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THE MHM METHOD FOR ELASTICITY ON POLYTOPAL MESHES

ANTÔNIO TADEU A. GOMES∗, WESLLEY S. PEREIRA† , AND FRÉDÉRIC VALENTIN‡

Abstract. The multiscale hybrid-mixed (MHM) method consists of a multi-level strategy to
approximate the solution of boundary value problems with heterogeneous coefficients. In this con-
text, we propose a new family of finite elements for the linear elasticity equation defined on coarse
polytopal partitions of the domain. The finite elements rely on face degrees of freedom associated
with multiscale bases obtained from local Neumann problems with polynomial interpolations on
faces. We establish sufficient conditions on the fine-scale interpolations such that the MHM method
is well-posed. Also, discrete traction stays in local equilibrium with external forces. We show by
means of a multi-level analysis that the MHM method achieves optimal convergence under local reg-
ularity conditions without refining the coarse partition. The upshot is that the Poincaré and Korn’s
inequalities do not degenerate, and then convergence arises on general meshes. We employ two- and
three-dimensional numerical tests to assess theoretical results and to verify the robustness of the
method through a multi-layer media case. Also, we address computational aspects of the underlying
parallel algorithm associated with different configurations of the MHM method; our aim is to find the
best compromise between execution time and memory allocation to achieve a given error threshold.

1. Introduction. The modeling of elastic phenomena often involves linear dif-
ferential equations with heterogeneous coefficients defined on intricate domains. For
instance, in geological modeling, data include complex geological layers with struc-
tures over a wide range of length scales and, sometimes, the surface topography. In
this case, details matter; the numerical solution may strongly differ if the mesh does
not account for the multiple scales properly. In standard finite element methods, this
constraint demands very fine meshes, which enlarges the computational cost. Further-
more, numerical methods ideally should preserve essential physical properties, such as
symmetry and conformity of the stress field, and local equilibrium of the stress field
with external forces, which require high-order polynomial interpolations [6] and, then,
additional computational resources. The common approach has been to relax sym-
metry, local equilibrium, or conformity. These options have been actively pursued,
with works dating from the eighties [5, 43] to the present day [22, 7].

Finite element methods on polytopal partitions for elastic models have undertaken
significant development in the last years [16, 39, 45, 37]. They bring flexibility to deal
with complex geometries avoiding unnecessary spread in the mesh refinement. When
associated with domain decomposition approaches, polytopal finite elements become
an attractive and compelling option to decrease computational costs.

In this context, the multiscale finite element methods, started with the seminal
work [8], can be interpreted as members of the domain decomposition approach; exam-
ples include [29, 30, 4, 1, 32]. These methods propose upscaling numerical strategies to
solve problems using coarse partitions. They use localized multiscale basis functions
to recover structures of the solution lost by the unresolved fine scales. From a com-
putational viewpoint, these methods fit well in massively parallel computer systems
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because they allow for the multiscale basis functions to be computed in a decoupled
fashion. Nevertheless, the global part of these methods remains a computational
bottleneck–especially in realistic three-dimensional problems—because of its coupled
form. One of the strategies to decrease the number of degrees of freedom in the global
part of the multiscale methods is to combine the flexibility of polytopal meshes with
non-conforming, skeleton-based methods. These methods employ degrees of freedom
on the faces of the mesh skeleton at the global level and can cope with jumping coef-
ficients without aligning faces at the local level. Also, discontinuous interpolations on
faces play an essential role in maintaining accuracy in such a crossing-face interface
scenario.

In this work, we propose a new family of polytopal finite elements for the Multi-
scale Hybrid-Mixed (MHM for short) method applied to the two- and three-dimensional
linear elasticity model. It extends the construction and the analysis of the MHM
method proposed in [28] by following the recent strategy given in [9] for the two-
dimensional Poisson equation. In addition to the extension of [28] to more general
meshes, the contributions of the present work are the following:

• it allows discontinuous polynomial interpolations on faces to account for
crossing-face interfaces. This feature is also new for simplicial elements in
the context of the method proposed in [28];

• it accounts for face partitioning and fine-scale meshes in the analysis of well-
posedness and convergence of the method. Such a multi-level analysis is
absent in [28]. Here, we extend the analysis of [9] to the linear elasticity
model in two- and three-dimensions thanks to a new Fortin operator;

• it establishes optimal error estimates in natural norms under local regularity
assumption, which are robust regarding the Poincaré and Korn constants.
The upshot is that convergence does not degenerate on general meshes. It
corresponds to a new aspect of the MHM method for the elasticity model not
presented in [28], even for simplicial meshes;

• it proves optimal convergence in the L2 norms for non-convex polytopal ele-
ments under a mild condition on the shape of elements;

• it validates the MHM method numerically for two- and three-dimensional
elasticity problems. Such validations are also new for the simplicial meshes
in [28]. Numerical results also verify the accuracy of the solutions in a high-
contrast problem with complex topography using non-aligned meshes;

• it highlights the computational performance of the underlying MHM algo-
rithm on a parallel computing system, which complements [21].

The paper’s outline is as follows: In Section 2, we present the linear elasticity
model and a hybrid version of it. Then, we introduce the framework to address the
decomposition of the exact solution on a general partition of the domain. We dedicate
Section 3 to the MHM method and prove its well-posedness in Section 4. We present
error estimates in Section 5. We dedicate Section 6 to the numerical validation and
the assessment of computational performance. We present some concluding remarks
in Section 7.

2. The model and its hybrid version.

2.1. The elasticity model. Let Ω ⊂ Rd, d ∈ {2, 3}, be an open and bounded
domain with polygonal Lipschitz boundary ∂Ω. Consider the elasticity problem of
finding a displacement u : Ω→ Rd satisfying
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(2.1)

{
−∇· (C ε(u)) = f in Ω ,

u = g on ∂Ω ,

where g ∈ H1/2(∂Ω) and f ∈ L2(Ω) are given functions. The fourth-order stiffness
tensor C = C(x) may embed multiple geometrical scales, and satisfies the following
symmetries Cijkl = Cijlk = Cklij . We assume C is bounded and uniformly positive-
definite, i.e., there exist positive constants cmin and cmax such that

cmin|ε|2 6 (C(x) ε) : ε and (C(x) τ ) : ε 6 cmax|τ ||ε| for all τ , ε ∈ Rd×dsym ,(2.2)

for almost every x ∈ Ω. The space Rd×dsym stands for the set of symmetric d×d matrices,
d ∈ N, and ε(u) for the infinitesimal strain tensor, i.e.,

ε(u) :=
∇u+ (∇u)T

2
where ε(u)ij :=

1

2

(
∂xjui + ∂xiuj

)
.

Above, and throughout, the indexes run from 1, . . . , d, even when not explicitly men-
tioned; the symbol “∇· ” denotes the row-wise divergence operator, and ∂xiuj stands
for the ith partial derivative of the jth entry of u.

We denote by v · w and τ : ε the usual inner products in spaces Rd and Rd×d,
i.e.,

v ·w :=

d∑
i=1

vi wi and τ : ε :=

d∑
i,j=1

τij εij ,

and by |v| and |τ | the norms each of such inner products induce. Owing to such
notation, the classical weak form of (2.1) is

(2.3)

∫
Ω

C ε(u) : ε(w) dx =

∫
Ω

f · v dx for all v ∈H1
0(Ω) ,

u = g on ∂Ω .

Under the previous assumptions, there exists a unique function u ∈ H1(Ω) satisfy-
ing (2.3) (c.f. [20, Proposition 2.10]). As a consequence of (2.3), the stress tensor
σ := C ε(u) belongs to H(div; Ω;S), where H(div; Ω;S) is the space of symmetric
tensors in H(div; Ω). Above, and hereafter, we adopt typical notation for Sobolev
and Lebesgue spaces (see [20] for instance).

2.2. Broken spaces and some important inequalities. Let P be a col-
lection of closed and bounded d-polytopes K, such that Ω = ∪K∈PK. Define
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H := maxK∈P hK , where hD := supx,y∈D |x − y| is the diameter of an arbitrary
set D ⊂ Rn, n ∈ N. The radius of the largest inscribed ball in D reads ρD, and
the shape regularity of D is denoted by σD :=

hD
ρD

. We also introduce ∂P as the

collection of boundaries ∂K, and E as the set of the faces in P, that is

∂P := {∂K : K ∈P} ,
E := {E = K ∩K ′ or K ∩ ∂Ω : K,K ′ ∈P, and E is a (d− 1)-polytope } .

The set of internal faces is E0, i.e., E0 := {E ∈ E : E 6⊂ ∂Ω}. Associated to the
partition P, we define the function spaces

(2.4)

V := H1(P) with norm ‖v‖2V :=
∑
K∈P

(
h−2

Ω ‖v‖
2
0,K + ‖ε(v)‖20,K

)
,

Λ := {τ nK |∂K : τ ∈ H(div; Ω;S) for all K ∈P} with norm

‖µ‖Λ := inf
τ∈H(div;Ω;S)

τ nK=µ on ∂K,K∈P

‖τ‖div ,

where ‖τ‖div :=

(∑
K∈P

(
‖τ‖20,K + h2

Ω‖∇· τ‖20,K
)) 1

2

.

Above and hereafter, (·, ·)D stands for the L2(D) inner product and ‖ · ‖0,D denotes
its respective norm (we do not make a distinction between vector-valued and scalar-
valued functions). The usual norm and semi-norm in Hm(D), m ∈ N, is denoted by
‖ · ‖m,D and | · |m,D, respectively.

Also, we shall use intensively the local space of rigid body modes

(2.5) Vrm(K) :=
{
vrm ∈H1(K) : ε(vrm) = 0

}
,

and its L2(Ω)-orthogonal complement

Ṽ(K) :=

{
v ∈H1(K) :

∫
K

v · vrm dx = 0, ∀vrm ∈ Vrm(K)

}
.(2.6)

Naturally, their global space counterparts are given and denoted by

(2.7)
Vrm := {v ∈ V : v |K ∈ Vrm(K), K ∈P} ,

Ṽ :=
{
v ∈ V : v |K ∈ Ṽ(K), K ∈P

}
.
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We denote by (·, ·)V the inner-product in V given by

(v,w)V := h−2
Ω (v,w)P + (ε(v), ε(w))P for all v, w ∈ V ,

where

(u,v)P :=
∑
K∈P

∫
K

u · v dx and ‖v‖20,P :=
∑
K∈P

‖v‖20,K .

Also, we define the following broken product

〈µ,v〉∂P :=
∑
K∈P

〈µ,v〉∂K ,

for every u, v ∈ V and µ ∈ Λ, where 〈·, ·〉∂D means the duality pairing between

H−
1
2 (∂D) and H

1
2 (∂D) defined through

〈µ,v〉∂D :=

∫
D

(∇ · τ ) · v dx+

∫
D

τ : ∇v dx for all v ∈H1(D) ,(2.8)

where τ ∈ H(div; Ω;S) is such that τnD = µ on ∂D. The space V is Hilbert
with the inner product (·, ·)V as a consequence of the Korn’s inequality (see [20,
Theorem 3.78]). Space (Λ, ‖ · ‖Λ) is also Hilbert and the following equality holds (see
Lemma A.3)

‖µ‖Λ = sup
v∈V

〈µ,v〉∂P

‖v‖V
for all µ ∈ Λ .(2.9)

We lighten the notation and understand the supremum to be taken over sets excluding
the zero function even though this is not specifically indicated.

Next, we address the local Korn’s, Poincaré and trace inequalities on K ∈ P in
the context of polytopal partitions. As for the Korn’s inequality on the space Ṽ, we
prove in Lemma A.1 that the following local Korn’s inequality holds: There exists a
positive constant Ckorn,K , independent of hK , such that

‖∇ṽ‖0,K 6 Ckorn,K‖ε(ṽ)‖0,K for all ṽ ∈ Ṽ(K) .(2.10)

The global counterpart of the local Korn’s inequality on the space V is presented in
Lemma A.2 inspired by [13]. The result highlights the existence of a positive constant
C, depending only on Ω and on the shape of the elements of K ∈P, such that
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|v|21,P 6 C

(
‖ε(v)‖20,P +

∑
K∈P

∥∥∥∥ΠRMv −
1

|K|

∫
K

v dx

∥∥∥∥2

0,K

+
∑
E∈E0

1

hE
‖JvK‖20,E

)
,

(2.11)

for all v ∈ V. Above and hereafter, the jump function is JvK |E := v |K − v |K′

for E ∈ E0, where K, K ′ ∈ P share the face E, and JvK |E := v |E for E ∈ ∂Ω.
The mapping ΠRM stands for the L2(Ω) projection onto Vrm, i.e., given v ∈ V, the
function ΠRMv |K satisfies

(ΠRMv,v
rm)K = (v,vrm)K for all vrm ∈ Vrm(K) ,(2.12)

which immediately leads to the following estimates

‖ΠRMv‖V 6 ‖v‖V, ‖v −ΠRMv‖V 6 ‖v‖V and ‖v −ΠRMv‖0,Ω 6 ‖∇v‖1,P .
(2.13)

Regarding the Poincaré and trace inequalities, we recall some known results mak-
ing sure to explicit their constant dependency in terms of the domain K. From [38,
Lemma 1.49], there is a positive constant Ctr,K such that the following trace inequal-
ities hold

‖v‖20,∂K 6 Ctr,K
(
d h−1

K ‖v‖0,K + 2 ‖∇v‖0,K
)
‖v‖0,K ,(2.14)

for all v ∈ H1(K). As for the Poincaré inequality (see [20]), it is well-known that
there exists a positive constant CP,K , depending only on the shape of K, such that

‖ṽ‖0,K 6 CP,K hK ‖∇ṽ‖0,K for all ṽ ∈ Ṽ(K) ,(2.15)

Combining (2.15) and (2.10), we obtain

‖ṽ‖0,K 6 Ckorn,KCP,K hK‖ε(ṽ)‖0,K for all ṽ ∈ Ṽ(K) .(2.16)

and from (2.14) and (2.15), we get

‖ṽ‖20,∂K 6 Ctr,K CP,K (dCP,K + 2) hK ‖∇ṽ‖20,K for all ṽ ∈ Ṽ(K) .(2.17)

Above and hereafter, we shall make systematically use of the following constants
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Ckorn := max
K∈P

Ckorn,K , Ctr := max
K∈P

Ctr,K , and CP := max
K∈P

CP,K(2.18)

where CP,K , Ckorn,K and Ctr,K denote the local Poincaré, Korn’s and the trace con-
stants, respectively. From now on, we use C to represent a generic constant indepen-
dent of the mesh size.

