inspection since 
their analysis requires an expert, and is a tedious and time consuming 
task that can be prone to errors due to fatigue. Hence, efficient EEG 
signal representation and automatic analysis for time processing 
reduction, discriminative feature extraction and suitable diagnosis in 
epilepsy becomes very important. 

During these last few decades, many new therapies are being 
investigated in epilepsy diagnosis and implantable integrated devices 
that can identify epileptic seizure onset and deliver a direct treatment to 
affected areas of the brain aims to be the most promising [4–10]. Among 
many others, Muhammad Tariqus et al. proposed a novel implantable 
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low-power integrated circuit for real-time epileptic seizures detection 
that was validated in Matlab and gained satisfactory performance with 
an average seizures detection delay of 13.5 s, well before the onset of 
clinical manifestations [4]. Wei-Ming et al. also developed an 8-channel 
closed-loop neural-prosthetic SoC for real-time intracranial EEG (iEEG) 
acquisition, seizures detection, and electrical stimulation that extracted 
time-domain entropy and frequency spectrum features, and achieved 
high detection accuracy of 92 % within 0.8 s [7]. In [9], Muhammad 
Awais et al. also proposed a non-linear support vector machine 
(NL-SVM) seizures classification SoC with 8-channel EEG data acquisi-
tion and storage for epileptic patients that integrates a feature extraction 
(FE) engine and patient specific hardware-efficient NL-SVM classifica-
tion engine which results in an average detection rate, average false 
alarm rate and latency of 95.1 %, 0.94 % and 2 s, respectively. Other-
wise, knowing that these treatments extremely depend on robust sys-
tems for seizures detection to perform effectively, more efforts have 
been also focused only on the development of robust computational 
models for analysis and automatic detection of epileptic seizures, which 
then can be integrated into implantable devices. These models generally 
include a rhythms decomposition stage to determine the optimal fea-
tures and classifiers. The useful wavelet transform (WT) with different 
mother wavelet functions [2,3,11–19] and it derivative like tunable-Q 
WT [20], the empirical mode decomposition (EMD) [21–25], Fourier 
transform (FT) [26], independent component analysis (ICA) [27], 
Hilbert-Huang transform (HHT) [28] and Hilbert vibration decomposi-
tion (HVD) [29] are extremely applied for the rhythms decomposition 
process. However, some of these methods do not relate the decomposed 
rhythms to the ones defined in the literature in terms of spectral co-
efficients. Also, feature extraction methods are abundantly developed 
and applied in EEG signals since relevant extracted features improve the 
performance of the classifier machines. In this impetus, Sutrisno et al. 
[16] proposed a model based on WT, linear features like standard de-
viation and band power, non-linear features like Shannon entropy and 
largest Lyapunov exponent, and classifiers as artificial neural network 
(ANN), k-nearest neighbor (KNN), SVM and linear discriminant analysis 
(LDA) which achieves an overall accuracy of 100 % on a healthy versus 
epileptic seizures detection experiment. Pushpendra et al. [26] used a 
filter bank signal processing and FT to extract mean frequencies and root 
mean square bandwidth features as inputs of a least-square SVM 
(LS-SVM) which gained a maximum accuracy of 100 %. In [27], Siva-
sankari and Thanushkodi proposed a model that uses the fast ICA and 
backpropagation neural network for achieving epileptic seizures detec-
tion with an overall accuracy of 76.50 % and 66 % for seizure and 
healthy EEG signals, respectively. Ali Yener [29] also proposed a 
framework based on HVD and employs estimated instantaneous fre-
quency of largest energy components as features given to LS-SVM for 
recognizing epileptic seizures with a classification accuracy of 97.66 %. 

From the literature, it is firstly observed that most of the reported 
models have a limited success rate. In addition, some models extend to 
be very complex for practical applications, and other models used high 
dimension features that are not easily viewed and interpreted, and 
generally are not sufficiently representative and discriminative for the 
EEG signal classification. On the other hand, most of the reported 
models did not select their parameters using a suitable technique, 
although the parameters significantly affect the classification perfor-
mance. In short, to the best of our knowledge and in spite of many 
techniques used, polynomial transforms are not yet exhaustively applied 
for the purpose of epilepsy diagnosis even if the physical interpretation 
of the spectral coefficients could also establish correlations with some 
pathologies, leading to a new issue for automatic diagnosis and seizures 
detection [30]. Also, in line with optimal smoothing, it is demonstrated 
that modeling remains an important technique for time series analysis 
(information retrieval, noise removal from measurements and feature 
extraction for pattern classification problems) in which a mathematical 
model is fitted to a sampled signal [31–34]. That is why this paper 
proposed a novel full processing chain of EEG signals analysis for 

epileptic seizures detection that applied a new alternative approach 
based on polynomial transforms for EEG rhythms decomposition. With 
this intention, Jacobi polynomial transforms (JPTs) namely discrete 
Legendre transform (DLT) and discrete Chebychev transform (DChT) are 
derived to explore EEG signals in the frequency domain. EEG data are 
projected into a set of spectral coefficients, and low dimension and 
discriminative features are extracted using LDA and feed as inputs of 
SVM classifiers for epileptic seizures detection. 

The rest of this paper is organized as follows. In Section 2, we briefly 
present EEG data sets and some properties of Jacobi polynomials which 
help to construct the modelling scheme of sampled data via Legendre 
and Chebychev polynomials. The full processing chain for EEG seizures 
detection is described and includes the rhythms decomposition, feature 
extraction, dimensionality reduction using LDA, and SVM classifiers 
steps. Twelve experiments closely related to clinical applications are 
examined for the test of the proposed full processing chain. In Section 3, 
simulation results are presented and discussed. Then, the conclusion and 
some perspectives are presented in the last section. 

2. Materials and methodology

This section described the materials used and the proposed full
processing chain of EEG signals analysis for seizures detection. This 
proposed processing chain includes some stages (EEG signal acquisition, 
EEG analysis and classification) and few steps that are depicted in Fig. 1 
and briefly described in the following sub-sections. 

