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ABSTRACT
This paper presents a machine learning approach for detecting structural stiffness changes
of civil engineering structures considered as dynamical systems, using only an experimental
database constituted of a small number of records related to the experimental first eigenfre-
quency of the structure and a set of measured temperatures. Since the number of records in
the experimental database is assumed to be small, the ”small data” case must be is considered
and consequently, the most classical methods of machine learning, which require ”big data”,
cannot be used. The method of the probabilistic learning on manifolds recently introduced
for analyzing small data is thus used. The validation of this method is performed on a box-
girder bridge for which its dynamic monitoring has generated an experimental database. The
proposed approach can be used for other similar problems.

KEYWORDS
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1. Introduction

The detection of structural changes of civil engineering structures is often analyzed in the
framework of the structural health monitoring and of the detection of disorders, which have
received a great attention in the recent past (see for instance Brownjohn (2007); Brownjohn,
De Stefano, Xu, Wenzel, and Aktan (2011); Farrar and Worden (2007); Patcha and Park
(2007); Worden, Farrar, Manson, and Park (2007)). Aspects related to the design, the perfor-
mance, the maintenance, the deterioration, and the damage detection have been considered
by Frangopol (2011); Frangopol and Liu (2007); Ko and Ni (2005); Pandey, Yuan, and
Van Noortwijk (2009), Kim and Frangopol (2011); Okasha, Frangopol, and Orcesi (2012);
Orcesi and Frangopol (2010); Orcesi, Frangopol, and Kim (2010), J. P. Santos, Crémona,
Orcesi, and Silveira (2013); J. P. Santos, Orcesi, Crémona, and Silveira (2015); Wong (2007).
The difficulties encountered for this type of problem have led to the use of probabilistic and
statistics methods, artificial intelligence methods, in particular the use of neural networks
in machine learning, which has also extensively been addressed for improving all these
aspects, as it can be seen in Adeli (2001); Farrar and Worden (2012); Salehi and Burgueno
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(2018), in particular, for the modeling, the monitoring, and the identification (see for instance
Amezquita-Sanchez and Adeli (2015); Arangio and Bontempi (2015); Dong, Celik, Catbas,
O Brien, and Taylor (2020); Liu and Zhang (2020); Xu, Wu, Chen, and Yokoyama (2004)),
and for the detection of structural damage, degradation, and structural disorders as analyzed
by Cha, Choi, and Büyüköztürk (2017); Erfani, Rajasegarar, Karunasekera, and Leckie
(2016); Feng, Liu, Kao, and Lee (2017); Gui, Pan, Lin, Li, and Yuan (2017); Hewayde,
Nehdi, Allouche, and Nakhla (2007); Lin, Nie, and Ma (2017); Rafiei and Adeli (2017);
A. Santos, Figueiredo, Silva, Sales, and Costa (2016); J. P. Santos, Crémona, Calado,
Silveira, and Orcesi (2016); Schoefs, Yáñez-Godoy, and Lanata (2011); Strauss (2016); Tan,
Thambiratnam, Chan, Gordan, and Abdul Razak (2019).

This paper deals with the detection of structural stiffness changes of civil engineering
structures considered as dynamical systems, using an experimental database constituted of
a small number of records related to the experimental first eigenfrequency of the structure
and a set of measured temperatures. A probabilistic criterion is proposed for the detection,
which is coupled with the use of a probabilistic learning method that has recently be
introduced for processing small datasets (in opposite to the cases for which big datasets
are available). In order to explain the difficulties of the problem treated in this paper and
to explain the proposed detection method, a very brief summary of the description of the
experimental database is given and will be detailed in Section 3.1. This database will be
used in Sections 3.2 to 3.5 for testing and validating the method proposed. This database
is related to experimental measurements of a box-girder bridge (Pont de l’Oise in France)
subjected to the dynamic traffic loads and to the effects of the environment, in particular
the variations of temperatures. The measures are the external and internal temperatures
and the accelerations due to the dynamical responses of the structure as a function of time.
The first eigenfrequency, which depends on the temperature, is obtained by experimental
modal analysis of the dynamical responses induced by the traffic. A structural modification
of the bridge was carried out consisting in strengthening the bridge by installing additional
prestressing cables. The measurements were carried out over a period before the structural
modification and also over a period after the structural modification. The outside and inside
temperatures are measured by 7 sensors and noted T1 to T7 (see Section 3.1). The experimen-
tal database consists of Nd = 2811 records of the first eigenfrequency of the bridge (obtained
by experimental modal analysis), noted Q, and of 9 parameters related to the temperature,
noted W = (W1, . . . ,W9), the components of which being T1 to T7, T3 − T2, and T5 − T4.
Among these 2811 records, 744 records concern the period before the structural modification
and 1887 the period after the modification. Obviously, the first eigenfrequency Q depends on
the temperature. During the total measurements period (including the two periods, before and
after structural modification), the interval of the temperature T6 measured by sensor number
6 located inside the box girder is [−7.7 , 31.4] oC and the first eigenfrequency Q varies from
2.20 to 2.39Hz.