Remark 2.1. We outline below some known aspects of the constants Ctr,K and
CP,K in terms of the shape of K ∈P.

• let T K be a simplicial conforming partition of K, and define

σ̄K := max
τ∈T K

hτ
ρτ

, %̄K :=
minτ∈T K hτ

hK
.(2.19)

Then, adapting the proof of [38, Lemma 1.49] to be used on ∂K, we conclude
that the constant in (2.14) corresponds to Ctr,K = (d + 1) σ̄K if K is a sim-
plex, and Ctr,K = (d+ 1) σ̄K %̄

−1
K otherwise;

• it is well-known (see [34]) that the constant CP,K is equal to π−1 for convex
domains no matter the aspect ratio of K; for star-shaped polytopal elements
K, the constant CP,K in (2.15) depends only on d and the shape of K [44].
Recently, [36, Lemma 3.4] refined such a result and proved that CP,K depends
only on d and ρ, where ρ is the radius of star-shaped domain embedding K;

• if one assumes some kind of control on the aspect ratio on K, notably h2
K ≤

C|K|, as well as the existence of a natural number N such that, for every
K ∈ P, there exists a collection of points x1, . . . ,xN ∈ K and a collection
M1, . . . ,MN of closed (possibly overlapping) subsets of K such that Mi is
star-shaped with respect to xi and K = ∪Ni=1Mi, then one obtains CP,K =
C (1 +N), where C is independent of K (c.f. [46]).

�

2.3. Characterizing the exact solution. We extend the approach proposed
in [28] for simplexes and quadrilateral elements, and propose a decomposition of the
exact solution in terms of local problems defined on polytopal elements. The first step
is to observe that the exact solution u decomposes locally in the following direct sum

u = urm + ũ with urm ∈ Vrm(K) and ũ ∈ Ṽ(K) .(2.20)

Such a characterization is a direct consequence of V written in the following direct
sum

V = Ṽ ⊕Vrm ,

where the spaces are given in (2.7). Then, we assume that ũ ∈ Ṽ can be parameterized
in terms of a function λ ∈ Λ and the datum f ∈ L2(Ω) by
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ũ = Tλ+ T̂f ,(2.21)

where the mappings T ∈ L(Λ, Ṽ) and T̂ ∈ L(L2(Ω), Ṽ) are defined locally as follows

• for all µ ∈ Λ and K ∈P, Tµ |K ∈ Ṽ(K) is the unique solution of

∫
K

Cε(T µ) : ε(ṽ) dx = 〈µ, ṽ〉∂K for all ṽ ∈ Ṽ(K) ;(2.22)

• for all q ∈ L2(Ω) and K ∈P, T̂q |K ∈ Ṽ(K) is the unique solution of

∫
K

Cε(T̂q) : ε(ṽ) dx =

∫
K

q · ṽ dx for all ṽ ∈ Ṽ(K) .(2.23)

The following result ensures T and T̂ are well-defined continuous mappings and
then ũ is well-defined.

Lemma 2.2. Given q ∈ L2(Ω) and µ ∈ Λ there is a unique function w̃ := Tµ+

T̂q ∈ Ṽ(K) satisfying

∫
K

Cε(w̃) : ε(ṽ) dx =

∫
K

q · ṽ dx+ 〈µ, ṽ〉∂K for all ṽ ∈ Ṽ(K) ,(2.24)

for all K ∈P. Moreover, it holds

(2.25)

‖Tµ‖V 6
1

cmin

(
1 + (Ckorn CP )2

)
‖µ‖Λ for all µ ∈ Λ ,

‖T̂q‖V 6
H
cmin

(
Ckorn CP

√
1 + (Ckorn CP )2

)
‖q‖0,Ω for all q ∈ L2(Ω) .

Proof. First, notice that the bilinear form on the left-hand side and the linear
forms on the right-hand side of (2.24) are continuous with respect to the norms
‖ · ‖1,K , ‖ · ‖0,K , and ‖ · ‖−1/2,∂K , respectively. In addition, the bilinear form in

right-hand side of (2.24) is also coercive in the Ṽ(K) space, with a coercive constant
independent of K. Indeed, from the local Korn’s and Poincaré inequalities in (2.10)

and (2.15), respectively, for all ṽ ∈ Ṽ(K) it holds
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∫
K

Cε(ṽ) : ε(ṽ) dx > cmin‖ε(ṽ)‖20,K

>
cmin

C2
korn,K

‖∇ṽ‖20,K

>
cmin

2C2
korn,K

(
‖∇ṽ‖20,K +

1

H2
K C

2
P,K

‖ṽ‖20,K
)

>
cmin

2C2
korn

min{1, (hΩ CP )−2}‖ṽ‖21,K .

Hence, well-posedness follows from the Lax-Milgram lemma (e.g., [20, Lemma 2.2]).
Using (2.9) and (2.22), and H 6 hΩ it holds

cmin ‖Tµ‖2V 6
(

1 +
(Ckorn CP )2H2

h2
Ω

)
〈µ, Tµ〉P

6
(
1 + (C2

korn CP )2
)
‖µ‖Λ ‖Tµ‖V ,

and the estimate (2.25) follows. Next, from (2.23), the Cauchy-Schwarz inequality,
and Poincaré and Korn’s inequalities, we arrive at

cmin ‖ε(T̂q)‖20,P 6 (q , T̂q)Ω

6 ‖q‖0,Ω ‖T̂q‖0,Ω
6 Ckorn CP H‖q‖0,Ω ‖ε(T̂q)‖0,P .(2.26)

Then, using the (2.16) and (2.26), and the definition of the V-norm, we obtain

‖T̂q‖2V =
1

h2
Ω

‖T̂q‖20,Ω + ‖ε(T̂q)‖20,P

6
1

c2min

((
(Ckorn CP )2H2

)2
h2

Ω

+ (Ckorn CP H)
2

)
‖q‖20,Ω

6
1

c2min

(
(Ckorn CP )2H2

(
1 +

(Ckorn CP )2H2

h2
Ω

))
‖q‖20,Ω .

Next, it remains to set urm and λ such that (2.20) represents the exact solution
using the definition (2.21). To this end, we define a(·, ·) and b(·, ·) as the following
continuous bilinear forms given by

(2.27)
a : Λ×Λ→ R with a(λ,µ) := 〈µ, Tλ〉∂P ,

b : Λ×Vrm → R with b(µ,vrm) := 〈µ,vrm〉∂P ,

and search the pair (λ,urm) ∈ Λ×Vrm as the solution of the following global problem
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{
a(λ,µ) + b(µ,urm) = −〈µ, T̂f〉∂P + 〈µ, g〉∂Ω for all µ ∈ Λ ,

b(λ,vrm) = −(f ,vrm)P for all vrm ∈ Vrm .
(2.28)

The next result ensures the existence and uniqueness of a solution for problem
(2.28) such that the function u given through (2.20) and (2.21) recovers the exact
solution of the original problem. Our proof extends the proof of [28, Theorem 4.2] for
simplicial meshes to polytopal partitions. For the sake of completeness, we provide
all the details.

Theorem 2.3. There exist positive constants α and β, independent of the partition
P, such that

a(µ,µ) ≥ α ‖µ‖2Λ for all µ ∈ N ,(2.29)

sup
µ∈Λ

b(µ,vrm)

‖µ‖Λ
≥ β ‖vrm‖V for all vrm ∈ Vrm ,(2.30)

where

N := {µ ∈ Λ : 〈µ,vrm〉∂P = 0 for all vrm ∈ Vrm} .

Hence, (2.28) has a unique solution (λ,urm) ∈ Λ×Vrm. Moreover, the following
characterization of the exact solution u holds

u = urm + Tλ+ T̂f ,(2.31)

where λ corresponds to

λ = (C ε(u))nK on ∂K , for all K ∈P .

Proof. Let µ ∈ N and σµ := C ε(Tµ). Observe from (2.22) that σµ nK |∂K =
µ ∈ Λ for all K ∈P, and thus, the stress tensor σµ ∈ H(div; Ω;S). Also, it follows
from (2.22) that ∇·σµ = 0. As a result, we get

a(µ,µ) =
∑
K∈P

∫
K

σµ : C−1σµ dx >
1

cmax

∑
K∈P

‖σµ‖20,K =
‖σµ‖2div

cmax
>

1

cmax
‖µ‖2Λ ,

and then (2.29) holds with α = c−1
max. As for (2.30), first take vrm ∈ Vrm and notice

that there is a symmetric field σ∗ ∈ H1(Ω)d×d such that

∇·σ∗ = vrm in Ω and ‖σ∗‖1,Ω 6 C ‖vrm‖0,Ω ,(2.32)

where C is a positive constant depending only on Ω. The result (2.32) follows from
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a classical argument. First, we extend vrm to a larger smoothly bounded domain
BΩ ⊃ Ω such that vrm = 0 in BΩ\Ω, and define u∗ ∈H1

0(BΩ) as the unique solution
satisfying ∇· (ε(u∗)) = vrm in Ω. From a standard regularity argument for elliptic
problems, e.g., [20, §3.1.3], it holds u∗ ∈ H2(BΩ) and ‖u∗‖2,BΩ

6 C ‖vrm‖0,BΩ
with

c depending only on BΩ. Thereby, we consider the symmetric field σ∗ := ε(u∗) ∈
H1(BΩ)d×d observing that ∇·σ∗ = vrm in BΩ. Thereby, the inequality in (2.32)
follows as

‖σ∗‖1,Ω ≤ ‖σ∗‖1,BΩ
6 C ‖vrm‖0,BΩ

= C ‖vrm‖0,Ω .

Next, we set µ∗ := σ∗nK ∈ Λ for all K ∈P, and arrive at

‖µ∗‖Λ ‖vrm‖V ≤ ‖σ∗‖div ‖vrm‖V 6 C ‖vrm‖20,Ω = C (∇·σ∗,vrm)Ω = C b(µ∗,vrm) .

and then, it holds

‖vrm‖V 6 C
b(µ∗,vrm)

‖µ∗‖Λ
,(2.33)

which proves (2.30). The well-posedness of (2.28) follows from the standard saddle-
point theory (c.f. [20]). Notice that the function in (2.31) satisfies the original problem
(2.3) using the global-local problem (2.22)-(2.23) and (2.28), and the characterization
of the exact solution follows from uniqueness. The traction is represented by λ as a
consequence of (2.31) and the definition of the local problem (2.22).

The MHM method relies on the discretization of the global-local formulation
(2.22)-(2.23) and (2.28) instead of the standard formulation (2.3). This is addressed
next.

3. The MHM method. The MHM method uses a multi-level discretization
starting from the first-level partition P. Notably, each face E ⊂ E and polytopal
element K ∈ P may carry its own family of partitions in a way that each member
is a priori independent of each other. Nevertheless, in view of the numerical analy-
sis of the method, a compatibility condition between the different partition levels is
mandatory which yields a mild assumption in the form of the polytope element K
with an underlying minimum angle condition. To be more specific, one needs some
further notations first.

Without loss of generality, we shall use hereafter the terminology employed for
three-dimensional domains. Let {EH}H>0 be a family of partitions of E , and set

H := maxF∈EH hF . We call EKH the collection of faces F ∈ EH such that F ⊂ ∂K.

Assumption (A): For each K ∈P, there exists
{

ΞKH
}
H>0

, a shape-regular family

of conforming simplicial partitions of K matching with {EH}H>0, i.e., such that, for
each F ∈ EKH , there exists an element τF ∈ ΞKH with ∂τF ∩ ∂K = F .

Owing to Assumption (A) and for every H > 0, we also define:
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(i) the minimal partition ΞH given by

ΞH := ∪K∈PΞKH .

Its shape-regularity constant is σΞ := maxK∈P max
τ∈ΞKH

στ ;

(ii) a shape-regular family of simplicial partitions
{
T Kh
}
h>0

on K from successive

refinements of ΞKH , and

Th := ∪K∈PT Kh and σT := max
K∈P

max
τ∈T Kh

στ .(3.1)

See Figure 3.1 for an illustration of the partitions P, EH and Th.

E

K1 K2

Global partition P

H

F

Skeleton mesh EH

H Minimal partition ΞH

ThK1

τ

h

ThK2

τ

Local meshes:

Figure 3.1. A two-dimensional polygonal domain with the overlaid meshes P, ΞH and Th.
The red dots stands for the degrees of freedom associated with the faces and the black dots with the
local meshes.

To this end, we define discrete spaces using the face partition EH and the second-
level mesh Th, as follows

(3.2)

ΛH(K) := {µH ∈ L
2(∂K) : µH |F ∈ P`(F )d , ∀F ∈ EKH }, ` > 1 ,

Vh(K) := {vh ∈ C0(K) : vh|τ ∈ Pk(τ)d ,∀ τ ∈ T Kh }, k > `+ d ,

Ṽh(K) := Vh(K) ∩ Ṽ(K) ,

where k, ` ∈ N+ and Ps(D) is the space of polynomials of degree less or equal to s on
D. The corresponding global spaces are

(3.3)
Vh := {vh ∈ V : vh |K ∈ Vh(K), K ∈P} , Ṽh := Vh ∩ Ṽ ,

ΛH := {µH ∈ Λ : µH |∂K ∈ ΛH(K), K ∈P} .
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The MHM method consists of finding (λH ,u
rm
h ) ∈ ΛH ×Vrm such that

ah(λH ,µH) + b(µH ,u
rm
h ) = −〈µH , T̂hf〉∂P + 〈µH , g〉∂Ω for all µH ∈ ΛH ,

b(λH ,v
rm) = −(f ,vrm)P for all vrm ∈ Vrm ,

(3.4)

where b(·, ·) is given in (2.27), and the discrete bilinear form ah(·, ·) defined by

(3.5) ah : Λ×Λ→ R where ah(λ,µ) := 〈µ, Thλ〉∂P .