2.1. Data description 

The data consists of five sets (SET A-E) of EEG signals [35]. Each set 
contains 100 EEG derivations recording with the sampling frequency of 
173.61 Hz and resulting to a 86.805 Hz bandwidth with respect to the 
Nyquist theorem. SETs A (Z001 to Z100) and B (O001 to O100) consist 
of data collected from five healthy volunteers in an awake state with 
eyes opened and closed using scalp electrodes, respectively. SETs C 
(N001 to N100) and D (F001 to F100) derivations have been measured 
in seizure-free intervals from five patients within the hippocampal for-
mation of the opposite hemisphere of the brain and within the epilep-
togenic zone, respectively. SET E (S001 to S100) consists of data 
recorded during a seizure. SETs C, D and E data have been acquired 
intracranially. The duration of each segment is 23.6 s, which leads to 
4097 samples. Fig. 2 presents an example of EEG signals of the data. 

2.2. Jacobi polynomial transforms (JPTs) 

2.2.1. Jacobi polynomials 
Jacobi polynomials are one of the great classes of orthogonal poly-

nomials that have very interesting properties, which makes them very 
attractive for an optimal polynomial interpolation [36–38]. They are 
orthogonal on the interval [ − 1, 1] with respect to the weight function 
ω (x) = (1 − x)α(1 + x)β, with α,β ≻ − 1. 

The continuous orthogonality condition is expressed by: 
〈

J
α,β
i , Jα,β

j

〉

ω
=

∫ 1

−1

J
α,β
i (x)Jα,β

j (x)(1 − x)α(1 + x)β
dx = C2

ijδij (1)  

Where Ci = ‖Jα,β
i ‖L2

ω 
and δij is the Kronecker symbol given by δij =

{1 , i = j
0 , i ∕= j 
Discrete Jacobi polynomials satisfy the discrete orthogonality rela-

tion expressed by: 
〈

J
α,β
i , Jα,β

j

〉

ω
=

∑

L

k=0

J
α,β
i (xk)Jα,β

j (xk)(1 − xk)α(1 + xk)β = C2
ijδij (2) 
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In the same way, Jacobi polynomials satisfy the differential equation 
and the Rodrigue formula defined by Eqs. (3) and (4), respectively: 

(1 − x)−α(1 − x)−β d

dx

{

(1 − x)α+1(1 + x)β+1 d

dx
J

α,β
i (x)

}

+ i(i + 1 + α

+ β)Jα,β
i (x)= 0 , i ≥ 0 (3)  

(1 − x)α(1 + x)β
J

α,β
i (x) = (−1)i

2ii!

di

dxi

[

(1 − x)i+α(1 + x)i+β
]

, i ≥ 0 (4) 

In this paper, we focus on two special cases of Jacobi polynomials 
namely Legendre polynomials and Chebychev polynomials of the 1st 

kind, with some properties presented in the Appendix. 

2.2.2. Polynomial expansion 
The polynomial expansion of a signal s(x) to an order ’’M˝ in the 

orthogonal Jacobi base is a function given by: 

s(x) =
∑

M

k=0

αkJ
α,β
k (x) (5)  

Where the sequence of coefficients {αk}M
k=0 constitutes the spectral co-

efficients of decomposition or projection of the signal s in the Jacobi 

polynomial base and are evaluated by: 

αk =

∫ 1

−1

s(x)J∗α,β
k (x)ω(x)dx

∫ 1

−1

J
α,β
k (x)J∗α,β

k (x)ω(x)dx

= 1

d2
k

∫ 1

−1

s(x)J∗α,β
k (x)ω(x)dx (6)  

With d2
k =

⃒

⃒Jα,β
k

⃒

⃒

2 =
∫ 1

−1
Jα,β

k (x)J∗α,β
k (x)ω(x)dx 

The evaluation of the coefficients αk is done efficiently with the 
Gauss-Lobatto method. Gauss-Labatto method is a powerful tool for 
numerical integrations, especially dedicated to orthogonal polynomials 
[36]. In short, the Gauss quadrature’s stipulates that for a family of 
orthogonal polynomials {Pk(x)} in the interval [a,b], with respect to the 
weight function ω(x), the following approximation is done: 
∫

b

a

f (x)ω(x)dx ≈
∑

M

j=0

Gjf (xj) (7)  

Where f(x) ∈ L2[a, b], xj are the M + 1 nodes of PM+1(x) and Gj are the 
Gauss coefficients or weights called “Christoffel numbers’’. 

Fig. 1. Full processing chain of EEG signals analysis for seizures detection.  

Fig. 2. Examples of EEG signals. From top to bottom: SET A Healthy EEG Z001, SET B Healthy EEG O001, SET C Seizure-free EEG N001, SET D Seizure-free EEG F001 
and SET E Seizure EEG S001 [35]. 
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2.2.3. Discrete Legendre transform (DLT) 
For Legendre polynomials, Eqs. (5) and (6) become, respectively: 

s(x) =
∑

M

k=0

αkLk(x) (8)  

αk =
〈s(x), Lk(x)〉
〈Lk(x),Lk(x)〉

= 〈s,Lk〉
〈Lk, Lk〉

=

∫ 1

−1

s(x)Lk(x)dx

∫ 1

−1

L2
k(x)dx

= 1

d2
k

∫ 1

−1

s(x)Lk(x)dx (9)  

With d2
k given by Eq. (A.2), and the application of the Gauss-Lobatto 

method gives: 
∫ 1

−1

s(x)Lk(x)dx = 2

M(M + 1)
∑

M

j=0

s(xj)Lk(xj)
[

LM(xj)
]2

(10)  

Where xj are the M + 1 Gauss-Lobatto nodes of (1 − x2)L′
M(x) formed by 

x0 = − 1, xM = 1 and xj nodes of L′
M(x), j = 1, 2, ...,M − 1 computed 

using the eigenvalue method described in [38]. Christoffel numbers are 
given by Gj = 2

M(M+1)
1

[LM(xj)]2 , j = 0,1,2, ...,M. 
Then, the DLT is expressed as follows: 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

αk =
2k + 1

M(M + 1)
∑

M

j=0

Lk(xj)
[

LM(xj)
]2

s(xj) , k = 0, 1, ...,M − 1

αM = 1

M + 1

∑

M

j=0

s(xj)
LM(xj)

, k = M

(11)  

2.2.4. Discrete Chebychev transform (DChT) 
For Chebychev polynomials, Eqs. (5) and (6) become, respectively: 

s(x) =
∑

M

k=0

αkTk(x) (12)  

αk =
〈s(x), Tk(x)〉
〈Tk(x),Tk(x)〉

= 〈s,Tk〉
〈Tk, Tk〉

=

∫ 1

−1

s(x)Tk(x)
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − x2
√ dx

∫ 1

−1

T2
k (x)
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − x2
√ dx

= 1

d2
k

∫ 1

−1

s(x)Tk(x)
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − x2
√ dx

(13) 
With d2

k given by Eq. (A.5), and the application of the Gauss-Lobatto 
method gives: 
∫ 1