The objective of this paper is to use this small experimental database for proposing and
validating a methodology that allows for detecting the structural change using only the total
experimental database, without using separately the two parts of the database associated with
the two periods, before and after the structural modification. However, these two parts of the
database will still be used separately, but only for the purpose of producing validation of the
proposed method. No computational model of the bridge in its environment is available and
the traffic is not measured. It should be noted that the objective of this paper is not centered on
retrofitting techniques for post tensioned bridges. This paper proposes a novel identification
method for detecting structural changes for civil engineering structures for which a small
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experimental database is available. The approach that is proposed can obviously be used for
other problems. In this context, the problem posed is difficult enough for two main reasons.
- The first is due to the fact that the variations of temperatures induce amplitudes of variations
of the first eigenfrequency, which are of the same order of magnitude as the variation of this
first eigenfrequency induced by the structural change. In addition there are other parameters
of the dynamical system that are not measured and that influence the values of the first eigen-
frequency. This case is thus particularly difficult for the clustering methods, the statistical
methods, and the machine learning approaches based on the use of big data.
- The second reason is related to the small size of the database, which does not allow the use
of classical machine learning approaches because the database is not sufficiently big. The
probabilistic learning methods adapted to small data are thus candidates for solving such a
problem and it is interesting to test the novel approaches.

As the database is not sufficiently big to detect the structural change and the convergence
of the statistical quantities, an alternative approach is proposed consisting in using the
probabilistic learning on manifolds (PLoM) that has recently been introduced by Soize
and Ghanem (2016, 2020); Soize et al. (2019) in the context of computational sciences
and engineering. The first paper of 2016 presents this novel PLoM method, which has
specifically been developed for the small data case in contrast to the big data case. The
second paper of 2019 presents a complement to the first one, which is necessary for finding
the optimal value of the dimension of the diffusion-maps basis. Finally, the last one of
2020, is a complete mathematical development for the mathematical validation. These three
theoretical papers proposed a novel tool in mathematical statistics for the small data case and
allow for preserving the concentration of the probability measure. Extensions of the PLoM
method have been proposed in Soize and Ghanem (2020a) and many developments and
applications can be found in Farhat, Tezaur, Chapman, Avery, and Soize (2019); Ghanem and
Soize (2018); Ghanem et al. (2019); Guilleminot and Dolbow (2020). Nevertheless, before
using this learning method, it is necessary to introduce an adapted probabilistic criterion for
detecting the occurrence of a structural change.

The paper is organized as follows. The approach proposed for detecting the structural
change of the dynamical system is defined in Section 2: the quantity of interest (QoI) is
defined as well as the parameters which control the dynamical system, the initial dataset con-
stituted of the experimental database, and the probabilistic criterion for the detection. In this
section, an estimate of the conditional probability density function is given, based on the use
of the initial dataset, and it is shown how the probabilistic learning on manifolds allows for
improving the initial information and for obtaining the statistical convergence. Section 3 deals
with the application to the detection of structural change of a civil engineering structure for
which the description of an experimental database is given. The predictions using the prob-
abilistic learning on manifolds are presented as well as a convergence analysis. This section
ends by presenting a validation of the probabilistic criterion coupled with the PLoM approach.
A summary of the probabilistic learning on manifolds (PLoM) is given in Appendix A.

2. Approach for detecting the structural change of the dynamical system

2.1. Definition of the QoI, the parameters, and the initial dataset

A dynamical system is considered. It will be the box-girder bridge subjected to the traffic and
to the environment loads, in particular the temperature. The QoI is the real-valued random
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variable Q defined on a probability space (Θ, T ,P) (it will be the first eigenfrequency of the
dynamical system). The QoI depends on a random vector W = (W1, . . . ,Wnw) that is made
up of the part of the parameters that control the dynamical system (the components correspond
to the temperatures introduced in Section 1), while random vector U = (U1, . . . , Unu) is made
up of the other part of the parameters, which are not used for controlling the system (here, U
will not be described and is related to all the parameters of the dynamical system that influence
Q). Consequently, there exits a deterministic mapping (w,u) 7→ f(w,u) on Rnw ×Rnu with
values in R representing the first eigenfrequency of the dynamical system. This mapping is
unknown and we have,

Q = f(W,U) . (1)

The random variables W and U are defined on a probability space (Θ, T ,P), are with values
in Rnw and Rnu , and are assumed to be statistically independent and non-Gaussian. The prob-
ability distributions PW(dw) on Rnw and PU(du) on Rnu are unknown. Due to Equation (1),
the probability measure PQ,W(dq, dw) is concentrated in the neighborhood of the stochastic
manifold defined by the random graph {(f(w,U),w),w ∈ Sw} in which Sw ⊂ Rnw is the
unknown support of the probability measure PW(dw). Subset Sw of Rnw can be viewed as
the admissible set for the values w of random variable W.