The mappings Th ∈ L(Λ, Ṽh) and T̂h ∈ L(L2(Ω), Ṽh) approximate T and T̂
given in (2.22)-(2.23). In this work, these approximations correspond to the Galerkin
method on the standard continuous polynomial interpolation spaces, i.e., we set

• for all µ ∈ Λ and K ∈P, Thµ |K ∈ Ṽh(K) is the unique solution of

(3.6)

∫
K

Cε(Thµ) : ε(ṽh) dx = 〈µ, ṽh〉∂K for all ṽh ∈ Ṽh(K) ;

• for all q ∈ L2(Ω) and K ∈P, T̂hq |K ∈ Ṽh(K) is the unique solution of

(3.7)

∫
K

Cε(T̂hq) : ε(ṽh) dx =

∫
K

q · ṽh dx for all ṽh ∈ Ṽh(K) .

It is essential at this point to bring some comments on the MHM method (3.4)
regarding its flexibility and properties, before heading to its numerical analysis.

Remark 3.1.

• Notice that, the proof of Lemma 2.2 still holds if we replace (2.22)–(2.23)
by (3.6)–(3.7) and, therefore, we conclude that the mappings Th and T̂h are
well-defined and bounded as follows
(3.8)

‖Thµ‖V 6
1

cmin

(
1 + (Ckorn CP )2

)
‖µ‖Λ for all µ ∈ Λ ,

‖T̂hq‖V 6
H
cmin

(
Ckorn CP

√
1 + (Ckorn CP )2

)
‖q‖0,Ω for all q ∈ L2(Ω) .

• The proposed method (3.4) preserves the local equilibrium in the sense that,
for all K ∈P,∫

∂K

λH · vrm ds +

∫
K

f · vrm dx = 0 for all vrm ∈ Vrm ,
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where λH is the discrete traction field on ∂K. In the case of multi-query
purposes (i.e., f changes multiple times), the method (3.4) can be rewritten
without contribution T̂hf , by using the following equivalence

〈µ, T̂hf〉∂K =

∫
K

C ε(Thµ) : ε(T̂hf) dx =

∫
K

Thµ · f dx .(3.9)

Also, observe that T̂hf = 0 if f ∈ Vrm, and then, we can disregard the term
T̂hf without undermining convergence if f is a low degree polynomial func-
tion.

• The mappings Th and T̂h can be defined quite generally and encompass other
methods. Such a choice depends on which unknown one wants to approximate
accurately and impacts the robustness of the method in terms of physical co-
efficients. For instance, to ensure that the method yields a numerical stress
tensor σHh ∈ H(div; Ω;S), we can constrain ΛH and redefine Th and T̂h using
a stable mixed finite element method. This alternative addressed in [18] and
named MHM-Hdiv method relaxes symmetry and produces a discrete stress
tensor in H(div; Ω;S) with optimal convergence. In such a case, we mitigate
the increased complexity of the local problems with the outcome to release
an accurate stress tensor σHh in H(div; Ω;S). Although both methodologies
work on general polygonal meshes and can achieve convergence without refin-
ing the global partition, the construction and analysis of the current method
and the MHM-Hdiv are fundamentally different. Besides, we can improve
the robustness of the method to deal with quasi-incompressible materials
adopting stabilized finite element methods to define Th and T̂h. This option,
proposed in [35], corresponds to an alternative to using a mixed finite element
method as a second-level solver on this regard.

• The one-level MHM method corresponds to replace Th and T̂h by T and T̂
in (3.4) (see [28] for details). Although, the one-level method may not be
effective since no closed formula is available for local problem solutions in
general, such a perspective leads to interesting insights about the relation-
ship between the MHM method and more standard methods (see [26, 25] for
the Poisson equation case). Also, it works as a first step and a guideline
towards more effective two-level methods since the one-level approach yields
symmetric stress variables σH := C ε(urm +TλH + T̂f) in H(div; Ω;S) that
satisfy the equilibrium equation ∇·σH + f = 0 exactly.

�

Summary: The exact displacement u is approximated by the H1(Ω) non-conforming
discrete solution uHh given by

uHh := urm
h + ThλH + T̂hf ,(3.10)

where (urm
h ,λH) solves the global system (3.4) and Th and T̂h are computed from the

local problems (3.6)-(3.7). We recover a symmetric approximation of the exact stress
field σ by the simple post-processing σHh := Cε(uHh).
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4. Well-posedness. This section proves the well-posedness of the MHM method
(3.4). To this end, we extend the classical work [40] to more general polytopal elements
including face partitioning. The main ingredient is the construction of a new Fortin
operator under the condition k ≥ ` + d, where ` and k are the degree of polynomial
functions in ΛH and Vh, respectively.

4.1. A Fortin operator. The Fortin operator inherits the two-level charac-
teristic of the method. Thereby, we first define the second-level form of the Fortin
operator. Roughly, the demonstration combines the strategies proposed in [10] and
[23].

Lemma 4.1. Let τ ∈ Th and F ⊂ ∂τ , and assume ` > 1 . For all v ∈ H1(τ) ,
there exists a unique ρτF (v) ∈ PF`+d(τ)d, with

PF`+d(τ)d := {p ∈ P`+d(τ)d : p|∂τ\F = 0} ,

such that

(4.1)

∫
τ

(ρτF v − v) · q dx = 0, for all q ∈ P`−1(τ )d ,∫
F

(ρτF v − v) · µ ds = 0, for all µ ∈ P`(F )d ,

and

‖ρτF v‖0,τ + hτ |ρτF v|1,τ ≤ C (‖v‖0,τ + hτ |v|1,τ ) ,(4.2)

where C is a positive constant depending only on d, ` and στ .

Proof. We first follow closely the proof of [23, Lemma 3.1] adapted to the second-

level mesh. Define P̊`+d(τ) as the space of functions in P`+d(τ) that vanish on ∂τ

and, analogously, define P̊`+d(F ) as the space of functions in P`+d(F ) that are zero
on ∂F . Also, let bτ and bF be the product of all barycentric coordinates that do not
vanish everywhere on τ and F , respectively. The following equivalences hold

P̊`+d(τ) = bτ P`−1(τ) and P̊`+d(F ) = bF P`(F ) ,(4.3)

and, consequently dim(̊P`+d(τ)) = dim(P`−1(τ)) and dim(̊P`+d(F )) = dim(P`(F )) .
Then, we arrive at

dim(PF`+d(τ)d) = (dim(̊P`+d(τ)))d + (dim(̊P`+d(F )))d ,(4.4)

and it follows from (4.4) that the system (4.1) is squared. To verify the invertible of
the system, it suffices to show that v = 0 leads to ρτF v = 0 . For this, observe that

ρτF v|F ∈ P̊`+d(F )d , and then ρτF v|F = bFµ` for some µ` ∈ P`(F )d from (4.3). Then,
using the first equation in (4.1) we find ρτF v vanishes on F , so ρτF v = bτq`−1 for
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some q`−1 ∈ P`−1(τ )d. Then, the second equation in (4.1) implies that ρτF v = 0 on
τ .

Now, we adapt [10, Lemma 3.1] to prove (4.2). Let {ϕi}
d1
i=1 ⊂ PF`+d(τ)d, {qi}

d2
i=1 ⊂

P`−1(τ)d and {µi}
d3
i=1 ⊂ P`(F )d be basis, where d1, d2, d3 ∈ N+ and d1 = d2 + d3.

Since τ is a simplex, we define an affine transformation Fτ : τ̂ → τ , where τ̂ ∈ Rd is
a reference element. It is well-known that (see [12, §2.1.3] and [20, lemma 1.100])

∫
τ

ϕj · qi dx =
meas(τ)

meas(τ̂)

∫
τ̂

ϕ̂j · q̂i dx̂ , 1 6 i 6 d2 , 1 6 j 6 d1 ,∫
F

ϕj · µi ds = |(∇(F−1
τ ))t n̂F |

meas(τ)

meas(τ̂)

∫
F̂

ϕ̂j · µ̂i dŝ , 1 6 i 6 d3 , 1 6 j 6 d1 ,

where n̂F represents the outward normal vector on τ̂ restricted to the face F̂ . Next,
define the matrices Â := (âij)i,j ∈ Rd2×d1 and B̂ := (b̂ij)i,j ∈ Rd3×d1 , where

âij :=
1

meas(τ̂)

∫
τ̂

ϕ̂j · q̂i dx̂ ,

b̂ij :=
1

meas(τ̂)

∫
F̂

ϕ̂j · µ̂i ds ,

and set

A := meas(τ)

(
Id2×d2 0

0 |(∇(F−1
τ ))t n̂F | Id3×d3

)(
Â

B̂

)
∈ Rd1×d1 ,

where Id2×d2 (resp. Id3×d3) is the identity matrix in Rd2×d2 (resp. Rd3×d3). Given
v ∈H1(τ), we set f := (fi)i ∈ Rd2 and g := (gi)i ∈ Rd3 as follows

(4.5)

fi :=

∫
τ

v · qi dx , 1 6 i 6 d2 ,

gi :=

∫
F

v · µi ds , 1 6 i 6 d3 ,

and look for α = (αi)i ∈ Rd1 , the solution of the following algebraic system

Aα =

(
f
g

)
.

Owing to the previous definitions, and using that A is invertible, we estimate the
norm of the coordinate vector α as follows

√√√√ d1∑
i=1

α2
i =

∣∣∣∣A−1

(
f
g

)∣∣∣∣ 6 meas(τ)−1

∣∣∣∣∣
(
Â

B̂

)−1
∣∣∣∣∣
max

·
∣∣∣∣( f
|(∇(F−1

τ ))t n̂F |−1g

)∣∣∣∣
6

C

meas(τ)
max

16i6d2
16j6d3

{
|fi|,

|gj |
|(∇(F−1

τ ))t n̂F |

}
,(4.6)
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where |·|max stands for the norm of maximum in the codomain of A, and C denotes
a constant depending only on d and `. Now, we estimate the right-hand side of (4.6).
For that, we select the nodal Lagrangian basis {qi}i and {µi}i such that |qi(·)| 6 1
and |µi(·)| 6 1. Then, using Cauchy-Schwarz inequality on (4.5) and the nodal
Lagrangian basis we obtain

|fi| 6 ‖v‖0,τ‖qi‖0,τ = ‖v‖0,τ

√∫
τ

|qi(x)|2 dx 6 meas(τ)
1
2 ‖v‖0,τ .

To bound the other term, we follow the same path to get

|gj | = |(∇(F−1
τ ))t n̂F |

meas(τ)

meas(τ̂)

∣∣∣∣∫
F̂

v̂ · µ̂j dŝ

∣∣∣∣
6 |(∇(F−1

τ ))t n̂F |
meas(τ)

meas(τ̂)
meas(F̂ )

1
2 ‖v̂‖0,F̂ (|µ̂j(·)| 6 1) .

(4.7)

Now, using the trace inequality (2.14) and scaling arguments, we obtain

‖v̂‖0,F̂ 6 σ
1
2

τ̂

(
d h−1

τ̂ ‖v̂‖0,τ̂ + 2 ‖∇v̂‖0,τ̂
) 1

2 ‖v̂‖
1
2

0,τ̂

6
meas(τ̂)

1
2

meas(τ)
1
2

σ
1
2

τ̂

(
d

hτ̂
‖v‖0,τ + 2

hτ
ρτ̂
‖∇v‖0,τ

) 1
2

‖v‖
1
2
0,τ

6
meas(τ̂)

1
2

meas(τ)
1
2

(
d

ρτ̂
‖v‖0,τ + 2στ̂

hτ
ρτ̂
‖∇v‖0,τ

) 1
2

‖v‖
1
2
0,τ

6
meas(τ̂)

1
2

meas(τ)
1
2

(
1

2

(
d

ρτ̂
+ 1

)
‖v‖0,τ + στ̂

hτ
ρτ̂
‖∇v‖0,τ

)
,(4.8)

and from (4.7) and (4.8), we arrive at

|gj |
|(∇(F−1

τ ))t n̂F |
6 C meas(τ)

1
2 (‖v‖0,τ + hτ ‖∇v‖0,τ ) ,

where C depends only on d. Therefore, gathering the previous estimates, we conclude

meas(τ)

d1∑
i=1

α2
i 6 C

(
‖v‖20,τ + h2

τ |v|21,τ
)
.

Now, using Cauchy-Schwarz inequality and a nodal Lagrangian basis for {ϕi}i such
that |ϕi(·)| 6 1, it holds

‖ρτF v‖20,τ =

∫
τ

∣∣∣∣∣
d1∑
i=1

αiϕi

∣∣∣∣∣
2

6
∫
τ

(
d1∑
i=1

α2
i

)(
d1∑
i=1

|ϕi|2
)
6 C meas(τ)

(
d1∑
i=1

α2
i

)
6 C

(
‖v‖20,τ + h2

τ |v|21,τ
)
.(4.9)
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To conclude the result, we use the following inverse inequality [20, lemma 1.138]

hτ |ρτF v|1,τ 6 C‖ρτF v‖0,τ ,(4.10)

and thus (4.2) follows from (4.9) and (4.10).

Let Ch : H1(P)→ Vh be the Clément interpolation operator defined locally. In
other words, for every v ∈ V we define Ch(v)|K := CK

h (v) where CK
h : H1(K) →

Vh(K) is the usual Clément interpolation operator. It is well-known that the opera-
tor CK

h satisfies the following two properties (see [11]):

(i) there exists C > 0 such that

‖CK
h (v)‖1,K 6 C ‖v‖1,K ,(4.11)

(ii) for m and s satisfying 0 6 m 6 s, with s = 0, 1, there is C > 0 such that

‖v − CK
h (v)‖m,τ ≤ C hs−mτ ‖v‖s,ωKτ ,(4.12)

for all v ∈ Hs(ωKτ ) and all τ ∈ ΞKH , where ωKτ := {τ ′ ∈ ΞKH : τ ∩ τ ′ 6= ∅}. The
constants C depend only on k, d, and σΞ.

We are ready to present the global Fortin operator we use in this work.

Lemma 4.2. Consider that Assumption (A) holds, and k−d ≥ ` ≥ 1. There exists
a mapping Πh : V→ Vh such that, for all v ∈ V, it satisfies

(4.13)

∫
F

Πh(v) · µH ds =

∫
F

v · µH ds for all µH ∈ ΛH and F ∈ EH ,

‖Πh(v)‖1,P ≤ C ‖v‖1,P ,

where C is a positive constant depending only on `, k, d and σΞ.