−1

s(x)Tk(x)
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − x2
√ dx = π

M + 1

∑

M

j=0

s(xj)Tk(xj) (14)  

Where xj are the M + 1 zeros of TM+1(x) given by Eq. (A.7). All Chris-
toffel numbers are equal to Gj = π

M+1 , j = 0,1,2, ...,M. 
Then, the DChT is expressed as follows: 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

α0 = 1

M + 1

∑

M+1

j=1

s(xj) =
1

M + 1

∑

M+1

j=1

s

{

cos

[ (2j − 1)
2(M + 1) π

]}

αk =
2

M + 1

∑

M+1

j=1

s(xj)cos

[

k(2j − 1)
2(M + 1) π

]

= 2

M + 1

∑

M+1

j=1

s

{

cos

[ (2j − 1)
2(M + 1) π

]}

∗ cos

[

k(2j − 1)
2(M + 1) π

]

, k = 1, 2, 3, ...,M

(15)  

2.3. EEG analysis 

2.3.1. EEG rhythms decomposition using JPTs 
The uneven distribution of the signal energy in the frequency domain 

has made the physical interpretation of the spectral coefficients after 
decomposition an important practical problem. This sub-section pre-
sents a new alternative approach for the efficient and instantaneous 
decomposition of the EEG rhythms. This approach is based on the pro-
jection of the EEG signals into polynomial bases, which lead to poly-
nomial interpolation. Knowing that the five primary EEG rhythms called 
delta (0.5−4 Hz), theta (4−8 Hz), alpha (8−13 Hz), beta (13−30 Hz), 
and gamma (30−60 Hz) generally span the 0.5−60 Hz frequency range 
and higher frequencies are often characterized as noise, this approach 
includes some few steps that are depicted in Fig. 3 and briefly described 
in the following.  

• The current EEG signal, t ∈ [0, tB] is of finite energy and can be
decomposed in the Jacobi polynomial base. It should be transposed
into [ − 1, 1] domain by a simple linear transformation x = − 1+
2.t/tB.

• The order of decomposition is chosen such that the percent root
square difference (PRD) is lower than 7 % and the quasi-totality of
the original signal information is conserved after decomposition
[39]. For an automatic detection of epileptic states, the maximum
acceptable PRD is equal to 30 % [30,40]. Sometimes, certain roots of
Jacobi polynomials are not images of signal samples within the in-
terval [ − 1, 1], in these cases, S(xj) is calculated using the spline
cubic interpolation function.

• The selection of coefficients used to synthesize each EEG rhythm is
based on the FT. The fast FT is applied to discrete Jacobi polynomials
and their energy spectral density (ESD) is computed. The frequency
with the maximum ESD is used as parameter for the selection of
corresponding spectral coefficients of each EEG rhythm, and the
other spectral coefficients correspond to noise.

ESD(f ) = |X(f )|2 (16)  

Where X(f) = DFT{x(k)}

• Therefore, using the corresponding spectral coefficients for recon-
struction through Eq. (5) provides the rhythms decomposition of the
EEG signal.

2.3.2. Feature extraction 
The main aim of feature extraction is to obtain further information 

from the raw signal by transforming the large data into a fewer feature 
vector. After processing the data with the JPTs, feature extraction 
methodology analyzes signals to extract the most prominent features 
that are representative of the various classes of signals. Then, the time 
and frequency distribution of the EEG signal can be represented by 
typical statistical, entropy and energy features [41]:  

• Maximum (Max) of the absolute values of the spectral coefficients in
each EEG rhythm.

• Mean of the absolute values of the spectral coefficients in each EEG
rhythm.

• Standard deviation (StD1) of the spectral coefficients in each EEG
rhythm.

• Standard deviation (StD2) of the absolute values of the spectral co-
efficients in each EEG rhythm.

• Entropy (S) of the absolute values of the spectral coefficients in each
EEG rhythm. For the EEG rhythm with spectral coefficients αj, it is
expressed by:

S =
∑

k

⃒

⃒αj

(

k
)⃒

⃒ ∗ log
(

⃒

⃒αj

(

k
)⃒

⃒

2
)

(17) 
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• Energy of the original EEG signal (E).
• Energy of the approximate EEG signal (Eapp).
• Percent root square difference (PRD) of the EEG signal. For the EEG

signal {sn}n=1,2,... and the approximate ones {s̃n}n=1,2,..., PRD is
expressed by:

PRD
(

%
)

= 100

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

n

(sn − s
∼

n)
2

∑

n

s2
n

√

√

√

√

√ (18)  

2.3.3. Dimensionality reduction using linear discriminant analysis (LDA) 
In machine learning, the desired goal of dimensionality reduction is 

to decrease the dimension of a d-dimensional data by projecting it onto a 
k-dimensional subspace (where k ≤ d). This is done in order to increase 
the computational efficiency while reducing information noise and 
redundancy, and retaining most of the relevant information about the 
original data. 

In this paper, we applied LDA also called Fisher’s discriminant 
analysis for dimensionality reduction. LDA is a supervised algorithm 
that computes the linear discriminant by maximizing the distance be-
tween classes and minimizing the distance within classes [42]. At the 
end of the procedure, each class will have a normal distribution of 
discriminant parameters. The projection can be written as a single ma-
trix equation given by: 
Y = X ∗ W (19)  

Where Y and X are new and old features, respectively. W is the dxk 
projection matrix formed by the first k-eigenvectors of S−1w Sb, where Sw 
and Sb are the within-class and between-class scatter matrices, 
respectively. 

Sw = 1

N

∑

L

l=1

∑

Nl

i=1

(

xl
i − μl

)T(

xl
i − μl

) (20)  

Sb =
1

N

∑

L

l=1

Nl(μl − μ)T(μl − μ) (21)  

xl
i, Nl and μl are an i-row vector, the number of i-vectors and the mean 

vector corresponding to class label l, respectively. L, N and μ are the 
number of classes, the total number of i-vectors and the global mean of 
all classes, respectively. 