Due to the presence of U, it is consistent to assume that the joint probability distribution
PQ,W(dq, dw) admits a joint probability density function (pdf) (q,w) 7→ pQ,W(q,w) on R×
Rnw with respect to dq dw. Assuming also that PW(dw) admits a pdf w 7→ pW(w) on Rnw
with respect to dw, it can be conclude that PQ(dq) admits a pdf q 7→ pQ(q) on R with respect
to dq,

The joint pdf (q,w) 7→ pQ,W(q,w) and the mapping f are thus unknown. The only in-
formation available is a database, called the initial dataset and denoted by Dd(Nd), which
consists of Nd independent realizations (for the bridge database, Nd = 2811) of the random
vector (Q,W) with values in R× Rnw ,

Dd(Nd) = {(qjd,w
j
d) , j = 1, . . . , Nd} , qjd ∈ R , wj

d = (wjd,1, . . . , w
j
d,nw

) ∈ Rnw . (2)

2.2. Construction of a probabilistic criterion for the detection

In the context of detecting the structural change of the dynamical system (the box-girder
bridge), the idea of constructing the detection criterion is as follows. If the first eigenfre-
quency Q did not depend on the temperature, then the structural change would induce a
bimodality of the probability density function of random variable Q. However, as Q depends
on the temperature and taking into account the characteristics of the database described
in Section 1, we will proceed by conditioning Q with respect to temperatures. As it will
be seen in Section 2.4, the probabilistic learning on manifolds will be performed for the
random vector (Q,W) in order to use all the available information existing in initial dataset
Dd(Nd) in order to enrich the initial information. Nevertheless, for defining the criterion that
will allow for detecting the structural change, it is not necessary to keep all the information
related to the temperature sensors. Only a part of them for which Q is very sensitive are
taken into account. Sensor number 6, which measures the internal temperature T6 inside
the box girder in which the prestressing cables are installed, will be chosen. In this context,
one chooses k in {1, . . . , nw} as the index of the component of W used for the detection
criterion (for the application to the database, which will be carried out in Section 3, k will
be chosen to 6). The conditioning ofQwill then be taken with respect to componentWk of W.
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Let Sk ⊂ R be the support of the pdf wk 7→ pWk
(wk) =

∫
Rnw−1 pW(w) dw−k

of the real-valued random variable Wk, in which the notation dw−k = ⊗κ6=kdwκ =
dw1 . . . dwk−1 dwk+1 . . . dwnw has been used. Let q 7→ pQ|Wk

(q|wk) be the conditional prob-
ability density function on R of random variable Q given Wk = wk ∈ Sk, such that

pQ|Wk
(q|wk) =

pQ,Wk
(q, wk)

pWk
(wk)

, ∀wk ∈ Sk ⊂ R , (3)

in which pQ,Wk
(q, wk) =

∫
Rnw−1 pQ,W(q,w) dw−k. For all wk in Sk, it is assumed that q 7→

pQ|Wk
(q|wk) admits a unique maximum qLM(wk), which is a local maximum. This hypothesis

means that, for all wk in Sk, the subset Ek = {q ∈ R : q = arg maxq′ pQ|Wk
(q′ |wk)} is

reduced to a point in R. We then have,

qLM(wk) = arg max
q′

pQ|Wk
(q′ |wk) , ∀wk ∈ Sk ⊂ R . (4)

Finally, assuming that qLM(Wk) is a real-valued random variable defined on (Θ, T ,P), the
real-valued random variable QLM is defined by

QLM = qLM(Wk) . (5)

The Nd independent realizations {qLM,1, . . . , qLM,Nd} of random variable QLM are then given
by qLM,j = qLM(wjd,k), that is,

qLM,j = arg max
q′

pQ|Wk
(q′ |wjd,k) , j = 1, . . . , Nd . (6)

Let q 7→ pQLM(q) be the estimates of the probability density function of random variable
QLM carried out using the Gaussian kernel-density estimation method with the realizations
{qLM,1, . . . , qLM,Nd} (see for instance, Bowman and Azzalini (1997)).

As previously explained, the detection of a structural change of the dynamical system
consists in analyzing the bimodality character of the pdf q 7→ pQLM(q). Assuming that pdf
pQLM is bimodal, qLM

max,1 and qLM
max,2 denote the two values of q for which q 7→ pQLM(q) reaches

its two local maxima.

2.3. Estimation of the conditional probability density function using the initial dataset

The conditional probability density function, q 7→ pQ|Wk
(q|wk) for given wk in R, has

to be estimated using computational statistics. In this section, we construct the formula
based on the use of the multidimensional Gaussian kernel-density estimation method and
of the realizations of the initial dataset Dd(Nd) defined by Eq. (2). Consequently, this
conditional pdf is rewritten as q 7→ pQ|Wk

(q|wk;Nd). As it has been explained in Section 1,
Nd is too small for obtaining the convergence of q 7→ pQ|Wk

(q|wk;Nd) with respect to
Nd. Consequently, in Section 2.4, the probabilistic learning on manifolds will be used for
constructing the learned dataset Dar(νar) with νar � Nd and then, we will substitute Dd(Nd)
by Dar(νar) for estimating the conditional probability density function, which will then be
written as q 7→ pQ|Wk

(q|wk; νar). Throughout the paper, the subscript ”ar” refers to the
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additional realizations generated by the probabilistic learning on manifolds.