Proof. Let K ∈ P and F ⊂ ∂K ∩ EH . From Assumption (A), there exists
τF ∈ ΞKH such that τF ∩ ∂K = F . Then, we define ρ̃KF : H1(K)→ Vh(K) as follow

ρ̃KF (v) :=

{
ρτFF (v) on τF ,

0 otherwise ,

where ρτFF (v) is given in Lemma 4.1. Notice that ρ̃KF (v) ∈ Vh(K) since T Kh is obtained
from refinements of ΞKH . Now, let Πh be the operator defined by its local counterpart

Πh(v) |K := CK
h (v) +

∑
F∈EH∩∂K

ρ̃KF

(
v − CK

h (v)
)
.
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From Lemma 4.1, we get for all µH ∈ ΛH that

∫
F

Πh(v) · µH ds =

∫
F

CK
h (v) · µH ds +

∫
F

ρ̃KF

(
v − CK

h (v)
)
· µH ds

=

∫
F

CK
h (v) · µH ds +

∫
F

ρτFF

(
v − CK

h (v)
)
· µH ds

=

∫
F

CK
h (v) · µH ds +

∫
F

(
v − CK

h (v)
)
· µH ds

=

∫
F

v · µH ds ,

which leads to the first condition in (4.13). Next, using (4.2), (4.11), and (4.12) we
get

‖Πh(v)‖21,K ≤
(
‖CK

h (v)‖21,K +
∑

F∈EH∩∂K

‖ρ̃KF (v − CK
h (v))‖21,K

)
≤
(
C‖v‖21,K +

∑
F∈EH∩∂K

‖ρτFF (v − CK
h (v))‖21,τF

)
≤ C

(
‖v‖21,K +

∑
F∈EH∩∂K

(
‖ρτFF (v − CK

h (v))‖20,τF

+ |ρτFF (v − CK
h (v))|21,τF

)
≤ C

(
‖v‖21,K +

∑
F∈EH∩∂K

(
‖v − CK

h (v)‖20,τF + h2
τF |v − CK

h (v)|21,τF

+
1

h2
τF

‖v − CK
h (v)‖20,τF + |v − CK

h (v)|21,τF
))

≤ C
(
‖v‖21,K +

∑
F∈EH∩∂K

‖v‖21,ωKτF

)
.(4.14)

From the Assumption (A), there exists a constant C > 0, depending only on k, d and
σΞ, such that∑

F∈EH∩∂K

‖v‖21,ωKτF 6 (d+ 1)
∑
τ∈ΞKH

‖v‖21,ωKτ 6 C ‖v‖
2
1,K for all v ∈H1(K) .(4.15)

The second condition in (4.13) follows from summing (4.14) over K ∈ P and using
(4.15).

Remark 4.3. The constraint k − d ≥ ` ≥ 1 in Lemma 4.2 guarantees the ex-
istence of a Fortin mapping (4.13), which leads to the well-posedness of (3.4) in
two and three-dimensional problems on polytopal meshes (Theorem 4.4). As for the
three-dimensional simplicial partitions with one-element local meshes, we recognize
the compatibility condition proposed in [23]. For the two-dimensional case, other
possibilities exist to ensure well-posedness of (3.4), such as
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• simplicial meshes with one-element local meshes, and even polynomial degree
` under the constraint k = `+ 1 [40];

• quadrilateral meshes with one-element local meshes under the constraint
k ≥ `+ 2 [28];

• polytopal meshes with “enough” refined local meshes under the conditions
k = ` + 1 or k = `. The proof follows from Lemma 4 and Lemma 5 in [9]
applied to each component of the vector function µH ∈ ΛH .

�

4.2. Existence and uniqueness. Before addressing the main well-posedness
result, we introduce two additional discrete spaces as follows.

(4.16)
Λrm := {µ ∈ Λ : µ |∂K ∈ Λrm(K), ∀K ∈P} , where

Λrm(K) :=
{
µrm ∈ L

2(∂K) : µrm|E = vrm|E , vrm ∈ Vrm(K), E ∈ E ∩ ∂K
}
,

and Λrm ⊂ ΛH as ` > 1. The well-posedness of the MHM method (3.4) is proved in
the following theorem, which generalizes [28, Theorem 6.2].

Theorem 4.4. Suppose Assumption (A) holds, and k ≥ ` + d and ` > 1. Then,
there exist positive constants α0 and β0, independent of any mesh diameters, such
that

ah(µH ,µH) ≥ α0 ‖µH‖2Λ for all µH ∈ NH ,(4.17)

sup
µH∈ΛH

b(µH ,v
rm)

‖µH‖Λ
≥ β0 ‖vrm‖V for all vrm ∈ Vrm ,(4.18)

where NH is the discrete kernel of b(·, ·), i.e.,

(4.19) NH := {µH ∈ ΛH : b(µH ,v
rm) = 0 for all vrm ∈ Vrm} ,

and then (3.4) is well-posed.

Proof. Let µH ∈ NH . From local problem (2.22), it holds

(4.20)

∫
K

C ε(ThµH) : ε(vh) dx = 〈µH ,vh〉∂K for all vh ∈ Vh .

Next, given v ∈ V, set ṽ = (I − ΠRM )v ∈ Ṽ, where ΠRM is the operator defined in
(2.12). Hence, there is a positive constant C, depending on hΩ, cmax, cmin, Ckorn, `,
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k, d and σΞ but independent of H, H and h, such that

‖µH‖Λ = sup
v∈V

〈µH ,v〉∂P

‖v‖V
(using (2.9))

≤ sup
ṽ∈Ṽ

〈µH , ṽ〉∂P

‖ṽ‖V
(using µH ∈ NH and (2.13))

≤ C sup
ṽ∈Ṽ

〈µH , ṽ〉∂P

‖ṽ‖1,P
(using (2.10))

≤ C sup
ṽ∈Ṽ

〈µH ,Πh(ṽ)〉∂P

‖Πh(ṽ)‖1,P
(using (4.13))

≤ C sup
ṽ∈Ṽ

〈µH ,Πh(ṽ)〉∂P

‖Πh(ṽ)‖V

≤ C sup
vh∈Vh

〈µH ,vh〉∂P

‖vh‖V

= C sup
vh∈Vh

∑
K∈P

∫
K
C ε(ThµH) : ε(vh) dx

‖vh‖V
(using (4.20))

≤ C cmax
( ∑
K∈P

‖ε(ThµH)‖20,K
)1/2

.

Hence, using the definition of ah(·, ·) in (3.5), we arrive at

ah(µH ,µH) = 〈µH , ThµH〉∂P =
∑
K∈P

∫
K

C ε(ThµH) : ε(ThµH) dx

≥ cmin
∑
K∈P

‖ε(ThµH)‖20,K ≥ C
cmin
c2max

‖µH‖2Λ ,

which proves (4.17). As for (4.18), we use a slightly different version of the proof
proposed in [28] in the case of polytope partitions. We give the details next for
completeness. Define the local interpolation IK on functions in L2(∂K) with value
in Λrm(K) such that, for each E ∈ E , it holds

(4.21)

∫
E

IKµ · vrm ds =

∫
E

µ · vrm ds for all vrm ∈ Vrm(K) .

Observe that Equation (4.21) is well-defined in Λrm(K) and the following local sta-
bility result holds

(4.22) ‖IKµ‖0,∂K ≤ ‖µ‖0,∂K for all µ ∈ L2(∂K) .

The global interpolation I acts on Λ ∩ L2(∂P) and has values in Λrm, and is fully
defined assuming I |K := IK . Next, using (2.13) and (4.21), we obtain, for all µ ∈ Λ
and v ∈ V,

〈Iµ,ΠRMv〉∂P = 〈µ,ΠRMv〉∂P 6 ‖µ‖Λ ‖ΠRMv‖V 6 ‖µ‖Λ ‖v‖V ,(4.23)
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and

〈Iµ,v −ΠRMv〉∂P ≤
∑
K∈P

‖IKµ‖0,∂K‖v −ΠRM v‖0,∂K (Cauchy-Schwarz ineq.)

≤ C
∑
K∈P

h
1/2
K ‖µ‖0,∂K‖∇v‖0,K (using (4.22) and (2.17))

≤ C Ckorn
∑
K∈P

‖µ‖0,∂K h1/2
K ‖ε(v)‖0,K (using (2.10))

≤ C
[ ∑
K∈P

‖µ‖20,∂K hK
]1/2
‖v‖V , (Cauchy-Schwarz ineq.)(4.24)

where C is a positive constant depending on d and the constants in (2.18).
Now, given vrm ∈ Vrm let σ∗ ∈ H1(Ω)d×d be the symmetric tensor satisfying

(2.32), define µ∗|∂K := σ∗ nK |∂K for all K ∈ P. Observe that µ∗ ∈ Λ ∩ L2(∂P),
and then, from (2.8), (2.9), and (2.32) it holds

‖vrm‖0,Ω =
(vrm,vrm)Ω

‖vrm‖0,Ω
= hΩ

(∇·σ∗,vrm)Ω

‖vrm‖V
= hΩ

〈µ∗,vrm〉∂P

‖vrm‖V
6 hΩ ‖µ∗‖Λ .

(4.25)

Using (2.14) and (2.32), and (4.25) there exists a positive constant C, depending only
on Ω and on the parameters (2.19) associated with the element K ∈P, such that

[ ∑
K∈P

‖µ∗‖20,∂K hK
]1/2

6
[ ∑
K∈P

C
((
d h−1

K + 2
)
‖σ∗‖20,K + ‖∇σ∗‖20,K

)
hK

]1/2
6 C ‖σ∗‖1,Ω 6 C ‖vrm‖0,Ω 6 C ‖µ∗‖Λ .

(4.26)

Next, we replace (4.26) in (4.24) and add the resulting estimate to (4.23), to get

‖Iµ∗‖Λ 6 C ‖µ∗‖Λ .(4.27)

Finally, using (2.33), (4.21), and (4.27), it holds

‖vrm‖V 6 C
b(µ∗,vrm)

‖µ∗‖Λ
6 C

b(I(µ∗),vrm)

‖I(µ∗)‖Λ
6 C sup

µrm∈Λrm

b(µrm,v
rm)

‖µrm‖Λ
,

where we used that Λrm ⊂ ΛH , and (4.18) follows. The well-posedness of (3.4) arises
from the saddle-point theory.

Remark 4.5. The results in Theorem 4.4 still hold if one replaces ΛH by Λrm and
assumes k ≥ d+ 1.
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5. Error Estimates. This section presents a priori error estimates for the MHM
method (3.4). The properties of the method yields a multi-level error analysis; there-
fore, we split interpolation results in global one-level and local second-level interpola-
tion estimates.

5.1. Interpolation estimates. To begin, the next lemma presents the approx-
imation properties of the global space ΛH in terms of the characteristic size H. It
corresponds to the extension of [9] to the elasticity case.

Lemma 5.1. Suppose Assumption (A) holds and let w ∈ Hm+2(P), for 0 6
m 6 ` and ` > 1, such that C ε(w) ∈ Hm+1(P)d×d. Defining µ ∈ Λ such that
µ |∂K := C ε(w)nK |∂K for each K ∈P, there exists a positive constant C, depending
only on d, σΞ, ` and Ckorn, such that

inf
µ`∈ΛH

‖µ− µ`‖Λ ≤ C Hm+1 |C ε(w)|m+1,P ,(5.1)

where ΛH is given in (3.3). Moreover, it holds

inf
µrm∈Λrm

‖µ− µrm‖Λ ≤ C H |C ε(w)|1,P .(5.2)

Proof. Given K ∈P and E ⊂ ∂K ∈ ∂P, define χKE := C ε(w)nKE ∈ H
m+1(K)

where nKE |K must be understood as the trivial extension of the unit normal nKE to
the constant vector function in K. Observe that χKE |E = µ ∈ L2(E) owing to the
regularity of the function w. Let Π`

F : L2(F ) → P`(F )d be the L2(F )-orthogonal
projection on F ⊂ E, i.e.,

∫
F

Π`
Fµ · v` ds :=

∫
F

µ · v` ds for all v` ∈ P`(F )d and µ ∈ L2(F ) ,(5.3)

and set µ` ∈ ΛH such that µ`|F := Π`
Fµ for all F ⊂ ∂K and all K ∈ P. Then, for

each partition ΞKH , and using (2.8) and [15, Lemma 3], there exists a positive constant
C, depending only on d and `, such that, for all v ∈ V(K), it holds

〈µ− µ`,v〉∂K =
∑
F⊂∂K

∫
F

(µ−Π`
Fµ) · v ds ≤

∑
F⊂∂K

C στF h
m+1
τF |v|1,τF |χ

K
E |m+1,τF ,

where τF ∈ ΞKH is the element having the face F , and στF is the shape regularity of
τF . Then,

〈µ− µ`,v〉∂K ≤ C σm+2
Ξ Hm+1

∑
F⊂∂K

|v|1,τF |χ
K
E |m+1,τF

(Assumption (A))

≤ C σm+2
Ξ Hm+1

( ∑
F⊂∂K

|χKE |2m+1,τF

)1/2( ∑
F⊂∂K

|v|21,τF

)1/2

≤ C σm+2
Ξ (d+ 1)Hm+1 |C ε(w)|m+1,K |v|1,K .
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Summing up over P, it holds

〈µ− µ`,v〉∂P ≤ C Hm+1 |C ε(w)|m+1,P |v|1,P for all v ∈ V ,(5.4)

where C depends only on d, ` and σΞ. Using the definition of Π`
F (·), for every F ∈ EH ,

we get

b(µ− µ`,vrm) = 0 for all vrm ∈ Vrm .(5.5)

As such, from (2.9) and (2.13) and Korn’s inequality (2.10), we obtain

‖µ− µ`‖Λ = sup
v∈V

b(µ− µ`, v)

‖v‖V
(using (2.9))

6 sup
v∈V

b(µ− µ`, v −ΠRMv)

‖v −ΠRMv‖V
(using (2.13) and (5.5))

= sup
ṽ∈Ṽ

b(µ− µ`, ṽ)

‖ṽ‖V

6 sup
ṽ∈Ṽ

b(µ− µ`, ṽ)

‖ε(ṽ)‖0,P
(using (2.4))

6 Ckorn sup
ṽ∈Ṽ

b(µ− µ`, ṽ)

|ṽ|1,P
(Equation (2.10))

6 C sup
v∈V

b(µ− µ`, v)

|v|1,P
,

which together with (5.4) proves (5.1). To prove (5.2), select µrm ∈ Λrm from

∫
E

(µ− µrm) · vrm ds = 0 for all vrm ∈ Vrm(K) ,(5.6)

for all K ∈ P. Observe that (5.6) is well-posed from the definition of Λrm(K) in
(4.16). Particularly, it holds from (5.6) that

〈µ− µrm,v〉∂K ≤ C H |C ε(w)|1,K |v|1,K for all v ∈ V(K) ,

since P0(K)d ⊂ Vrm(K), where the positive constant C, depending only on d using
again [15, Lemma 3]. The result (5.2) arises summing up over P, using (5.6), and
following closely the prove for the case ` ≥ 1.