2.4. Classification 

2.4.1. Linear support vector machine (L-SVM) 
Introduce by Vapnik [43], SVM is a popular, discriminative and 

supervised binary machine learning algorithm defined by an optimal 
separating hyperplane. L-SVM learns a given training dataset 
{(xk, yk

) }N
k=1 with input xk ∈ IRn and output label yk ∈ { + 1;−1} that 

forms the binary classes. The support vector classifier chooses one 
particular solution, the classifier that separates the classes with maximal 
margin m, as seen in Fig. 4. This linear classifier ωT.X + b = 0 must 
generalize well on unseen examples. The goal is to classify EEG signals 
for epileptic seizures detection using 1- and 2-dimension linear functions 
which are induced from available examples. 

2.4.2. Least-square support vector machine (LS-SVM) 
LS-SVM is a least square extension of the SVM classifier introduced 

by Suykens and Vandewalle [44]. The formulation of the LS-SVM clas-
sifier leads to solving a set of linear equations, instead of quadratic 
programming for classical SVM. This is due to equality constraints 
defined by Eq. (22). The LS-SVM parameters’ ω = ∑N

k=1αkykφ(xk) and b 
are solutions of the dual problem derived by Eqs. (22) and (23). 
yk

[

ωT φ(xk) + b
]

= 1 − εk , k = 1, 2, ...,N (22)  

min
ω,b,e

J(ω, b, e) = 1

2
ωT ω + 1

2
γ
∑

N

k=1

ε2
k (23)  

Where {(xk, yk
) }N

k=1, γ and εk, k=1,2,...,N represent the training set with 
input xk ∈ IRn and output label yk ∈ { + 1;−1}, the regularization 
parameter and the errors between the desired and the obtained outputs 

Fig. 3. Approach of EEG rhythms decomposition using JPTs.  

Fig. 4. Optimal linear separating hyperplane.  
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 of the LS-SVM, respectively. 
The Lagrangian for the problem is: 

L(ω, b, ε;α) = J(ω, b, ε) −
∑

N

k=1

αk

{

yk

[

ωT φ(xk) + b
]

− 1 + εk

} (24)  

Where αk, k=1,2,...,N are the Lagrange multipliers, and the condition for 
optimality yield to: 
⎧
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∂L

∂ω
= 0 → ω =

∑

N

k=1

αkykφ(xk)

∂L

∂b
= 0 →

∑

N

k=1

αkyk = 0

∂L

∂εk

= 0 → αk = γεk , k = 1, 2, ...,N

∂L

∂αk

= 0 → yk

[

ωT φ(xk) + b
]

− 1 + εk = 0 , k = 1, 2, ...,N

(25) 

Defining Y = [y1, y2, ..., yN]T, 1→ = [1, 1, ..., 1]T, ε = [ε1, ε2, ..., εN]T, α =
[α1,α2, ..., αN]T, the identity matrix I, and Ωkl = ykylφ(xk)T

φ(xl) =
ykylK(xk, xl) by applying Mercer’s conditions for kernels, the following 
linear system is obtained. 
[

0 YT

Y Ω + γ−1I

][

b

α

]

=
[

0

1
→

]

(26) 

Then, the LS-SVM classifier in the dual space takes the form: 

y(x) = sign
[

ωT φ(xk) + b
]

= sign

[

∑

N

k=1

αkykK(x, xk) + b

]

(27)  

2.4.3. Design of experiments 
Twelve classification experiments are elaborated from the above 

data and summarizes in Table 1. These experiments are closely related to 
clinically relevant applications as well as their wide usage by various 
researchers for EEG signals classification, and can permit to compare the 
performance of the proposed full processing chain to other ones.  

• In the first, second, third and fourth experiments, healthy versus
seizure, and seizure-free versus seizure are examined. The non- 
seizure class includes SET A, SET B, SET C or SET D, respectively,
while the seizure class includes SET E which forms the EEGs data
recorded during epileptic seizures.

• In the fifth and sixth experiments, healthy versus seizure and seizure- 
free versus seizure are examined, respectively. The non-seizure class
includes SETs A-B or SETs C-D, while the seizure class includes SET E.

• In the seventh and eighth experiments, SETs A-C-D and SETs A-B-C-D
form the non-seizure classes, respectively, while SET E forms the
seizure class.

• In the ninth and tenth experiments, healthy versus seizure-free and
healthy versus seizure-free + seizure are examined, respectively.
SETs A-B form the non-seizure class while SETs C-D and SETs C-D-E
form the seizure class, respectively.

• In the eleventh experiment, healthy EEG with eyes opened and eyes
closed are discriminated into two different classes.

• In the twelfth experiment, all the EEGs from the data are used and
discriminated into three different classes. For this multiclass, the one
versus the rest strategy is used and consists in separating each class
from all the others. To address this three-class experiment, we
combine two binary (two-class) experiments, ABCD-E / AB-CD and
AB-CDE / CD-E.

2.4.4. Metrics for performance evaluation 
The performance of the full processing chain for seizures detection is 

evaluated using three metrics namely specificity, sensitivity and accu-
racy. These metrics are defined as [42]: 

• Specificity (SPE): Total number of correctly detected negative pat-
terns (TNCN) / Total number of actual negative patterns (TNAN). A
negative pattern indicates a non-seizure EEG.

SPE (%) = 100 ∗ TNCN

TNAN

(28)   

• Sensitivity (SEN): Total number of correctly detected positive pat-
terns (TNCP) / Total number of actual positive patterns (TNAP). A
positive pattern indicates a seizure EEG.

SEN (%) = 100 ∗ TNCP

TNAP

(29)    

• Accuracy (ACC): Total number of correctly classified patterns
(TNCP + TNCN) / Total number of patterns (TNAP + TNAN).

ACC (%) = 100 ∗ TNCN + TNCP

TNAN + TNAP

(30)  

2.5. Proposed full processing chain description 

A novel full processing chain of EEG signals analysis for epileptic 
seizures detection that applied a new alternative approach for EEG 
rhythms decomposition is proposed and presented in Fig. 1. This pro-
cessing chain includes three major stages that are EEG signal acquisition, 
EEG analysis, and classification. At the signal acquisition stage, we used 
an online available database which consists of five hundred EEG signals 
divided into five different classes. After signal acquisition, the EEG are 
analyzed at the second stage according to three steps namely EEG 
rhythms decomposition, feature extraction and dimensionality reduc-
tion, respectively. The efficient and instantaneous decomposition of the 
EEG rhythms is based on the projection of the EEG signals into Jacobi 
polynomial bases using JPTs namely DLT and DChT. Furthermore, we 
analyze the original signals and theirs corresponding rhythms in terms 
of statistical, energy and entropy features, and a 28-dimension feature 
vector is extracted in frequency and time domains. Due to the high 
dimension and redundancy of the extracted features, and in order to 
improve the discriminative properties of the signals of various classes, 
the LDA is applied for dimensionality reduction and new informative 
and discriminative low dimension feature vectors are computed. At the 
last stage of the proposed processing chain, the 1- and 2-dimension 
feature vectors are then classified either with L-SVM or LS-SVM with 
Gaussian radial basis function (RBF) kernel K(x, xk) = exp

(

− 1
2σ2 || xk −

x ||
)

such that a decision can been taken as seizure or non-seizure. 