Let q
d

and σd be the empirical mean value and standard deviation of random variable Q
computed using the realizations {qjd , j = 1, . . . , Nd}. Similarly, let wd,k and σd,k be the
empirical mean value and standard deviation of random variable Wk computed using the
realizations {wjd,k , j = 1, . . . , Nd}. We introduce the normalized random variables Q̃ and

W̃k such that

Q = q
d

+ σd Q̃ , Wk = wd,k + σd,k W̃k . (7)

The Nd realizations of (Q̃, W̃k) are {(q̃jd, w̃
j
d,k) , j = 1, . . . , Nd} such that

q̃jd = (qjd − qd)/σd , w̃jd,k = (wjd,k − wd,k)/σd,k . (8)

Consequently, for all real q, q̃, wk, and w̃k such that,

q = q
d

+ σd q̃ , wk = wd,k + σd,k w̃k , (9)

that value pQ|Wk
(q|wk) of the conditional pdf of Q given Wk = wk is written as

pQ|Wk
(q|wk;Nd) =

1

σd

p
Q̃,W̃k

(q̃, w̃k;Nd)

p
W̃k

(w̃k;Nd)
, (10)

in which p
Q̃,W̃k

is the joint pdf of normalized random variables Q̃ and W̃k with re-

spect to dq̃ dw̃k, and p
W̃k

is the pdf of normalized random variable W̃k with respect to
dw̃k. Using Equation (10) and the Gaussian kernel-density estimation method, the estimate
pQ|Wk

(q|wk;Nd) of the conditional pdf is written as

pQ|Wk
(q|wk;Nd) =

1

σd
√

2πs
Nd

∑Nd
j=1 exp{− 1

2s2Nd
{(q̃ − q̃jd)

2 + (w̃k − w̃jd,k)
2}}∑Nd

j=1 exp{− 1
2s2Nd

(w̃k − w̃jd,k)2}
, (11)

in which s
Nd

is the Silverman bandwidth that is written as,

s
Nd

=

{
4

Nd(2 + 2)

}1/(2+4)

= N
−1/6
d . (12)

Concerning the bimodality of the pdf q 7→ pQLM(q;Nd) that is estimated by using Section 2.2
with Equation (11), we will denote by qLM

max,1(Nd) and qLM
max,2(Nd) the two values of q for which

q 7→ pQLM(q;Nd) reaches its two local maxima (if a second local maximum exists).

2.4. Probabilistic learning on manifolds

The probabilistic learning on manifolds (PLoM), summarized in Appendix A, is used for two
reasons.
- The first is the enrichment of the available information represented by the initial setDd(Nd)
by including in the MCMC method complementary information related to the geometry of
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the support of the probability measure pQ,W(q,w) dq dw, which consists in projecting the
MCMC generator on a diffusion-maps basis (see Appendix A).
- The second is the construction of the learned dataset Dar(νar) with an arbitrarily large
number νar � Nd of realizations, which allows converged statistics to be obtained.

The methodology consists in computing Dar(νar) using the algorithm summarized in Ap-
pendix A ,

Dar(νar) = {(q`ar,w
`
ar) , ` = 1, . . . , νar} , q`ar ∈ R , w`

ar = (w`ar,1, . . . , w
`
ar,nw) ∈ Rnw . (13)

Then, the conditional probability density function q 7→ pQ|Wk
(q|wk; νar) is estimated using

Eqs. (9) and (11) in which Dd(Nd) is replaced by Dar(νar), that is,

pQ|Wk
(q|wk; νar) =

1

σar

√
2πsνar

∑νar
`=1 exp{− 1

2s2νar
{(q̃ − q̃`ar)

2 + (w̃k − w̃`ar,k)
2}}∑νar

`=1 exp{− 1
2s2νar

(w̃k − w̃`ar,k)
2}

, (14)

in which sνar is given by Equation (12) by substituting Nd by νar and where

q = q
ar

+ σar q̃ , wk = war,k + σar,k w̃k . (15)

The empirical mean value q
ar

and the standard deviation σar of random variable Q are
computed using the realizations {q`ar , ` = 1, . . . , νar}, while the empirical mean value war,k
and the standard deviation σar,k of random variable Wk are computed using the realizations
{w`ar,k , ` = 1, . . . , νar}.

Concerning the bimodality of the pdf q 7→ pQLM(q; νar) that is estimated by using Sec-
tion 2.2 with Equation (14), we will denote by qLM

max,1(νar) and qLM
max,2(νar) the two values of q

for which q 7→ pQLM(q; νar) reaches its two local maxima.

2.5. Convergence analyses

The convergence analyses are performed for the estimates of quantities qLM
max,1(νar) and

qLM
max,2(νar) that characterize the bimodality of the pdf q 7→ pQLM(q). Two types of convergence

must be studied.
- For the maximum value Nd,imax of the number Nd of realizations in the initial dataset, the
convergence is performed with respect to the number νar of additional realizations that con-
stitute the learned dataset, Dar(νar), which is constructed as explained in Section 2.4. This
convergence analysis allows for identifying the optimal value νopt

ar of νar.
- For νar fixed to its optimal value νopt

ar , the convergence is performed with respect to the
number Nd of realizations in the initial dataset. We consider a sampling of integers such that
0 < Nd,1 < Nd,2 < . . . < Nd,imax . For each i in {1, . . . , imax}, the probabilistic learning is
performed as explained in Section 2.4 with the initial dataset made up of Nd,i realizations. If
the convergence is obtained for a value of Nd less than or equal to Nd,imax , this means that the
initial dataset contained a sufficient information for performing the learning and the learning
process is converged. If not, then Nd,imax should be increased.
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Figure 1. View of PI-57 Bridge.

(a) View inside box before strength-
ening.

(b) View after strengthening ex-
ternal with prestressing cables in-
stalled in the bridge deck.