Next, we present the approximation properties of the local operators Th and
T̂h. Let κ := cmax

cmin
be the measure of the contrast between elastic properties in

Ω. The following lemma brings second-level error estimates under local regularity
assumptions.
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Lemma 5.2. Suppose Assumption (A) holds and that Tµ+ T̂q ∈Hs+1(P), with
µ ∈ Λ, q ∈ L2(Ω) and 1 6 s 6 k. Then, there exist a positive constant c, depending
only on k, d and σT given in (3.1), such that

(5.7)

‖(T − Th)µ+ (T̂ − T̂h)q‖V 6 c κ
√

1 + (Ckorn CP )2 hs |Tµ+ T̂q|s+1,P

‖(T − Th)µ+ (T̂ − T̂h)q‖0,Ω 6 c κCkorn,K CP,K H hs |Tµ+ T̂q|s+1,P ,

|(T − Th)µ+ (T̂ − T̂h)q|1,P 6 c κCkorn,K hs |Tµ+ T̂q|s+1,P .

Proof. Let µ ∈ Λ and q ∈ L2(Ω). Subtracting (2.22) and (3.6) from (2.23) and
(3.7), respectively, the following orthogonalities hold

∫
K

C ε((Th − T )µ) : ε(vh) dx =

∫
K

C ε((T̂h − T̂ )q) : ε(vh) dx = 0(5.8)

for all vh ∈ Vh(K) and all K ∈ P, where we used ε(vrm) = 0 for all vrm ∈ Vrm.
Using standard arguments, the following estimate holds

‖ε((T − Th)µ+ (T̂ − T̂h)q)‖0,K 6 κ inf
vh∈Vh

‖ε((Tµ+ T̂q)− vh)‖0,K .(5.9)

Moreover, using (2.16), and (5.9) and (2.10), we get

(5.10)
‖(T − Th)µ+ (T̂ − T̂h)q‖0,K 6 Ckorn,K CP,K H κ |Tµ+ T̂q − vh|1,K ,

|(T − Th)µ+ (T̂ − T̂h)q|1,K 6 Ckorn,K κ |Tµ+ T̂q − vh|1,K .

and then, from the definition of the V-norm (5.9) and (5.10), we get

|(T − Th)µ+ (T̂ − T̂h)q‖V 6
√

1 + (Ckorn CP )2 κ |Tµ+ T̂q − vh|1,P ,(5.11)

Next, we chose vh|K in (5.9)-(5.11) such that there exists a positive constant c, de-
pending on k, d and σT , that satisfies (see for instance the Scott-Zhang interpolation
[41, Theorem 4.1])

|Tµ+ T̂q − vh|1,K ≤ c hs |Tµ+ T̂q|s+1,K ,

and the results follow.

Assuming additional local regularity for the solution of (2.23), we can improve
the error estimates for ‖uHh − u‖0,Ω using the classical Aubin-Nitsche duality argu-
ment applied at the local level. Notably, we shall consider the following additional
assumption:

Assumption (B): Let T̂q ∈H2(P) where q ∈ L2(Ω).
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There exists a positive constant CB , independent of H, such that

|T̂q|2,K 6 CB ‖q‖0,K for all K ∈P .(5.12)

The literature dedicated to the regularity of elasticity problems is extensive. For in-
stance, [14, Lemmas 2.2 and 2.3] presents classical results for the isotropic elasticity
case and, for anisotropic cases, we found some results in [33]. See also [3] for an
extensive study on the subject, which includes some sufficient conditions to reach the
regularity given in Assumption (B).

Lemma 5.3. Suppose that Assumption (A) and (B) hold, and let µ ∈ Λ and
q ∈ L2(Ω). Then, there exists a positive constant c, depending only on k, d, σT , CB
and cmax, such that

‖(T − Th)µ+ (T̂ − T̂h)q‖0,Ω 6 c h ‖ε((T − Th)µ+ (T̂ − T̂h)q)‖0,Ω .(5.13)

Proof. The standard Aubin-Nitsche duality argument (see [20, Lemma 2.31]) used
in the context of the present work consists of observing that the function e = (T −
Th)µ+ (T̂ − T̂h)q satisfies

‖e‖0,K = sup
g∈L2(K)

∫
K
g · e dx

‖g‖0,K
= sup
g∈L2(K)

∫
K
Cε(e) : ε(T̂ (g)) dx

‖g‖0,K
,(5.14)

for a given µ ∈ Λ and q ∈ L2(K), where we used (2.23). Then, using (5.8) and the
properties of the elasticity tensor, we obtain

∫
K

Cε(e) : ε(T̂ (g)) dx = inf
vh∈Vh

∫
K

Cε(e) : ε(T̂ (g)− vh) dx

6 cmax ‖ε(e)‖0,K inf
vh∈Vh

‖ε(T̂ (g)− vh)‖0,K

6 cmax ‖ε(e)‖0,K inf
vh∈Vh

|T̂ (g)− vh|1,K

Choosing vh ∈ Vh with approximation properties as in the proof of Lemma 5.2, we
arrive at

∫
K

Cε(e) : ε(T̂ (g)) dx 6 c cmax h ‖ε(e)‖0,K |T̂ (g)|2,K

6 cCB cmax h ‖ε(e)‖0,K‖g‖0,K ,

where we used (5.12). The result follows by replacing the last expression in (5.14),
and summing up over K ∈P.

Now, we address error estimates for the MHM method on different norms.
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5.2. Estimates for ‖u− uHh‖V and ‖λ− λH‖Λ. In this section, we propose
error estimates for displacement and traction in the V- and Λ-norms, respectively.
They highlight the impact of first- and second-level discretizations on convergence
under local regularity assumptions. Moreover, we prove that, under Assumption (A),
the first-level characteristic size H does not impact convergence rates. So far, we
have explicitly tracked constants dependency in terms of on the mesh regularities σT ,
σΞ, on the dimension d, and on the constants Ckorn, CP and Ctr, which ultimately
depends on the shape of the elements in P (see Remark 2.1). Hereafter, we decided
to hide such dependencies in general positive constants C for the sake of clarity in
the statements of next theorems, which will continue to be independent of any mesh
parameter (but may depend on the polynomial degrees k and `).

Theorem 5.4. Suppose Assumption (A) holds, and that k ≥ `+ d and ` > 1. Let
u be the solution of (2.3), and let 1 6 s 6 k and 1 6 m 6 min{s, `+ 1} be such that
u ∈Hs+1(P) and C ε(u) ∈ Hm(P)d×d. Then, there exists C such that

(5.15) ‖urm − urm
h ‖V + ‖λ− λH‖Λ ≤ C (hs |u|s+1,P +Hm |C ε(u)|m,P) .

In addition, the approximation uHh := urm
h + ThλH + T̂hf satisfies

(5.16) ‖u− uHh‖V ≤ C (hs |u|s+1,P +Hm |C ε(u)|m,P) .

Proof. Let Λ?
H ⊂ ΛH be defined by

Λ?
H :=

{
µH ∈ ΛH :

∫
∂K

µH · vrm ds = −
∫
K

f · vrm dx for all K ∈P

}
.

Observe that λ` := Π`
Fλ ∈ Λ?

H since

∫
∂K

λ` · vrm ds =
∑
F⊂∂K

∫
F

Π`
Fλ · vrm ds =

∑
F⊂∂K

∫
F

λ · vrm ds = −
∫
K

f · vrm dx ,

for all vrm ∈ Vrm, where we used λ ∈ L2(∂K) and the second equation in (2.28).
Now let µH ∈ Λ∗H be arbitrary, and remark that λH −µH ∈ NH given in (4.19). As
such, we get from (4.17) that there exists a positive constant C such that

α0 ‖λH − µH‖2Λ ≤ ah(λH − µH ,λH − µH)

= ah(λH ,λH − µH)− a(λ,λH − µH) + ah(λ − µH ,λH − µH)

+ a(λ,λH − µH)− ah(λ,λH − µH)

= −〈λH − µH , T̂hf〉∂P + 〈λH − µH , T̂f〉∂P

+ 〈λH − µH , Th(λ− µH)〉∂P

+ 〈λH − µH , Tλ〉∂P − 〈λH − µH , Thλ〉∂P

≤
(
C ‖λ − µH‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V

)
‖λH − µH‖Λ ,(5.17)
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where we used Theorem 4.4, (2.27)–(2.28), (3.4)–(3.5) and the stability of Th in (3.8).

Next, using the fact that u = urm + Tλ+ T̂f ∈ Hm+1(K), for every K ∈P, it
holds from Lemma 5.2 that

(5.18) ‖Tλ+ T̂f −
(
T̂hf + Thλ

)
‖V ≤ c hs |u|s+1,P ,

and, therefore, from (5.17) and (5.18) it follows

‖λH − µH‖Λ ≤ c hs |u|s+1,P + C ‖λ − µH‖Λ .

By setting µH = λ` ∈ Λ?
H and, from Lemma 5.1 and (2.8), we get

‖λH − µH‖Λ ≤ c hs |u|s+1,P + C Hm |C ε(u)|m,P ,

and, thus, using triangle inequality it results

‖λ − λH‖Λ ≤ c hs |u|s+1,P + C Hm |C ε(u)|m,P .(5.19)

From Theorem 4.4, there exists ξH ∈ ΛH , with ‖ξH‖Λ = 1, such that

β0 ‖urm
h − urm‖V ≤ b(ξH ,urm

h − urm)

= −ah(λH , ξH) + a(λ, ξH) + 〈ξH , (T̂ − T̂h)f〉∂P

= −ah(λH − λ, ξH) + a(λ, ξH)− ah(λ, ξH) + 〈ξH , (T̂ − T̂h)f〉∂P

≤ C ‖λH − λ‖Λ + ‖(Th − T )λ+ (T̂h − T̂ )f‖V ,

where we used again (2.27)–(2.28) and (3.4)–(3.5), and the uniform continuity of Th
from (3.8). From (5.19) and (5.18), the following estimate holds

‖urm
h − urm‖V ≤ c hs |u|s+1,P + C Hm |C ε(u)|m,P ,(5.20)

and summing up (5.19) and (5.20) estimate (5.15) follows. To prove (5.16), we observe
that

‖u− uHh‖V ≤ ‖urm
h − urm‖V + ‖Tλ+ T̂f − (ThλH + T̂hf)‖V

≤ ‖urm
h − urm‖V + ‖Th(λ− λH)‖V + ‖Tλ+ T̂f − (Thλ+ T̂hf)‖V ,
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and, applying the uniform continuity of Th from (3.8), (5.15) and (5.18), estimate
(5.16) follows.

Remark 5.5. As for the minimal space Vrm×Λrm, we can follow the same strategy
of proof in Theorem 5.4, and under Assumption (A), k ≥ d+ 1, and u ∈H2(P) and
Cε(u) ∈ H1(P)d×d, to arrive at

(5.21)
‖urm − urm

h ‖V + ‖λ− λrm‖Λ ≤ C (h |u|2,P +H |C ε(u)|1,P) ,

‖u− uHh‖V ≤ C (h |u|2,P +H |C ε(u)|1,P) .

�

5.3. Estimates for ‖u−uHh‖1,P and ‖u−uHh‖0,Ω. In this section, we propose

an error estimate in the H1(P)-norm providing an estimation to the anti-symmetric
part of the gradient of the error with clean constants. Also, we establish optimal error
estimates in the L2(Ω)-norm under smoothing properties.

As for the convergence in the H1(P)-norm, we first observe that, given K ∈P,
the number of faces E ⊂ ∂K does not increase indefinitely as the diameter of K stays
fixed, under a reasonable assumption on the trace constant Ctr,K . Precisely, it holds

hK ≤
Ctr,K

2 (d+ 1)
hE for all K ∈P and E ⊂ ∂K ,(5.22)

since from Remark 2.1, we get

hK =
minτ∈T K hτ

%̄K
=

minτ∈T K
hτ
ρτ
ρτ

%̄K
6
σ̄K
%̄K

min
τ∈T K

ρτ 6
σ̄K
%̄K

hE
2

=
Ctr,K

2 (d+ 1)
hE .

Theorem 5.6. Assume the hypothesis of Theorem 5.4 and (5.22) hold. Then, there
exists C such that

(5.23) ‖u− uHh‖1,P ≤ C (hs |u|s+1,P +Hm |C ε(u)|m,P) .

Proof. The estimate ‖u−uHh‖0,P is given in (5.16). We are left with establishing
an estimate for ‖∇(u−uHh)‖0,P . Using (2.18) and (5.16), and the Korn’s inequality
(2.10), it holds

‖∇(Tλ− ThλH + T̂f − T̂hf)‖0,P 6 Ckorn ‖ε(Tλ− ThλH + T̂f − T̂hf)‖0,P
6 c hs |u|s+1,P + C Hm |C ε(u)|m,P .(5.24)
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It remains to estimate urm − urm
h in the H1(P)-semi-norm. To this end, we use the

Korn’s inequality (2.11) on urm − urm
h ∈ Vrm, which leads to

‖∇(urm − urm
h )‖20,P 6 C

(
‖urm − urm

h ‖20,Ω +
∑
E∈E0

1

hE
‖Jurm − urm

h K‖20,E

)
.(5.25)

Let K,K ′ ∈P be two elements sharing the face E ∈ E0. Set µH := Jurm − urm
h K |E ∈

Λrm and zero on the other faces. Next, testing (3.5) and (2.27) with µH and sub-
tracting them, we obtain

‖Jurm − urm
h K‖20,E = (µH , Ju

rm − urm
h K)E

= |(µH ,urm − urm
h )E∩K − (µH ,u

rm − urm
h )E∩K′ |

= |〈µH ,urm − urm
h 〉∂P |

= |〈µH , Tλ− ThλH + T̂f − T̂hf〉∂P |
= |(µH , Tλ− ThλH + T̂f − T̂hf)E∩K

− (µH , Tλ− ThλH + T̂f − T̂hf)E∩K′ |
6 ‖Jurm − urm

h K‖0,E(‖Tλ− ThλH + T̂f − T̂hf‖0,E∩K
+ ‖Tλ− ThλH + T̂f − T̂hf‖0,E∩K′) .