Table 1 
Classes and corresponding number of EEG derivations for twelve classification 
experiments. HF and EZ stand to hippocampal formation and epileptogenic 
zone, respectively.  

Experiment Classes Number of EEG 
derivations 

A - E Healthy with eyes opened - Seizure 100 - 100 
B - E Healthy with eyes closed - Seizure 100 - 100 
C - E Seizure-free within the HF - Seizure 100 - 100 
D - E Seizure-free within the EZ - Seizure 100 - 100 
AB - E Healthy - Seizure 200 - 100 
CD - E Seizure-free - Seizure 200 - 100 
ACD - E Healthy with eyes opened + Seizure-free - 

Seizure 
300 - 100 

ABCD - E Healthy + Seizure-free - Seizure 400 - 100 
AB - CD Healthy - Seizure-free 200 - 200 
AB - CDE Healthy - Seizure-free + Seizure 200 - 300 
A - B Healthy with eyes opened - Healthy with 

eyes closed 
100 - 100 

AB - CD - E Healthy - Seizure-free - Seizure 200 - 200 - 100  
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For dimensionality reduction and classification, the 60 % of each SET 
are used to form the training set and the other 40 % are used to form the 
testing set. The training set is required to construct the model while the 
testing set is required to estimate the model performance. This work 
used the LS-SVM toolbox proposed in [45] where the tunelssvm function 
with 5-fold cross validation technique and the trainlssvm function are 
used to find the regularization and kernel parameter (gam, sig2) of the 
optimal LS-SVM classifier. Therefore, the simlssvm function is used to 
determine the performances of the optimal LS-SVM classifier. 

What is new is the alternative approach which consists of applying 
JPTs for the rhythms decomposition. This is important because the 
physical interpretation of the spectral coefficients could establish cor-
relations with epileptic seizures. Also, discriminative low dimension 
features that are easily viewed, sufficiently representative and inter-
preted are extracted instead of high dimension features such that the 
classification performance can be significantly improved. Overall, the 
proposed processing chain extends to be less complex for practical ap-
plications and it will be useful to clinicians in providing an accurate and 
objective scheme in epileptic seizures detection and prediction. 

3. Results and discussion

This section presents the experimental outcomes of the proposed
approach for EEG rhythms decomposition, feature extraction, dimen-
sionality reduction and epileptic seizures detection. All experiments are 
carried out using MATLAB (version 8.1, R2013a) on a HP EliteBook 
Folio 9470m-Intel(R) Core(TM) i5-3437U with 2.40 GHz, 8.00 Go RAM 
and Windows 10. This section also provides a comparison between the 
proposed processing chain and other well-known existing ones. 

3.1. Results of EEG rhythms decomposition and feature extraction 

EEG signals are interpolated and their frequency distributions are 
represented by typical statistical, entropy and energy features that are 
representative of the various classes of signals. Fig. 5 presents examples 
of EEG rhythms decomposition and corresponding 10−5*ESD. 

From the supervision of Fig. 5 it is related that EEG rhythms obtained 
with DLT and DChT are more correlated. One advantage of this method 
is that no pre-processing stage is needed because frequency occupation 
of the approximated signal increases with the degree of the discrete 
Jacobi polynomials. Then, the proposed method combines the pre- 
processing and processing stages simultaneously, and the decomposi-
tion of EEG rhythms can be implemented as a one-step process. 
Furthermore, JPTs can gather as well as possible the EEG rhythms by 
reducing overlapping and eliminating the continuous component. 

After processing the data with the JPTs, EEG signal of 4097 samples 
is transformed into a 28-dimension feature vector. In total, a 100 × 28- 
dimension feature vector is extracted for each SET. Figs. 6 and 7present 
a comparison of the frequency distribution of each SET in terms of 
extracted features. Firstly, boxplots of extracted features show that the 
evolution of each feature presents similarities in different rhythms. It 
can be seen that, the same information is extracted from the different 
rhythms. Secondly, E and Eapp features also present similar information 
for different classes of EEGs. Then, these extracted features are repre-
sentative for the various classes but still present redundancy. Even 
though, for direct discrimination, few of these features individually 
carry discriminative information about their classes. 

3.2. Results of dimensionality reduction and seizures detection 

Since the extracted feature vectors are not easily viewed and 

Fig. 5. EEG rhythms decomposition of (a) a healthy EEG Z018 and (b) a seizure EEG S018 using (i) DLT and (ii) DChT.  
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interpreted, this task of dimensionality reduction is necessary. There-
fore, only the first two linear discriminants (LDs) are used to derive our 
new features subspace since the explained variance tells us that they 
contain the quasi totality of the information. For each experiment, 
Figs. 8 and 9present the comparison of the new features subspace ob-
tained using LDA. 

Figs. 8 and 9 present the discriminative effect that exist between 
classes for different experiments after dimensionality reduction using 
LDA. It is observed that the computed 1- and 2-dimension features ob-
tained with LDA after JPTs rhythms decomposition are more informa-
tive and discriminative for all experiments. In more experiments, the 
computed low dimension features are less overlapping. On the other 
hand, LDA tries to explicitly model differences between class labels 
within the data and successful discrimination for different experiments 
can be achieved using SVM classifiers like L-SVM and LS-SVM. 

Therefore, the 1- and 2-dimension feature vectors are used as 
benchmarks for the L-SVM and LS-SVM, and the seizures detection ac-
curacies of the twelve experiments are presented in Tables 2 and 3. 
Then, the highest performances of the twelve experiments are summa-
rized in Table 4. 