Figure 2. View inside the bridge deck (a) before and (b) after strenghtening.

3. Application to the detection of structural changes of a civil engineering structure

3.1. Description of the experimental database

The PI-57 Bridge, used as illustration in this paper, is a 120m prestressed concrete box girder
bridge which was built in France in the 1960s to carry the A1 motorway across the Oise
River and connect Paris to Lille (Figure 1). Such box girder bridge as several others built
in France by balanced cantilevering before 1975 suffered from insufficient bending strength,
which led to local cracking and increase of mid-span deflection. Major reasons for these issues
are failure to take thermal gradients into account, and underestimation of the redistribution of
forces through the effect of creep and shrinkage of materials. Additional prestressing was ap-
plied in 2009 to strengthen the bridge (Figure 2). In parallel, a dynamic monitoring program
was considered before (from November 21, 2008 to April 3, 2009) and after strengthening
(from November 21, 2009 to April, 2010). Dynamic tests were performed using the traffic
as source of excitation (see Cury, Cremona, and Dumoulin (2012) and Alves, Cury, Roit-
man, Magluta, and Cremona (2015) for further details on the monitoring program). Some
accelerometers were placed inside the bridge cross-section, with sampling set to 0.004 s for
5 minutes records every 3 hours over a 24-hour time period. The instrumentation scheme
was composed of nineteen sensors (sixteen measuring vertical accelerations and three mea-
suring longitudinal accelerations) instrumented over nearly 80m length span of the bridge
(Figure 3). Temperature was measured at seven different locations across the bridge (see Fig-
ure 4), for the two periods before (Figure 5-(a)) and after (Figure 5-(b)) strengthening. For
the first and second campaigns, a total of 744 and 1 887 tests were registered, respectively.
In particular, Figure 6-(a) illustrates the evolution of the first eigenfrequency Q with time for
the periods before and after strengthening and Figure 6-(b) shows the relation between Q and
temperature T6.
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Figure 3. Location of the dynamic monitoring system.

Figure 4. Location of temperature gauges.
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(a) Before strengthening.

Nov 2009 Jan 2010 Mar 2010 May 2010 Jul 2010 Sep 2010
-20

-10

0

10

20

30

40

T
e

m
p

e
ra

tu
re

 (
°

C
)

T1

T2

T3

T4

T5

T6

T7

(b) After strengthening.

Figure 5. Time history of temperatures before and after strengthening.
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(a) Profile of first eigenfrequency Q as a function of time, be-
fore and after strengthening.
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(b) Profile of first eigenfrequency Q as a function of tempera-
ture T6, before and after strengthening.

Figure 6. Profile of first eigenfrequency Q.
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(a) pdf q 7→ pQLM (q;Nd) estimated using the initial dataset
(Nd = 2811), without probabilistic learning.
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(b) pdf q 7→ pQLM (q; νar) estimated using the proba-
bilistic learning from the initial dataset (Nd = 2811)
and with νar = 1011 960 additional realizations.

Figure 7. Detection of the structural change.

3.2. Predictions with the probabilistic learning on manifolds

The pdf q 7→ pQLM(q) defined in Section 2.2 is estimated using the additional realizations
generated by using the probabilistic learning on manifolds whose algorithm is summarized
in Appendix A.

(i) A first analysis is performed using the total database that constitutes the initial
dataset with Nd = 2811 experimental measurements. Figure 7-(a) displays the graph of
function q 7→ pQLM(q;Nd). This pdf is unimodal and the peak is obtained for the value
qLM

max,1 = 2.23Hz of the first eigenfrequency. Consequently, the initial dataset does not allow
the structural change to be detected.

(ii) A second analysis is carried out using the probabilistic learning with νar = 1 011 960
additional realizations for which the initial dataset is the total database for which Nd = 2811.
The values of the parameters of the PLoM defined in Appendix A are the following:
nq = 1; nw = 9; n = 10; Nd = 2811; relative error for the PCA truncation: 10−6;
ν = 8; εopt

diff = 17.0; m = mopt = 9 with Λ1 = 1, Λ2 = 0.0297, Λ9 = 0.0268, and
Λ10 = 0.00296; nMC = 360; νar = nMC × Nd = 1 011 960; sν = 0.478; ŝν = 0.431;
f0 = 1.5; M0 = 10; M = 3600; ∆r = 0.135506. Figure 7-(b ) displays the graph of
function q 7→ pQLM(q; νar). This pdf is bimodal. The first peak is obtained for the value
qLM

max,1 = 2.23Hz of the first eigenfrequency while the second peak, which allows for de-
tecting the structural change, occurs for the value qLM

max,2 = 2.28Hz of the first eigenfrequency.

(iii) The convergence of the family of probability density functions q 7→ pQLM(q; νar) of
random variable QLM with respect to the number νar of additional realizations computed using
the probabilistic learning on manifolds is shown in Figure 8. In this figure it can also be seen
the graph of q 7→ pQLM(q;Nd) estimated with the initial dataset (Nd = 2811) without using
the probabilistic learning (it is the graph shown in Figure 7-(a)). For νar = 1 011 960 the
convergence of the probabilistic learning is reached (it is the graph shown in Figure 7-(b)).