Next, we apply (2.14) and (2.15) on the right-hand side of the above inequality, and
use (5.22) to obtain

‖Jurm − urm
h K‖0,E 6 (Ctr CP (CP d+ 2))

1
2 (h

1
2

K |Tλ− ThλH + T̂f − T̂hf |1,K

+ h
1
2

K′ |Tλ− ThλH + T̂f − T̂hf |1,K′)

6 Ctr

(
CP
d+ 1

(
CP

d

2
+ 1

)) 1
2

h
1
2

E (|Tλ− ThλH + T̂f − T̂hf |1,K

+ |Tλ− ThλH + T̂f − T̂hf |1,K′) ,

with constants defined in (2.18). Now, dividing both sides by h
1
2

E and taking the sum
of the squares, for all E ∈ E0, we get

∑
E∈E0

1

hE
‖[urm − urm

h ]‖20,E

 1
2

≤ C ‖∇(Tλ− ThλH + T̂f − T̂hf)‖0,P .(5.26)

Hence, from the triangle inequality, (5.25) and (5.26), we arrive at

‖u− uHh‖21,P
6 ‖u− uHh‖20,Ω + ‖∇(urm − urm

h )‖20,P + ‖∇(Tλ− ThλH + T̂f − T̂hf)‖20,P
6 ‖u− uHh‖20,Ω + C

(
‖urm − urm

h ‖20,P + ‖∇(Tλ− ThλH + T̂f − T̂hf)‖20,P
)
,
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and the result follows from (5.16) and (5.24).

Next, we assume smoothing properties (see [20, §3.1.3] for instance) hold. Notably,
we assume the following:

Assumption (C): Let wf ∈ H
1
0(Ω) be the solution of (2.3) with f ∈ L2(Ω) and

g = 0.

Then wf ∈H
2(P), Cwf ∈ H1(P)d×d, and there exists a positive constant

CA, independent of H, such that

|wf |2,P + |Cε(wf )|1,P 6 CA ‖f‖0,Ω for all f ∈ L2(Ω) .

The next result improves the estimate in the L2(Ω)-norm under Assumptions (B)
and (C).

Theorem 5.7. Assume the hypothesis of Theorem 5.4 and Assumption (B) and
(C) hold. Then, there exists C such that

(5.27) ‖u− uHh‖0,Ω ≤ C (h+H)
(
hk |u|k+1,P +H`+1 |C ε(u)|`+1,P

)
.

Proof. First, we observe that (3.9) also holds if one replaces the operator Th by
T , i.e., we have

〈µ, T̂f〉∂K =

∫
K

C ε(Tµ) : ε(T̂f) dx =

∫
K

Tµ · f dx .(5.28)

Then, define e = u−uHh, and let w be the solution of the following elasticity problem

∇·C ε(w) = e in Ω , and w = 0 on ∂Ω .(5.29)

Using (3.9), we can write w = wrm + Tγ + T̂ (−e), where (γ,wrm) ∈ Λ×Vrm satisfy

(5.30)

a(γ,µ) + b(µ,wrm) =

∫
Ω

Tµ · e dx for all µ ∈ Λ ,

b(γ,vrm) =

∫
Ω

e · vrm dx for all vrm ∈ Vrm .

Problem (5.30) is well-posed by Theorem 2.3, and from Assumption (C), function w
belongs to H1

0(Ω) ∩H2(P) and
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|w|2,P + |Cε(w)|1,P ≤ CA ‖e‖0,Ω .(5.31)

Let (γrm,w
rm
h ) ∈ Λrm ×Vrm be the following discrete solution of (5.30)

(5.32)

ah(γrm,µH) + b(µH ,w
rm
h ) =

∫
Ω

ThµH · e dx for all µH ∈ Λrm ,

b(γrm,v
rm) =

∫
Ω

e · vrm dx for all vrm ∈ Vrm .

Problem (5.32) is well-posed from (3.9) and Theorem 4.4, and wh := wrm
h + Thγ +

T̂h(−e). From (5.21), the following error estimate holds

‖γ − γrm‖Λ + ‖wrm −wrm
h ‖V ≤ C

(
h |w|2,P +H |C ε(w)|1,P

)
≤ C (h+H) ‖e‖0,Ω ,(5.33)

where we used (5.31). Then, from (5.30), (5.32) and (2.27), we arrive at

‖e‖20,Ω = (u− uHh, e)P

= (urm − urm
h , e)P + (Tλ− ThλH + T̂f − T̂hf , e)P

= (urm − urm
h , e)P + (T (λ− λH), e)P

+ (TλH − ThλH + T̂f − T̂hf , e)P

= b(γrm,u
rm − urm

h ) + a(γ,λ− λH) + b(λ− λH ,wrm)

+ (TλH − ThλH + T̂f − T̂hf , e)P

= 〈γrm,u
rm − urm

h 〉∂P + 〈λ− λH , Tγ〉∂P︸ ︷︷ ︸
(I)

+ ‖(T − Th)λH + (T̂ − T̂h)f‖0,Ω‖e‖0,Ω︸ ︷︷ ︸
(II)

(5.34)

where we used b(λ− λH ,wrm) = 0. Let us estimate (I). Observe that

〈γrm,u
rm − urm

h 〉∂P + 〈λ− λH , Tγ〉∂P

= −〈γrm, Tλ〉∂P + 〈γrm, ThλH〉∂P

− 〈γrm, T̂f − T̂hf〉∂P + 〈γ, T (λ− λH)〉∂P

= 〈γ − γrm, T (λ− λH)〉∂P + 〈γrm, ThλH〉∂P

− 〈γrm, TλH〉∂P − 〈γrm, T̂f − T̂hf〉∂P

≤ C ‖γ − γrm‖Λ‖λ− λH‖Λ︸ ︷︷ ︸
(III)

+ |〈γrm, (T − Th)λH + (T̂ − T̂h)f〉∂P |︸ ︷︷ ︸
(IV )

.
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The term (III) above is bounded as follows

‖γ − γrm‖Λ‖λ− λH‖Λ ≤ C (h+H) ‖e‖0,Ω‖λ− λH‖Λ
≤ C (h+H)

(
hk |u|k+1,P +H`+1 |C ε(u)|`+1,P

)
‖e‖0,Ω ,(5.35)

where we used (5.15) and (5.33). For term (IV ), it holds

|〈γrm, (T − Th)λH + (T̂ − T̂h)f〉∂P |

= |
∑
K∈P

∫
K

Cε(Tγrm) : ε((T − Th)λH + (T̂ − T̂h)f) dx| (def. of T )

6 |
∑
K∈P

∫
K

Cε(Thγrm) : ε((T − Th)λH + (T̂ − T̂h)f) dx|

+ |
∑
K∈P

∫
K

Cε((T − Th)γrm) : ε((T − Th)λH + (T̂ − T̂h)f) dx| (±Thγrm)

= |
∑
K∈P

∫
K

Cε((T − Th)γrm) : ε((T − Th)λH + (T̂ − T̂h)f) dx| ((5.8))

6 cmax ‖ε((T − Th)λH + (T̂ − T̂h)f)‖0,P‖ε((T − Th)γrm))‖0,P (using (2.2))

6 cmax
(
‖ε(u− uHh)‖0,P + ‖ε(T (λH − λ))‖0,P

)(5.36)

‖ε((T − Th)γrm))‖0,P (±Tλ)

6 C
(
‖ε(e)‖0,P + ‖λH − λ‖Λ

)
‖ε((T − Th)γrm))‖0,P (using (2.25))

6 C
(
‖e‖V + ‖λH − λ‖Λ

)
‖ε((T − Th)γrm))‖0,P .

(5.37)

The last term in (5.37) can be bounded as follows

‖ε((T − Th)γrm)‖0,P
6 ‖ε(T (γrm − γ)‖0,P + ‖ε(Tγ − Thγrm)‖0,P (±Tγ)

6 ‖γrm − γ‖Λ + ‖ε(Tγ − Thγrm)‖0,P (using (2.25))

6 ‖γrm − γ‖Λ + ‖ε((T̂ − T̂h)e)‖0,P
+ ‖ε(Tγ − Thγrm − (T̂ − T̂h)e)‖0,P (±(T̂ − T̂h)e)

6 ‖γrm − γ‖Λ + ‖ε(w −wh)‖0,P
+ ‖ε((T̂ − T̂h)e)‖0,P
6 (‖γrm − γ‖Λ + ‖w −wh‖V) + ‖ε((T̂ − T̂h)e)‖0,P .(5.38)

From (5.37) and (5.38), and using Theorem 5.4 and (5.21) and (5.31), it holds
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|〈γrm, (T − Th)λH + (T̂ − T̂h)f〉∂P |(5.39)

6 C
(
hk |u|k+1,P +H`+1 |C ε(u)|`+1,P

)((
h |w|2,P +H |C ε(w)|1,P

)
+ ‖ε((T̂ − T̂h)e)‖0,P

)
6 C

(
hk |u|k+1,P +H`+1 |C ε(u)|`+1,P

)(
(h+H) ‖e‖0,Ω + ‖ε((T̂ − T̂h)e)‖0,P

)
.(5.40)

Using Lemma 5.2 and Assumption (B), one estimates the last part of (5.40) as follows

‖ε((T̂ − T̂h)e)‖0,P 6 C h ‖T̂e‖2,P 6 C CB h ‖e‖0,Ω ,(5.41)

and the bound for the term (IV ) follows combining (5.40) and (5.41). Item (II) in
(5.34) is bounded using (5.13), (5.7), the stability of the mappings Th and T in (3.8)
and (2.25), and Theorem 5.4 as follows

‖(T − Th)λH + (T̂ − T̂h)f‖0,Ω(5.42)

6 ‖(T − Th)(λH − λ)‖0,Ω + ‖(T − Th)λ+ (T̂ − T̂h)f‖0,Ω
6 C h

(
‖(T − Th)(λH − λ)‖V + ‖(T − Th)λ+ (T̂ − T̂h)f‖V

)
6 C h

(
‖λH − λ‖Λ + hk |u|k+1,P

)
6 C h

(
hk |u|k+1,P +H`+1 |C ε(u)|`+1,P

)
.(5.43)

The result follows by replacing (5.35), (5.40), and (5.41) in (I) and (5.43) in (II).

In the case Assumption (B) does not hold, we can still improve the convergence
rate in the L2(Ω)-norm. Indeed, observe that the proof employs Assumption (B) in
(5.41) only and, therefore, we can revisit it using Korn’s inequality (2.16). This result
is presented next.

Corollary 5.8. Assume the hypothesis of Theorem 5.4 and Assumption (C) hold.
Then, there exists C such that

(5.44) ‖u− uHh‖0,Ω ≤ CH
(
hk |u|k+1,P +H`+1 |C ε(u)|`+1,P

)
.

Proof. From the stability of T̂ (2.25) and T̂h in (3.8) to get

‖ε((T̂ − T̂h)e)‖0,P 6 ‖ε(T̂e)‖0,P + ‖ε(T̂he)‖0,P 6 CH‖e‖0,Ω .
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Hence, item (II) can be bounded as follows

(TλH − ThλH + T̂f − T̂hf , e)P

≤ ‖TλH − ThλH + T̂f − T̂hf‖0,Ω‖e‖0,Ω (Cauchy-Schwarz)

≤ CH‖ε(TλH − ThλH + T̂f − T̂hf)‖0,P‖e‖0,Ω (using (2.16))

≤ CH
(
‖ε(Tλ− Thλ+ T̂f − T̂hf)‖0,P

+ ‖ε((T − Th)(λ− λH))‖0,P
)
‖e‖0,Ω (±(T − Th)λ)

≤ CH
(
‖u− uHh‖V + ‖λ− λH‖Λ

)
‖e‖0,Ω (using (2.25) and (3.8))

≤ CH
(
hk |u|k+1,P +H`+1 |C ε(u)|`+1,P

)
‖e‖0,Ω (using Theorem 5.4)

Finally, the estimate (5.44) results from the approach used to prove (5.27) in Theo-
rem 5.7.

5.4. H- versus H-refinement. Error estimates from the previous sections indi-
cate that, in addition to the standard strategy to refine the first-level mesh (H → 0),
convergence also arises from enhancing approximation spaces on faces only under mild
conditions on the partition P. Such a convergence can be achieved in two different
forms (or in a combination of both):

(i) Refining the face partitions (H-refinement), where the first-level meshes sat-
isfy Assumption (A);

(ii) Increasing polynomial degrees on faces (`-refinement), where the polynomial
degrees in Vh and ΛH must respect the condition k ≥ `+ d.

In both scenarios, the first-level partition P stays fixed, and still, convergence occurs
under local regularity assumptions. Here, we focus on convergence associated with
item (i) since the dependence of the constants in error estimates in terms of k and `
stays an open problem. Thereby, we compare theoretically two types of convergence
in this section (and numerically in the next section), namely,

• H → 0, the H-refinement. The global partition P stays fixed;

• H → 0, the H-refinement. This is the standard mesh-based strategy.

First, it is worth observing that the constants in Theorems 5.4 and 5.6 and (5.21)
do not degenerate in the H-convergence case since σT , Ckorn, CP and Ctr stays
unchanged as convergence evolves. As a result, the MHM method provides optimal
convergence in the norms ‖ · ‖V, ‖ · ‖1,P and ‖ · ‖Λ on general coarse partition P,
which only needs to fullfil Assumption (A). On the opposite, this attractive property
may not occur in the standard mesh-based approach due to the constants dependency
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in Theorems 5.4 and 5.6 and (5.21) in terms of σT , Ckorn, CP and Ctr . To ensures
convergence in theH-refinement scenario, we replace Assumption (A) by the following
stronger assumption:

Assumption (D): Let {PH}H>0 be a family of global partitions of Ω.

For each PH ∈ {PH}H>0, there exists ΞH such that the family of partitions
{ΞH}H>0 satisfies Assumption (A), and such that Ckorn, CP , Ctr, σT and
σΞ stay bounded when H → 0.