For each experiment in Table 2, it is clearly observed that obtained L- 
SVM detection accuracies are higher using the extracted 1-dimension 
LDA feature vector. DLT and DChT analysis give similar results, except 
for the ABCD-E, AB-CD and AB-CDE experiments where DLT analysis 
give better detection accuracies, and for the D-E and A-B experiments 
where DChT analysis gives higher detection accuracies. For the AB-CD-E 
multiclass experiment, the L-SVM gather the highest detection accuracy 
of 99.44 % using the ABCD-E / AB-CD combination in DChT analysis 
with the extracted 1-dimension LDA feature. For each experiment, 
Table 3 demonstrates that the LS-SVM classifier gather highest detection 
accuracies with the extracted 1-dimension feature vectors. In general, 
JPTs - LDA - LS-SVM models give similar results, except for the D-E, CD- 
E, ABCD-E, AB-CD and AB-CDE where the DLT analysis gives higher 
detection accuracies than the DChT analysis. The ABCD-E / AB-CD 
combination proves to be more accurate than the AB-CDE / CD-E 
combination for the multiclass experiment. 

In general, Table 4 shows that for the A-E, B-E, C-E, D-E, AB-E, CD-E, 
ACD-E and ABCD-E experiments, JPTs–LDA–SVM fully detect seizures 

EEG signals with a highest detection accuracy of 100 %. The extracted 1- 
and 2-dimension features as inputs of the SVM classifiers can also 
evaluate the AB-CD and AB-CDE experiments with maximum seizures 
detection accuracies of 99.38 % and 97.50 %, respectively. For the AB- 
CD-E multiclass experiment, the SVM classifier gives higher seizures 
detection accuracy of 99.44 % using ABCD-E / AB-CD combination. The 
lowest seizures detection accuracy is found to be 96.25 % for the A-B 
experiment. Overall, it is found that for each experiment, the perfor-
mances of the SVM classifiers are higher. 

3.3. Discussion 

During these recent years, advancements and refinement of auto-
matic classification systems have led to the ability to detect epileptic 
seizures. An increasing interest is focus in the development of several 
automatic classification systems using linear and non-linear methods on 
temporal, frequency and time-frequency domains. In this impetus, 
several processing chains have been proposed. For comparison, Table 5 
presents more other processing chains that use the same data and 
different extracted feature vectors for epileptic seizures detection. It is 
seen that this paper presents a novel processing chain of epileptic sei-
zures detection using JPTs at the EEG rhythms decomposition step. 

As it is a problem of first importance, A-E, B-E, C-E and D-E experi-
ments are extremely examined. For this purpose, we present a process-
ing chain which yields highest seizures detection accuracy of 100 % for 
all these four experiments. These results are better than the seizures 
detection accuracies obtained by Ocak [12] (99.60 %), and Ling Guo 
et al. [13] (99.60 %) for the for A-E experiment. However, some works 
proposed different processing chains and models that extend to perform 
better. Thus, Sutrisno et al. [16] proposed a processing chain based on 
WT, linear and non-linear features, and ANN, KNN and SVM classifiers 
which also achieves an overall accuracy of 100 % for the A-E experi-
ment. Tzallas et al. [46] also proposed a model that realized a 
time-frequency analysis of EEG signals and used the ANN classifier 
which gained a seizures detection accuracy of 100 % for the A-E 
experiment. Furthermore, our processing chain is also better than others 
in examining two, three or four of these first experiments. In this 
impetus, Nicolaou et al. [47] proposed a less accurate processing chain 

Fig. 6. Comparison of typical statistics, entropy and energy features at the (a) Delta, (b) Theta, (c) Alpha, (d) Beta and (e) Gamma rhythms, and at the (f) EEGs 
using DLT. 
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Fig. 7. Comparison of typical statistics, entropy and energy features at the (a) Delta, (b) Theta, (c) Alpha, (d) Beta and (e) Gamma rhythms, and at the (f) EEGs 
using DChT. 

Fig. 8. Comparison of the 1- and 2-dimension DLT features for different experiments after dimensionality reduction using LDA. Colors blue, green, yellow, black and 
red correspond to SETs A, B, C, D and E, respectively. 
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of seizures detection based on permutation entropy (PermEn) and SVM 
that investigates all the A-E, B-E, C-E and D-E experiments with higher 
accuracy of 93.55 %, 82.88 %, 88.00 % and 79.94 %, respectively. Also 
using the dual-tree complex WT and SVM, Anindya et al. [48] gained a 
100 % seizures detection accuracy for the A-E, B-E, and C-E experiments, 
respectively. In order to investigate only the A-E and D-E experiments, 
Sandeep et al. [49] used the improved PSO and RBF network and ach-
ieve higher seizures detection accuracy of 98.00 % and 97.00 %, 
respectively. Subasi et al. [50] also presented a DWT-PSO-SVM frame-
work that achieves a 99.38 % accuracy in discriminating healthy (A) 
versus epileptic EEG signals (E). However, Mohd Zuhair et al. [51] used 
DWT-based ApEn, ANN and LS-SVM to examine all this four experi-
ments, and gained similar results of 100 % seizures detection accuracy 
like our processing chain. Thus, for this four experiments, it is clearly 

demonstrates that our processing chain is accurate than others previ-
ously proposed ones. 

For the AB-E and CD-E problems, our processing chain extends to be 
more accurate knowing that Reza Yaghoodi et al. [52] derived a hy-
perbolic tangent-tangent plot that aims to discriminate SETs C-D EEG 
signals from SET E with higher accuracy of 92.42 %. This result is less 
than our obtained 100 % seizures detection accuracy. 

For the ACD-E and ABCD-E experiments, we also obtained a highest 
accuracy of 100 %. This is better than the accuracies obtained by Tzallas 
et al., Ocak, Ling Guo et al. and Rivero et al.. Tzallas et al. [46] examined 
the ABCD-E experiment with an accuracy of 97.73 %. Ocak [12] also 
obtains a less seizures detection accuracy of 96.65 % using the discrete 
WT (DWT) and extracted approximated entropy (ApEn) as input of the 
ANN for the investigation of the ACD-E experiment. By applying the 

Fig. 9. Comparison of the 1- and 2-dimension DChT features for different experiments after dimensionality reduction using LDA. Colors blue, green, yellow, black 
and red correspond to SETs A, B, C, D and E, respectively. 

Table 2 
Seizures detection accuracies for twelve experiments using JPTs–LDA–L-SVM.  