3.3. Convergence of the estimates with respect to the size of the learned dataset

For the maximum size Nd = 2811 of the initial dataset, the convergence of qLM
max,1 and qLM

max,2 is
performed with respect to the size of the learned dataset, that is, with respect to the number
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learning (thick blue line) and graphs of q 7→ pQLM (q; νar) estimated using the probabilistic learning (thin blue line) for νar ∈
{5 622, . . . , 1 011 960}; for the last value, νar = 1011 960, the graph is the thick red line.
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Figure 9. Convergence of qLM
max,1(νar) and qLM

max,2(νar) with respect to the number of additional realizations νar of the proba-
bilistic learning, for the initial dataset of size Nd = 2811.

νar of additional realizations computed with the PLoM. Figures 9-(a) and -(b) show the graphs
of convergence that is obtained (the convergence) for νar = 1 012 000. It can be seen that the
estimates are converged.

3.4. Convergence of the learning with respect to the size of the initial dataset

The learned dataset, which is constituted of νar additional realizations {x`ar, ` = 1, . . . , νar}
computed with the PLoM, is performed from the initial dataset {xjd, j = 1, . . . , Nd} with
Nd � νar. It is important to control the convergence of the learning, that is to say to con-
trol the convergence of the statistical estimates of the observed quantities, qLM

max,1 and qLM
max,2,

with respect to the size, Nd, of the initial dataset. For that, as explained in Section 2.5, we
introduce the set Nd = {1000, 1500, 2000, 2100 to 2700 in steps of 100, 2811} of values
of Nd. Figure 10 shows the convergence of the probabilistic learning with respect to the size
Nd ∈ Nd of the initial dataset. Let [xd] ∈M10,2811 be the initial dataset of maximum size. Let
[xd,perm] ∈ M10,2811 be a random permutation of the 2 811 columns of [xd]. For each Nd in
Nd, the initial dataset [xd(Nd)] ∈M10,Nd , which is used to perform the probabilistic learning
with νar = 1 012 000 additional realizations, is made up of the first Nd columns of [xd,perm].
In Figure 10-(b), for Nd equal to 1000 and to 2000, the second peak (local maximum) of the
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Figure 10. Convergence of qLM
max,1(Nd) and qLM

max,2(Nd) with respect to the size Nd of the initial dataset, for νar = 1012 000

additional realizations of the probabilistic learning.

pdf q 7→ pQLM(q) does not exist (the pdf pQLM is unimodal and not bimodal and consequently,
the detection of the structural change of the bridge cannot be done). This is the reason why
there is no values of qLM

max,2 for these two values of Nd. This means that for an initial dataset
whose size is less than 2000, the information contained in the database is not sufficiently big
for performing the learning. Figures 10-(a) and -(b) show that the convergence of the learn-
ing is good. This means that the size Nd = 2811 is adapted for performing the probabilistic
learning for the two quantities that are observed.

3.5. Validation of the probabilistic criterion coupled with the PLoM

A decision criterion is presented for detecting the occurrence of a structural change of the
bridge, based on the analysis of the type of the pdf q 7→ pQLM(q) of the random variable
QLM: if this pdf is bimodal, then there was a structural change. The two local maxima
of this bimodal pdf are qLM

max,1 and qLM
max,2. In addition, in order to obtain a sufficiently good

convergence of the estimates of qLM
max,1 and qLM

max,2, the PLoM algorithm is used in order to enrich
the initial information and to increase the number of realizations. In the framework of the
use of such a detection algorithm, a small initial database is available (the initial dataset), but
the time/moment for which the structural change occurs is unknown and consequently, the
analysis cannot be performed using separately the database before the structural modification
and using the database after the structural modification. Indeed, it should be noted that if
the instant of structural change is known, then the problem of detecting structural change
no longer arises. For the application presented, the modification is due to the installation
of additional prestressing cables and therefore, this instant of structural change is known.
Thanks to this information, we can separate the two data sets, which allows the proposed
identification method to be validated (Figure 11). Such a separation cannot be made in the
general case, which interests us, for which the identification method is developed. In order to
avoid any ambiguity on the role played by Figure 11, we wish to emphasize that this figure
is only used to validate the method. It should be noted, as explained in Section 1, that this
application was chosen because there was an experimental database, which made it possible
to validate the detection methodology, which allows for detecting, from a small database, a
possible structural change in a civil engineering structure without knowing the existence or
not of a structural modification.

The size Nd of the initial dataset corresponding to the database before structural modifica-
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(b) pdf q 7→ pQLM (q; νar) estimated using the proba-
bilistic learning with νar = 1012 000 additional real-
izations.

Figure 11. pdf before structural modification with Nd = 744 (thin line) and after modification with Nd = 1887 (thick line).