Let P be a partition of Ω, and {PH}H>0 be a sequence of global partitions of P
that satisfies Assumption (D). The next result focus on the mesh-based convergence
(H → 0) and is a straightforward consequence of Theorem 5.4 and Theorem 5.6, and
Corollary 5.8 under Assumptions (C) and (D).

Corollary 5.9. Assume u ∈ Hk+1(P) solves (2.3), with C ε(u) ∈ H`+1(P)d×d,
where k ≥ `+ d and ` > 1. There exists C, such that

‖λ− λHh‖Λ + ‖u− uHh‖1,PH
≤ CH`+1

(
|u|k+1,P + |C ε(u)|`+1,P

)
.(5.45)

Moreover, if P satisfies Assumption (C), then it holds

(5.46) ‖u− uHh‖0,Ω ≤ CH`+2
(
|u|k+1,P + |C ε(u)|`+1,P

)
.

Remark 5.10. Observe that Assumption (D) is not too restrictive. Indeed, we
can control constants σT , σΞ and Ctr assuming the regularity of the family of meshes
{PH}H>0. As for the constant CP , it corresponds to the maximum value among the
local Poincaré constants CP,K in (2.15), and then, constant CP stays bounded for a
quite general family of partitions as discussed in Remark 2.1. The Korn’s constant
CKkorn is independent of the diameter of K on Lipschitz domains K as proved in
Lemma A.1. However, a rigorous proof on the CKkorn dependency on the shape of

K stays an open question for the space Ṽ(K). That said, some insights on the
dependency of CKkorn can be found in [19] when the domain is star-shaped. Its validity

to functions belonging to the space Ṽ(K) stays an open problem.

Remark 5.11. Convergence still holds under lower regularity of u in the usual
norms. Indeed, assuming u ∈Hm+1(P) and 1 6 m < k, error estimates in Theorem
5.4, Theorem 5.6, and Theorem 5.7 an Corollary 5.8 remain valid if one replaces k by
m and ` by min{m− 1, `}, respectively, in these estimates.

Summary: We gather in Tables 5.1 and 5.2 the error estimates obtained throughout
the previous sections under the different assumptions.
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Table 5.1
Error estimates in the H1(P)-norm for the displacement (u), in the Λ-norm for traction (λ),

and in L2(Ω)-norm for stress (σ).

Error Assumption
A D

‖u− uHh‖1,P hk +H`+1 H`+1

‖λ− λHh‖Λ hk +H`+1 H`+1

‖σ − σHh‖0,Ω hk +H`+1 H`+1

Table 5.2
Error estimates in the L2(Ω)-norm for the displacement (u).

Error Assumption
A A and C A, B and C D C and D

‖u− uHh‖0,Ω hk +H`+1 H (hk +H`+1) hk+1 +H`+2 H`+1 H`+2

6. Numerical Results. This section assesses the MHM method numerically.
The first part verifies the theoretical results using two- and three-dimensional test
cases with analytical solutions. In the process, we perform a comparison between the
two mesh refinement strategies, i.e. the H- and H-refinements, from the perspectives
of accuracy and computational cost. A second test considers an elastic model with
heterogeneous coefficients for which we compare the MHM and the Galerkin methods
with respect to a reference solution obtained on a finer mesh. All test cases assume
isotropic elastic media, i.e., the stiffness tensor C is characterized by the shear modulus
µ and the Poisson’s ratio ν as follows:

(6.1) Cijkl := 2µ δik δjl+
2µ ν

1− 2 ν
δij δkl or C ε(u) = 2µ ε(u)+

2µ ν

1− 2 ν
(∇·u)Id×d ,

where δij denotes the Kronecker delta and Id×d is the identity tensor in Rd×d.

Before heading to numerics, we present the underlying algorithm and some of the
main implementation aspects of the MHM method.

6.1. Algorithm and implementation aspects. Let {ψi}
mΛ
i=1 and {φi}

m0
i=1 be

bases for ΛH and Vrm, respectively, where mΛ = dim ΛH and m0 = dim Vrm. Also,
we define A ∈ RmΛ×mΛ , B ∈ RmΛ×m0 , f ∈ RmΛ , and f0 ∈ Rm0 with entries

(6.2)

Aij =
∑
K∈P

∫
∂K

ψiTh(ψj) dx , Bij =
∑
K∈P

∫
∂K

ψiφj dx ,

fi =
∑
K∈P

∫
∂K

ψiT̂h(f) dx , and f0,i =

∫
Ω

f · φi dx .

The MHM method (3.4) naturally yields the two-level algorithm presented in Algo-
rithm 6.1.
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Algorithm 6.1 Upscaling algorithm for the MHM method in (3.4).

1: for all K ∈P do
2: Compute Th(ψi) |K solving (3.6), for all i = 1, · · · ,mΛ;

3: Compute T̂h(f) |K solving (3.7);

4: Compute
∫
∂K
ψiTh(ψj) dx,

∫
∂K
ψiφr dx,

∫
∂K
ψiT̂h(f) dx, and

∫
K
f · φr dx,

for all i, j = 1, · · · ,mΛ and r = 1, · · · ,m0;
5: Assemble in A, B, f , and f0;
6: Solve the following global system for (λ, urm) ∈ RmΛ×m0(

A B
Bt 0

)(
λ
urm

)
=

(
f
f0

)
;(6.3)

7: Compute uHh, on all K ∈P, as follows

uHh :=

m0∑
i=1

urmi φi +

mΛ∑
i=1

λiTh(ψi) + T̂h(f) ,

using the solutions λ = (λi)
mΛ
i=1 and urm = (urmi )m0

i=1.

At that point, some comments are necessary:

• Terms Th(ψj) correspond to the multiscale basis, which along with T̂h(f),
respond for upscaling the information from the local level to the global one.

• The “embarrassingly” parallel stage (Steps 2-4) computes the local integrals
through (6.2), which are assembled “on the fly” into the global linear system
to obtain the coordinates of the solutions;

• The equivalence (3.9) is particularly useful when one deals with multi-query
problems wherein f changes multiple times. In this case, Steps 2 and 3, as
well as part of Steps 4 and 5, can be computed at an offline stage.

We obtained all the results presented in the remainder of this section with the help of
an in-house simulation software, which is called MSL (MHM Set of Libraries). MSL
uses the C++11 standard, and its software architecture accommodates OpenMP and
MPI technologies to allow for both shared-memory and distributed-memory hardware
architectures. MSL is also pluggable to professional software components such as:

• ParMETIS [31], for the partitioning of P across different processors;
• MUMPS [2], for the parallel solution of the global linear system;
• Eigen [24], for the solution of the local linear systems and other linear algebra

computations; and
• TetGen [42], for the generation of the local meshes.

6.2. Two- and three-dimensional analytical cases. Let Ω := [0, 1]d be an
isotropic elastic domain with Lamé coefficients µ = 1 and λ = 1, and homogeneous
Dirichlet boundary condition on ∂Ω. Let f be such that the two-dimensional solution



THE MHM METHOD FOR ELASTICITY ON POLYTOPAL MESHES 39

u = {u1, u2} of (2.1) is defined by

u1(x, y) = sin(2πx) sin(2πy),

u2(x, y) = 2 sin(2πx) sin(2πy) ,

and the three-dimensional solution u = {u1, u2, u3} of (2.1) is defined by

u1(x, y, z) = sin(2πx) sin(2πy) sin(2πz),

u2(x, y, z) = 2 sin(2πx) sin(2πy) sin(2πz),

u3(x, y, z) = 3 sin(2πx) sin(2πy) sin(2πz).

Using these problems, we first perform numerical tests to verify the theoretical con-
vergence rates of the MHM method.

6.2.1. Verifying theoretical results. The convergence history is measured in
the L2(Ω)- and H1(P)-norms for displacement, and in the following H(div; Th;S)-
norm for the post-processed stress tensor

‖σ‖div :=

√∑
K∈P

∑
τ∈ThK

‖σ‖20,τ + h2
Ω ‖∇· σ‖20,τ for all σ ∈ H(div; Th;S) .(6.4)

We restrict ourselves to sequences of meshes satisfying Assumptions (A) and (D), and
h 6 H 6 H. The model solutions above naturally satisfy Assumption (C). In Figure
6.1, we show the convergence curves using the H-refinement for the three dimensional
problem. We adopt k = `+ 3, with ` = 1, 2, a family {PH}H>0 of nested structured
tetrahedral meshes, one-element face partitions EKH , and one-element local meshes
T Kh , i.e., H = H = h.

We observe a convergence of O(H`+2) in the L2(Ω)-norm and O(H`+1) using the
H1(P)-norm as predicted by the theory in Section 5.4, and O(H`) convergence for
the stress σHh in the H(div; Th;S)-norm. The latter is not covered by the present
theory.
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Figure 6.1. Three-dimensional case with a structured simplicial mesh family. Left: ` = 1.
Right: ` = 2.

In Figure 6.3 (left), we show theH-convergence curves for a family of L-shaped meshes,
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Figure 6.2. Two meshes from the L-shaped mesh family.
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Figure 6.3. Convergence curves for the two-dimensional case using ` = 1. Left: Convergence
using the L-shaped mesh family. Right: Error in terms of the number of global degrees of freedom
(DoFs) for three types of mesh families: (structured) simplicial, square and L-shaped.

using H = H, ` = 1 and k = 3. This family of structured non-convex meshes follow
the pattern shown in Figure 6.2. Here we recover all the convergence rates from the-
ory, and also the convergence of O(H`) for the stress σHh in the H(div; Th;S)-norm.
Notice that the error in the L2(Ω)-norm decays at O(H`+2) even though the elements
K ∈P are not convex as anticipated in the theory.

Still in Figure 6.3 (right), we compare the error from three families of structured
meshes: simplicial, square and L-shaped, using ` = 1 and k = 3. Note that by
increasing the number of sides in the mesh elements, the MHM method becomes
more precise for the same number of global degrees of freedom (DoFs).

Next, we investigate the convergence in terms of H while keeping H fixed. Figure 6.4
depicts that the MHM method is super-convergent in this context. Indeed, additional
convergence rates of order H1/d appear, which is not predicted by the theory. Fig-
ure 6.5 compares the H- and H-refinements. Interesting, the result points that the
H-refinement needs fewer degrees of freedom to reach the same level of error com-
pared with H-refinements. On the other hand, the underlying smaller global system
associated with the H-refinement approach has a matrix with a broader band, and
the local problems become somewhat more numerous. Thereby, the best deal turns
out to be to offset H- and H-refinements. Such a claim is verified in Subsection 6.2.2.
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Figure 6.4. Errors using the H-refinement. Left: global mesh composed by 4 (equal) squares
in the two-dimensional case using ` = 2. Right: global mesh composed by 24 (equal) tetrahedra in
the three-dimensional case using ` = 1.
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Figure 6.5. A comparison between the mesh-based (H) and space-based (H) refinements. Left:
two-dimensional case. Right: three-dimensional case.

6.2.2. Computational performance of H- and H-refinements. In this sec-
tion, we do a performance evaluation of the MHM algorithm. Our focus is on mea-
suring the impact of the coupled global problem and the independent local problems
on execution time and memory consumption.

The experiments presented herein were conducted on a cluster of computing
nodes. Each node in this cluster has 2 CPU sockets Intel Xeon E5-2695v2, each
one with 12 cores operating at 2.4 GHz, and 64 GB of RAM. An Infiniband FDR
network interconnects the nodes. To take into account problems of reasonable com-
putational complexity, all the configurations employed in the remainder of this section
were conducted in the three-dimensional analytical case.

First, we set upper bounds on the order of approximation in the L2(Ω)-norm
(O(10−4)) and in the H1(P)-norm (O(10−1)). We then considered three configu-
rations aiming at these orders of approximation, but accounting for different levels
of H- and H-refinements. We set k = 4, ` = 1, and h = H in all three configura-
tions. We ran these configurations using 2 computing nodes, with 1 MPI process per
node socket, summing up 4 MPI processes in a simulation. Table 6.1 describes these
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configurations.

Table 6.1
Simulation configurations to compare H-refinement and H-refinement: #DoFs = mΛ + m0;

#NNZ = total number of non-zero entries of matrices A, B and Bt in (6.3).

Configuration H #Elements per face #DoFs #NNZ
1 1/16 1 2,386,944 154,440,295
2 1/3 16 206,064 197,531,136
3 1 64 34,704 120,434,688

Table 6.2 summarizes the performance results related with the solution of the
global problem. Looking at these results alone suggests that the H-refinement (repre-
sented by configuration 1) is by far the most unsatisfactory for this specific scenario.
Nevertheless, a comparison between configurations 2 and 3, again taking the global
problem alone, is inconclusive.

Table 6.2
Simulation results related to the global problem: F+S time = time (in seconds) for factorization

and forward/backward substitution; RAM = maximum amount of memory (in MBytes) of the most
demanding MPI process.

Configuration F+S time RAM ‖u− uHh‖0,Ω ‖u− uHh‖1,P
1 206.53 8,840.54 6.68× 10−4 1.49× 10−1

2 60.16 3,131.23 4.45× 10−4 6.85× 10−2

3 52.87 760.11 9.51× 10−4 9.82× 10−2

Table 6.3 summarizes the performance results related to the solution of the local
problems. Irrespective of the fact that we set k = 4, ` = 1, and h = H in all three
configurations, not only the number (which is directly related to H) but also the
size of the local problems vary in each configuration. In our implementation (see
Algorithm 6.1), the set of local problems associated to an element K ∈ P is solved
independently of the other elements in P.

In all three configurations, the simulation software partitions the set of local
problems across all available cores such that each core schedules a single element
K ∈ P to be solved at a time. Besides, the overall procedure to solve each of the
local problems comprises local mesh generation and numerical integrations, since P
and the refinement levels of EH are determined at runtime. For configurations 1
and 2, we use a single thread for the local problems in an element K ∈ P without
thread synchronizations or context switches to minimize potential sources of parallel
overhead. For configuration 3, we use two threads for local problems in K, since
the number of cores is two times the amount of local problems in this configuration;
thus, some thread synchronization is needed. This myriad of possible scheduling
configurations renders a system that, in contrast to the global problem, is difficult
to be easily instrumented in terms of the solution of the linear systems associated
with each local problem. We therefore chose to present in Table 6.3 the aggregated
performance related to the complete configuration and solution of all local problems
computed by the most demanding computing resource.
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Table 6.3
Simulation results related to the local problems: F+S time = aggregated time (in seconds)

for mesh generation, numerical integration, and linear system resolution (factorization+fwd/bwd
substitution) of all local problems at the most demanding core; RAM = maximum amount of memory
(in MBytes) of the most demanding MPI process.