Experiment 
1-dimension feature 2-dimension feature 
DLT DChT DLT DChT 

A - E 100 100 100 100 
B - E 100 100 100 100 
C - E 100 100 100 100 
D - E 97.50 96.25 98.75 97.50 
AB - E 100 100 100 100 
CD - E 98.33 98.33 98.33 98.33 
ACD - E 99.38 99.38 99.38 99.38 
ABCD - E 99.00 99.50 99.00 98.50 
AB - CD 96.88 99.38 98.75 98.75 
AB - CDE 96.00 97.50 94.50 97.00 
A - B 95.00 91.25 96.25 92.50 
AB - CD - E (ABCD - E / AB - CD) 98.06 99.44 98.89 98.61 
AB - CD - E (AB - CDE / CD - E) 96.88 97.81 95.94 97.50 

Bold indicates the highest accuracy for each experiment. 

Table 3 
Seizures detection accuracies for twelve experiments using JPTs–LDA–LS-SVM.  

Experiment 
1-dimension feature 2-dimension feature 
DLT DChT DLT DChT 

A - E 100 100 100 100 
B - E 100 100 100 100 
C - E 100 100 100 100 
D - E 100 96.25 98.75 97.50 
AB - E 100 100 100 100 
CD - E 100 98.33 99.17 99.17 
ACD - E 100 98.13 98.75 98.13 
ABCD - E 100 98.00 99.50 98.50 
AB - CD 96.88 99.38 96.88 98.13 
AB - CDE 96.00 97.50 96.00 96.00 
A - B 96.25 91.25 96.25 91.25 
AB - CD - E (ABCD - E / AB - CD) 98.61 98.61 98.33 98.33 
AB - CD - E (AB - CDE / CD - E) 97.50 97.81 97.19 97.19 

Bold indicates the highest accuracy for each experiment. 
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DWT, Ling Guo et al. [13] computed a line length features and used the 
MLPNN classifier to obtain higher accuracy of 97.75 % and 97.77 % for 
the ACD-E and ABCD-E experiments, respectively. Rivero et al. [53] also 
applied the time-frequency analysis and exploited the KNN to only 
examine the ABCD-E experiment and gained a less seizures detection 
accuracy of 98.40 %. And with the dual-tree complex WT-based complex 
valued as inputs of a NN, Peker et al. [54] obtained a 99.15 % accuracy 
for the ABCD-E seizures detection experiment. However, a closely 100 % 
accuracy is obtained in [15], where Lina Wang et al. achieved a 99.25 % 
accuracy for the non-seizure (ABCD) versus seizure (E) experiment using 
the DWT-based multi-domain feature extraction and SVM classifier. 
Anindya et al. [48] also investigate the ACD-E experiment and gained a 
similar 100 % seizures detection accuracy. And Mohd Zuhair et al. [51] 
with their proposed processing chain also examined the ACD-E and 
ABCD-E experiments and gained a 100 % and 99.50 % accuracy, 
respectively. 

For the two binary experiments AB-CD and AB-CDE, our processing 
chain also achieved highest accuracies of 99.38 % and 97.50 % in 
discriminating healthy (AB) versus seizure-free (CD) and healthy (AB) 
versus seizure-free + seizure (CDE), respectively. Table 5 also clearly 
demonstrated that our processing chain is more accurate than the one 
developed by Reza Yaghoodi et al. [52] which examined the AB-CD 
problem with a less accuracy of 97.41 %. We also examine the A-B 
experiment with an acceptable accuracy that can permit to detect 
whether a patient is with eyes closed or eyes opened. Then, for the 
AB-CD-E multiclass experiment, Handayani et al. [55] developed a 
SCICA-PS-ANN model which gained a less accuracy of 94.00 % than the 
99.44 % gained by our proposed processing chain. 

Overall, it is found that our proposed JPTs-LDA-SVM seizures 
detection scheme is used to be more efficient and accurate for the A-E, B- 
E, C-E, D-E, AB-E, CD-E, ACD-E, ABCD-E, AB-CD, AB-CDE, A-B and AB- 
CD-E experiments with higher seizures detection accuracies of 100 %, 
100 %, 100 %, 100 %, 100 %, 100 %, 100 %, 100 %, 99.38 %, 97.50 %, 
96.25 % and 99.44 %, respectively. Achieved results demonstrate that 
the proposed scheme better captured the non-stationarity and non- 
linearity of EEG signals since the high accuracy is attributed to the 
highly discriminative features. Then, our proposed JPTs-LDA-SVM 

seizures detection scheme exhibits potential desirable and promising 
applications for medical treatment as implantable devices to intervene 
at right time to treat epilepsy. However, it is judicious to note that our 
processing chain can take more computational time than others pro-
cessing chains based on fast transforms like WT at the EEG rhythms 
decomposition stage. This is due to the fact that Jacobi polynomials been 
continue, the construction of discrete Jacobi polynomials for the 
modelling of EEG signals is a time consuming process. 

4. Conclusion and perspectives

Diagnosing epilepsy is a difficult task requiring the analysis of large
amounts of data by an expert, which is tedious, time consuming and can 
be prone to errors due to fatigue when analyzing by visual inspection. 
That is why many researchers have focused on the development of 
computational models for the automatic analysis and detection of 
epileptic seizures. In this paper, we have proposed a novel processing 
chain that applied polynomial approach for EEG rhythms decomposition 

Table 4 
Summary of the highest seizures detection performances using JPTs-LDA-SVM.  

Experiment Seizures detection model SPE SEN ACC 
A - E JPTs – 1- or 2-dimension LDA 

– L-SVM or LS-SVM 
100 100 100 

B - E JPTs – 1- or 2-dimension LDA 
– L-SVM or LS-SVM 

100 100 100 

C - E JPTs – 1- or 2-dimension LDA 
– L-SVM or LS-SVM 

100 100 100 

D - E DLT – 1-dimension LDA –
LS-SVM 

100 100 100 

AB - E JPTs – 1- or 2-dimension LDA 
– L-SVM or LS-SVM 

100 100 100 

CD - E DLT – 1-dimension LDA –
LS-SVM 

100 100 100 

ACD - E DLT – 1-dimension LDA –
LS-SVM 

100 100 100 

ABCD - E DLT – 1-dimension LDA –
LS-SVM 

100 100 100 

AB - CD DChT – 1-dimension LDA –
L-SVM or LS-SVM 

100 98.75 99.38 

AB - CDE DChT – 1-dimension LDA – L- 
SVM or LS-SVM 

98.75 96.67 97.50 

A - B 
DLT – 2-dimension LDA –
L-SVM 95.00 97.50 96.25 DLT – 1- or 2-dimension LDA 
– LS-SVM 

AB - CD - E (ABCD - E 
/ AB - CD) 

DChT – 1-dimension LDA –
L-SVM 100 98.33 99.44 

AB - CD - E (AB - CDE 
/ CD - E) 

DChT – 1-dimension LDA –
L-SVM or LS-SVM 98.13 98.00 97.81  

Table 5 
Comparison of the performance for different experiments with the same data.  