tion is 744 while it is 1887 after the structural modification. During all the time considered for
the measurements, the interval of the 2811 values of the temperature measured by sensor num-
ber 6, located inside the box girder is [−7.7 , 31.4] oC for which the statistical mean value is
11.4 oC. The value of the first eigenfrequency corresponding to−7.7 oC is 2.39Hz while it is
2.20Hz for 31.4 oC. The measurements performed before the structural modification yields
[−7.7 , 12.7] oC with a statistical mean value 4.3 oC yielding for the corresponding eigenfre-
quencies 2.39Hz and 2.20Hz, respectively. Concerning the measurements performed after
the structural modification, the interval of temperatures is [−5.0 , 31.4] oC with a statistical
mean value 14.4 oC yielding for the corresponding eigenfrequencies 2.32Hz and 2.20Hz,
respectively. The database shows that there is a large number of temperature in the interval
[−1.0 , 10.0] oC ⊂ [−5.0 , 12.7] oC, measured before and after the structural modification.
As the first frequency decreases when the temperature increases (and therefore increases when
the temperature decreases), the database shows that there is effectively an overlap of the val-
ues of the first eigenfrequency before and after the structural modification. This implies that,
the pdf q 7→ pQLM(q) resulting from the analysis of the data after the structural modification
must be bimodal with a first peak occurring for a first eigenfrequency close to the peak of
the pdf before the structural modification and a second peak for a higher value of the first
eigenfrequency, linked to the structural modification and which must not appear in the pdf
before the structural modification. Figure 11 shows the pdf q 7→ pQLM(q;Nd) estimated with-
out learning and q 7→ pQLM(q; νar) estimated with the learning, using only the initial dataset
before structural modification (Figure 11-(a), Nd = 744) and after structural modification
(Figure 11-(b), Nd = 1887). Figure 11-(a) (without probabilistic learning) confirms the anal-
ysis proposed. Figure 11-(b), obtained with the probabilistic learning, gives a result similar to
Figure 11-(a) and therefore, confirms the proposed analysis. This set of results validates the
predictions presented in Section 3.2 using the global database and the PLoM (in particular, in
Figure 7, where it was shown that the detection cannot be made without learning).

4. Conclusions

In this paper, the probabilistic learning on manifolds recently developed for the case of small
data has been applied to detect structural changes in civil engineering structures. The avail-
able database consists of a small number of experimental records as opposed to the case
of big data. Therefore, the very effective methods of machine learning based on the use of
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neural networks do not apply. This small database comes from the dynamic monitoring of
a box-girder bridge subjected to the dynamic effects of road traffic and to temperature vari-
ations. The novelty of this work does not lie in the very recent statistical method, which is
used for this application, since it has already been validated for many application fields. The
novelty lies in the possibility of using it and applying it to a difficult case of detection in the
field of civil engineering structures as we have demonstrated in this paper. In addition, the
implementation of this probabilistic learning tool has required the development of a proba-
bilistic detection criterion based on the occurrence of a bimodal character of the probability
distribution of the quantity of interest, which is novel.

The probabilistic learning method used has no intrinsic limitation. It allows probabilistic
learning from small databases. On the other hand, it can be limited in its learning capacity
depending on the applications. If the small database that constitutes the initial set does not
contain the information required to discover the probabilistic structure of the data, then the
method will not succeed in making the detection. However, the method allows to diagnose
whether, for a given application, probabilistic learning has been done correctly or not. This
diagnosis consists to do the convergence analysis of learning with respect to the dimension of
the initial dataset, as we have done for this application and we have shown that this conver-
gence of the learning has been obtained.

The results obtained show that the initial database does not make it possible to detect the
changes in structural stiffness without learning while it is detected with the probabilistic learn-
ing on manifolds. The proposed method is applicable to similar structural health monitoring
problems.
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Nomenclature/Notation

Lower-case letters such as q or η are deterministic real variables.
Boldface lower-case letters such as q or η are deterministic vectors.
Lower-case letters q, w, and x are deterministic vectors.
Upper-case letters such as X or H are real-valued random variables.
Boldface upper-case letters such as X or H are vector-valued random variables.
Upper-case letters Q, U, W, and X are vector-valued random variables.
Lower-case letters between brackets such as [x] or [η] are deterministic matrices.
Boldface upper-case letters between brackets such as [X] or [H] are matrix-valued random
variables.

n: dimension (n = nq + nw) of vector x and X.
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nq : dimension of vectors q and Q.
nw : dimension of vectors w and W.
ν : dimension of H.
qj or q` : realization of Q.
wj or w` : realization of W.
xj or x` : realization of X.
νar : number of additional realizations generated with the PLoM.
Nd : number of realizations in initial dataset.
Q : random QoI (output).
W : random control parameter (input).
X : random vector (Q,W).

[In]: identity matrix in Mn.
Mn,N : set of all the (n×N) real matrices.
Mn: set of all the square (n× n) real matrices.
R: set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
[x]kj : entry of matrix [x].
[x]T : transpose of matrix [x].
δkk′ : Kronecker’s symbol such that δkk′ = 0 if k 6= k′ and = 1 if k = k′.
‖x‖: usual Euclidean norm in Rn.
<x, y>: usual Euclidean inner product in Rn.
δkk′ : Kronecker’s symbol.
E: mathematical expectation.

pdf: probability density function.
MCMC: Markov Chain Monte Carlo.
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Appendix A. Summary of the probabilistic learning on manifolds (PLoM)

In this Appendix, we summarize the probabilistic learning algorithm introduced in Soize and
Ghanem (2016, 2020); Soize et al. (2019) that we use, for which extensions can be found in
Soize and Ghanem (2020a), and for which many developments and applications can be found
in Farhat et al. (2019); Ghanem and Soize (2018); Ghanem et al. (2019); Guilleminot and
Dolbow (2020). This appendix gives the objective and the framework PLoM, and then the
algorithm. Nevertheless, we will begin it giving a very short literature review on this subject.