Configuration F+S time RAM
1 840.00 6,270.06
2 60.00 6,760.00
3 660.00 24,674.14

The results in Table 6.2 and Table 6.3 together suggest that configuration 2
provides the best balance between overall execution time and memory consumption.
This balance is particularly important if the local problems are to be computed online
with the global problem. We conclude that the best choice to accommodate preci-
sion, computational cost, and memory allocation stems from a right balance between
H-refinement and H-refinement.

6.3. A high-contrast multilayered problem. We assess the MHM method’s
performance in a high-contrast scenario using the geophysical domain proposed in
the HPC4E Seismic Test Suite 1.0 [17]. The original domain is a three-dimensional
box split into 16 horizontal layers with constant properties, as shown in Figure 6.6.
The interfaces between layers are defined by 6,001 × 6,001 matrices that store depth
coordinates on a fine-scale regular grid. The top interface determines the terrain
topography, and the bottom layer goes 4,480.78 m deep.

Figure 6.6. The HPC4e Test Suite (adapted from [17]). Left: physical domain divided in
layers. Right: a vertical cut showing the density ρ.

We consider a two-dimensional isotropic elasticity problem defined on the slice
y = 0 of the domain mentioned above. Fig. 6.7 shows the interfaces between layers
together with two non-aligned meshes. We prescribe null displacement at the bottom
boundary, and the remaining parts of the boundary are free-surface, i.e., with null
traction. Layers 4 and 12 (from top to bottom) contain saturated clay (Young’s mod-
ulus: 15 MPa, Poisson’s ratio: 0.49, and mass density: 1,760 kg/m3). The remaining
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layers are filled with materials provided in [17]. The source function is the piecewise
constant weight, using gravity acceleration of 9.8 m/s2. The z direction represents
depth, so it increases from top to bottom.

First, we address the performance of the MHM method on coarse meshes. We
adopt the 128 elements mesh shown in Figure 6.7 (left) to compute the approximate
solution with the MHM method. Most K ∈P are quadrilaterals, except those in the
layer touching the top boundary, which are polygons with 378 sides. Such a choice
of discretization accounts for the topography precisely while it verifies the robustness
of the developed MHM method to deal with non-convex general polygons. Each face
of E uses a two-element mesh, and we choose ` = 3 (with k = ` + 2 = 5). We
prescribed the homogeneous Dirichlet boundary condition (null displacement) as an
essential condition in Vh following the idea proposed in [27]. Also, notice that the
homogeneous Neumann boundary condition (free-surface) to the MHM formulation
can be defined as an essential condition in the space ΛH . Notably, we look for the
traction unknown λ in

Λ0,N := {τ nK |∂K : τ ∈ H0,N (div; Ω;S) for all K ∈P} ,(6.5)

instead of Λ, where ∂ΩN ⊂ ∂Ω denotes the free surface boundary. This setup results
in an MHM formulation with only 4,048 global DoFs, while the local problems drive
multiscale basis functions.

Figure 6.7. Non-aligned global meshes used by the MHM method. Colorful lines represent
interfaces between physical layers.

Figure 6.8 shows the comparison between the solution from the MHM method with
4,048 global DoFs, and a reference solution from the standard Galerkin method (std-
FEM) with [P3(K)]2 elements on a simplicial fine mesh (7,717,979 elements) aligned
with all layers, using a total of 69,491,849 DoFs. We observe that the MHM method
recovers precisely the displacement components ux and uz of the references ones.
To illustrate the importance of adopting multiscale basis functions on top of coarse
meshes, we show in Figure 6.9 the numerical solution using the stdFEM with [P2(K)]2

interpolation on a coarse simplicial mesh (90,258 DoFs). We see that the solution de-
grades considerably.

The second experiment compares the MHM method with the stdFEM on simplicial
meshes. To establish a fair comparison, we use the mesh illustrated in Figure 6.7
(right) since it contains simplicial elements almost everywhere. We choose here ` = 1
( with k = `+ 2 = 3 ) and two-element meshes on edges. The resulting global MHM
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Figure 6.8. Displacement component ux (resp. uz) obtained with the MHM method (top-right)
(resp. bottom-right) and the reference solution (top-left) (resp. bottom-left) with the overlaid mesh.

Figure 6.9. Displacement components of the solution using the standard finite element method
stdFEM with 90,258 DoFs with the overlaid mesh. Left: x-component. Right: z-component.

formulation has 30,352 global DoFs. To compare methods with the same order of
convergence, we employ the stdFEM with P2(K) interpolation. Figure 6.10 compares
the profiles of the MHM and two stdFEM solutions at x = 0 using two-level of
refinements, namely,

• stdFEM (coarse): uses mesh given Figure 6.9 with 90,258 DoFs;
• stdFEM (fine): uses a non-aligned mesh with 2,912,070 DoFs (724,420 ele-

ments).

We depict the results in Figure 6.10, wherein we observe that the MHM solution
coincides with the one from stdFEM (fine) using 95 times less DoFs.

Some clarifications are essential at that point. The significant improvements in preci-
sion as a result of the MHM method on coarse meshes comes with the price to solve
2,064 independent local elasticity problems to generate the basis functions. In the
present problem, the largest local problem amounts to 10,172 DoFs. That means that
if one used 2,064 processing units in parallel, the total execution time would, in the-
ory, be proportional to the assemble+solution of two linear systems, namely the local
system with 10,172 DoFs, followed by the global one with 30,352 DoFs. Such trivial
parallelism for solving local problems is one of the main reasons for the adoption of
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Figure 6.10. Profiles of the displacement solution at x = 0. We compare the MHM method with
the stdFEM using two levels of mesh refinement for the stdFEM, and with the reference solution.
The x- (left) and z-component (right) of the displacement.

the MHM method in larger problems, for which the lack of memory prohibits the use
of very fine meshes.

7. Conclusions. We presented a new family of polytopal finite elements for the
MHM method applied to the linear elasticity equations with discontinuous interpola-
tions on faces, and refined local meshes. These properties allow the method to cope
with elasticity models with heterogeneous coefficients in complex geometries using
coarse meshes with non-aligned faces and interfaces with jumping coefficients. We
established sufficient conditions for the well-posedness of the MHM method. We also
highlighted the impact of the second-level approximation on convergence and showed
that the MHM method is super-convergent under local regularity assumptions with
no additional post-processing. Notably, we proved that the method achieves conver-
gence without deteriorating Poincaré and Korn’s constants under a mild condition on
face partitions. Moreover, we showed that the error estimates for displacement in the
L2(Ω)-norm could be improved even on non-convex element meshes.

We also verified the theoretical finding of the MHM method for elasticity for the
first time numerically. Two- and three-dimensional numerical experiments recovered
theoretical results, and we noticed unexpected additional convergence rates of order
H

1
d in the H-refinement. Such a numerical finding also appeared in the MHM method

for the Poisson equation [10] and is currently under theoretical investigation. The nu-
merical tests also inferred that the H-refinement requires fewer degrees of freedom
than the H-refinement to reach the same error threshold. On the other hand, the
computational performance tests suggested that the H- and H-refinements should be
combined to achieve better precision in shorter overall execution time and memory
consumption.

Finally, we assessed the MHM method on a two-dimensional synthetic multi-
layered problem with complex topography. We found that current strategy needed
about one hundred times fewer degrees of freedom to achieve a specified error thresh-
old compared with the standard continuous finite element method. Such a huge gain
of the MHM method hides the costs for obtaining the basis functions. Fortunately,
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such computations are local and completely independent of one another, and may be
performed in an offline stage.
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[8] I. Babuška and J. E. Osborn. Generalized finite element methods: Their per-
formance and their relation to mixed methods. SIAM Journal on Numerical
Analysis, 20(3):510–536, jun 1983. doi: 10.1137/0720034. Cited on page 1.

[9] G. Barrenechea, F. Jaillet, D. Paredes, and F. Valentin. The multi-
scale hybrid mixed method in general polygonal meshes. Numer. Math.,
https://doi.org/10.1007/s00211-020-01103-5, 2020. Cited on pages 2, 20, and 23.

[10] G. R. Barrenechea, F. Jaillet, D. Paredes, and F. Valentin. The Multiscale
Hybrid Mixed Method in General Polygonal Meshes. hal-02054681, Mar. 2019.
URL https://hal.inria.fr/hal-02054681. Cited on pages 15, 16, and 46.

[11] C. Bernardi. Optimal finite-element interpolation on curved domains. SIAM
Journal on Numerical Analysis, 26(5):1212–1240, oct 1989. doi: 10.1137/
0726068. Cited on page 18.

[12] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applica-

http://sdumont.lncc.br
https://hal.inria.fr/hal-02054681


48 A.T. GOMES, W. PEREIRA AND F. VALENTIN

tions. Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-36519-5. Cited
on page 16.

[13] S. C. Brenner. Korn’s inequalities for piecewise H1 vector fields. Mathematics of
Computation, 73(247):1067–1088, sep 2003. doi: 10.1090/s0025-5718-03-01579-5.
Cited on pages 5 and 51.

[14] S. C. Brenner and L.-Y. Sung. Linear finite element methods for planar linear
elasticity. Mathematics of Computation, 59(200):321–321, 1992. doi: 10.1090/
s0025-5718-1992-1140646-2. Cited on page 26.

[15] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite ele-
ment methods for solving the stationary stokes equations i. Revue française
d’automatique informatique recherche opérationnelle. Mathématique, 7(R3):33–
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Appendix A. Auxiliary results.

Lemma A.1. Let K be a bounded domain in Rd (d = 2, 3) with Lipschitz boundary.
There exists a positive constant Ckorn,K , independent of HK , such that

‖∇ṽ‖0,K 6 Ckorn,K‖ε(ṽ)‖0,K for all ṽ ∈ Ṽ(K) .

Proof. First, we use the Petree-Tartar’s lemma (see [20, Lemma A.38]) with

X := Ṽ(K) and Y := [L2(K)]d×d and Z = L2(K) and A := ε .

Notice (X, ‖ · ‖1,K) is closed and the mapping A : X → Y is injective. Next, it is

well-known that H1(K)
c
↪→ L2(K) (see Rellich-Kondrachov [20, Theorem B.46] for

d > 2), and therefore, the mapping X ⊂ H1(K)
c
↪→ Z defines a compact operator

T : X → Z. Also, from the Korn’s inequality in H1(K) (see [20, Theorem 3.78]) it
holds

‖ṽ‖1,K 6 ‖A ṽ‖0,K + ‖T ṽ‖0,K for all ṽ ∈ Ṽ(K) .

We fullfil, then, the requirements of the Petree-Tartar’s lemma which leads to the
existence of a positive constant Ckorn,K such that

‖∇ṽ‖0,K 6 ‖ṽ‖1,K 6 Ckorn,K ‖A ṽ‖0,K = Ckorn,K ‖ε(ṽ)‖0,K for all ṽ ∈ Ṽ(K) .

The constant Ckorn,K is independent of HK by a scaling argument, and the result
follows.
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We present a Korn’s inequality over functions in V with a constant independent of
mesh parameters.

Lemma A.2. Let P be a polytopal partition. There exists a positive constant C,
depending only on Ω and the shape-regularity of P, such that

|v|21,P 6 C

(
‖ε(v)‖20,P +

∑
K∈P

∥∥∥∥ΠRMv −
1

|K|

∫
K

v dx

∥∥∥∥2

0,K

+
∑
E∈E0

1

hE
‖JvK‖20,E

)
,

for all v ∈ V.

Proof. The proof uses the technique proposed in [13]. Define the operator Φ :
V→ R as follows

Φ(v) =

√√√√∑
K∈P

∥∥∥∥ΠRMv −
1

|K|

∫
K

v dx

∥∥∥∥2

0,K

.

Notice that it is a semi-norm and satisfies

Φ((I −ΠRM )v) = 0 ,

Φ(v) 6 ‖v‖0,Ω ,
Φ(v) = 0 and v ∈ Vrm(Ω) ⇔ v is a constant vector ,

and, thus, the operator Φ(·) fulfils the requirements of [13, Lemma 2.2] and [13,
Theorem 3.1]. As such, using [13, Theorem 4.2] (d = 2) or [13, Theorem 5.2] (d = 3),
there exists a constant C, depending only on the shape-regularity of P, such that

‖∇v‖20,P 6 C

(
‖ε(v)‖20,P + Φ(v)2 +

∑
E∈E0

1

hE
‖JvK‖20,E

)
for all v ∈ V ,

and the result follows.

The next result slightly improves the equivalence result proved in [28, Lemma A.3].

Lemma A.3. Given µ ∈ Λ, the following result holds

‖µ‖Λ = sup
v∈V

〈µ,v〉∂P

‖v‖V
.

Proof. From [28, Lemma A.3], we have

‖µ‖Λ > sup
v∈V

〈µ,v〉∂P

‖v‖V
for all µ ∈ Λ .
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Next, given µ ∈ Λ from the Riesz representation theorem there exists uµ ∈ V such
that

(uµ,v)V = 〈µ,v〉∂P for all v ∈ V .

Notice the above problem corresponds to the strong formulation (in a distributional
sense)

{
h2

Ω∇· (ε(uµ)) = uµ in K ,

(ε(uµ))nK = µ on ∂K ,

in each K ∈P. Therefore the tensor function ε(uµ) ∈ H(div; Ω;S) and is satisfies

‖ε(uµ)‖2div = ‖ε(uµ)‖20,Ω + h2
Ω‖∇· (ε(uµ))‖20,Ω

= ‖ε(uµ)‖20,Ω + h−2
Ω ‖u

µ‖20,Ω = ‖uµ‖2V .

Also, given µ ∈ Λ, it holds

‖µ‖Λ ‖uµ‖V 6 ‖ε(uµ)‖div ‖uµ‖V = ‖uµ‖2V = 〈µ,uµ〉∂P ,

which implies that

‖µ‖Λ 6 sup
v∈V

〈µ,v〉∂P

‖v‖V
,

and the result follows.
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