Authors Processing chain Experiments ACC 
(%) 

Tzallas et al.,  
2007 [46] Time-frequency analysis - ANN A - E 100 

ABCD - E 97.73 
Ocak, 2009 [12] DWT-based ApEn - ANN A - E 99.60 

ACD - E 96.65 
Ling Guo et al., 

2010 [13] 
DWT - Line length features - 
MLPNN 

A - E 99.60 
ACD - E 97.75 
ABCD - E 97.77 

Rivero et al.,  
2011 [53] Time-frequency analysis - KNN ABCD - E 98.40 

Nicolaou et al., 
2012 [47] PermEn - SVM 

A - E 93.55 
B - E 82.88 
C - E 88.00 
D - E 79.94 

Reza Yaghoobi 
et al., 2014 [52] 

Hyperbolic Tangent-Tangent 
plot 

CD - E 92.42 
AB - CD 97.41 

Handayani et al., 
2015 [55] SCICA - PS - ANN (MLP) AB - CD - E 94.00 

Peker et al.,  
2016 [54] 

Dual-tree complex WT - 
Complex-valued - NN ABCD - E 99.15 

Anindya et al.,  
2016 [48] Dual-tree complex WT - SVM 

A - E 100 
B - E 100 
C - E 100 
ACD - E 100 

Sandeep et al.,  
2017 [49] 

Improved PSO - RBF Network 
(Gaussian) 

A - E 99.00 
D - E 97.00 

Lina Wang et al., 
2017 [15] 

DWT - Multi-domain features 
extraction - Nonlinear analysis ABCD - E 99.25 

Subasi et al.,  
2017 [50] DWT - PSO - SVM A - E 99.38 

Mohd Zuhair et al., 
2017 [51] DWT - ApEn - ANN/LS-SVM 

A - E 100 
B - E 100 
C - E 100 
D - E 100 
ACD - E 100 
ABCD - E 99.50 

Sutrisno et al.,  
2018 [16] 

DWT - SD/BP/SE - KNN/SVM/ 
ANN A - E 100 

This paper JPTs - LDA - SVM 

A - E 100 
B - E 100 
C - E 100 
D - E 100 
AB - E 100 
CD - E 100 
ACD - E 100 
ABCD - E 100 
AB - CD 99.38 
AB - CDE 97.50 
A - B 96.25 
AB - CD - E 99.44 

Bold indicates the highest accuracy for each experiment. 
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before feature extraction, dimensionality reduction and classification. 
Discrete JPTs (DLT and DChT) have been derived using Gauss-Lobatto 
method and applied to realize efficient EEG rhythms decomposition. 
Furthermore, LDA is applied on extracted statistical, energy and entropy 
features for dimensionality reduction, and more informative and 
discriminative low dimension features are computed and feed as inputs 
of the L-SVM and LS-SVM with Gaussian RBF kernel for the classification 
task. Twelve experiments closely related to clinical applications in epi-
lepsy seizures detection are examined and promising results are ach-
ieved related to maximum accuracies between 96.25–100 %. Overall, it 
is found that the proposed processing chain is useful to clinicians for 
automatic seizures detection and prediction in epilepsy. In addition, the 
result of EEG signal classification using SVMs shows that JPTs-based 

feature extraction combined to dimensionally reduction could improve 
the performance of classifiers. As prospects, it is necessary to construct 
fast algorithms of JPTs. Furthermore, randomness as a measure of 
complexity can be evaluated in order to classify different neurological 
disorders such as epilepsy, autism and Parkinson diseases. And it would 
be also interesting to analyze the learning efficiency of these models on 
the localization of the epileptogenic area. 
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Appendix A 

Legendre polynomials are Jacobi polynomials for α = β = 0. They are orthogonal on [ − 1,1] with respect to the weight function ω(x) = 1. Their 
three terms recurrence relation and orthogonality relation are defined by Eqs. (A.1) and (A.2), respectively. 
⎧

⎨

⎩

Li+1(x) =
2i + 1

i + 1
xLi(x) −

i

i + 1
Li−1(x) , i = 1, 2, 3, ...

L0(x) = 1 , L1(x) = x

(A.1)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(Li, Lj)ω =
∫

1

−1

Li(x)Lj(x)dx = d2
i δij

d2
i = 2

2i + 1

(A.2) 

Chebychev polynomials of the 1st kind are Jacobi polynomials for α = β = − 1/2. They are orthogonal on [ − 1, 1] with respect to the weight 
function ω(x) = (1 − x2)−1/2. Their three terms recurrence relation, trigonometric form and orthogonality relation are defined by Eqs. (A.3), (A.4) and 
(A.5), respectively. 
{

Ti+1(x) = 2xTi(x) − Ti−1(x) , i = 1, 2, 3, ...
T0(x) = 1 , T1(x) = x

(A.3) 

Fig. A1. Curves of some (a) Legendre and (b) Chebychev polynomials.  
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Ti(x) = cos
[

icos− 1(x)
] 

, i ≥ 0  (A.4)  

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(Ti, Tj)ω =
∫

1

−1

Ti(x)Tj(x)
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − x2
√ dx = d2

i δij

d2
0 = π

d2
i = π

2
, i ≥ 1

(A.5) 

Chebychev polynomials also satisfy a particular discrete orthogonality relation. If xk (k = 1, 2, ...,m) are the exactly m zeros of Tm(x) in [ − 1,1], and 
if i, j ≺ m, then: 

∑

m

k=1

Ti(xk)Tj(xk) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 , i ∕= j

m

2
, i = j ∕= 0

m , i = j = 0

(A.6) 

With 

xk = cos(π 2k − 1

2m
) , k = 1, 2, 3, ...,m (A.7) 

Within the interval [ − 1, 1], Fig. A1 presents the oscillations and changes that occur for Legendre and Chebychev polynomials having the same 
frequency as the data set used. It is related that Legendre and Chebychev polynomials don’t change much over time and present similar characteristics 
to those of stationary signals. Thus, they can be called stationary signals and the FT will be adequate for their analysis [41]. 
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