Machine learning is revolved around empirical models such as kernels or Neural Networks
(NN) that require big data and efficient algorithms for their identification and training. If
the volume of data is not sufficiently large, it may not generally be possible to train the NN
to the desired behavior. In the framework of computational science and engineering, while
computationally taxing simulations are typically used to generate big data, the quantities of
interest (QoI) from each such simulations are typically much smaller ’”small data”). In this
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context, probabilistic learning is a way for improving the knowledge that one has from only
a small number of expensive evaluations of a computational model in order to be able to
solve a problem or from a limited and partial experimental measurements. This is one rea-
son for which statistical and probabilistic learning methods have been extensively developed
(see for instance, Aggarwal and Zhai (2012); Balcan and Feldman (2013); Dalalyan and Tsy-
bakov (2012); Ghahramani (2015); James, Witten, Hastie, and Tibshirani (2013); Murphy
(2012); Schmidhuber (2015); Schölkopf, Smola, and Müller (1997); Taylor and Tibshirani
(2015); Vapnik (2000)) and play an increasingly important role in computational physics and
engineering science Ghanem, Higdon, and Owhadi (2017). In large scale model-driven de-
sign optimization under uncertainty, and more generally, in artificial intelligence for extract-
ing information from big data, statistical learning methods have been developed in the form
of surrogate models that can easily be evaluated Homem-de Mello and Bayraksan (2014);
Queipo et al. (2005); Snoek et al. (2015) such as, Gaussian process surrogate models Kleij-
nen, van Beers, and van Nieuwenhuyse (2010); Perrin, Soize, Marque-Pucheu, and Garnier
(2017), Bayesian calibration methods Jones, Schonlau, and Welch (1998); Wang, Zoghi, Hut-
ter, Matheson, and de Freitas (2016); Xie, Frazier, and Chick (2016), active learning Goris-
sen, Couckuyt, Demeester, Dhaene, and Crombecq (2010); Perrin, Soize, and Ouhbi (2018),
which allow for decreasing the numerical cost of the evaluations of expensive functions Byrd,
Chin, Neveitt, and Nocedal (2011); Du and Chen (2004); Eldred (2011); Yao, Chen, Luo,
vanTooren, and Guo (2011).

A.1. Objective and framework of the PLoM

A typical problem for the use of the PLoM is the following. Let (w,u) 7→ f(w,u) be any mea-
surable mapping on Rnw ×Rnu with values in Rnq representing a system for which a mathe-
matical/computational model is developed or a system for which experimental measurements
are done. Let W and U be two independent (non-Gaussian) random variables defined on a
probability space (Θ, T ,P) with values in Rnw and Rnu , for which the probability distribu-
tions PW(dw) = pW(w) dw and PU(du) = pU(u) du are defined by the probability density
functions pW and pU with respect to the Lebesgue measures dw and du on Rnw and Rnu .
Random vector W is made up of the part of the random parameters that control the system,
while random vector U is made up of the other part of the random parameters, which are not
used for controlling the system. Let Q be the vector of the quantities of interest (QoI) that is
a random variable defined on (Θ, T ,P) with values in Rnq such that

Q = f(W,U) . (A1)

Random QoI, Q, represents the vector of all the observations performed in the system,
which is either a function of the solution of the computational model or for which mea-
surements are performed. Let us assume that Nd calculations have been performed with the
mathematical/computational model whose solution is represented by Equation (A1) or that
Nd experimental measurements have been processed, allowing Nd independent realizations
{qj , j = 1, . . . , Nd} of Q to be known such that

qj = f(wj ,uj) , (A2)

in which {wj , j = 1, . . . , Nd} and {uj , j = 1, . . . , Nd} are Nd independent realizations of
(W,U). We then consider the random variable X with values in Rn, such that

X = (Q,W) , n = nq + nw . (A3)
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The probabilistic learning will be performed for this random vector X that includes the control
parameter W and the QoI Q, but that does not include random parameter U. The initial dataset
related to random vector X is then made up of the Nd independent realizations,

{xj , j = 1, . . . , Nd} , xj = (qj ,wj) ∈ Rn. (A4)

The PLoM allows for generating additional realizations {(q`ar,w`
ar), ` = 1, . . . , νar} for

νar � Nd (without using the computational model or without using other experimental
measurements), but using only the initial dataset. These additional realizations allow for
calculating converged estimates for any statistical quantities related to Q and W.

A.2. Algorithm of the PLoM

1. Scaling of the initial dataset. In practice, the initial dataset can be made up of het-
erogeneous numerical values and must be scaled for performing computational statistics.
Consequently, quantities qj , xj , and xj are assumed to be scaled quantities (see Soize and
Ghanem (2016) for the scaling).

2. Data normalization. Let X be the Rn-valued second-order random vector defined by Equa-
tion (A3) for which the Nd independent realizations are Nd data points in Rn, represented
by the matrix [xd] = [x1 . . . xNd ] in Mn,Nd . Let [X] = [X1, . . . ,XNd ] be the random matrix
with values in Mn,Nd , whose columns are Nd independent copies of random vector X. The
normalization of random matrix [X] is attained with random matrix [H] = [H1, . . . ,HNd ]
with values in Mν,Nd , whose columns are Nd independent copies of a random vector H, with
ν ≤ n, obtained by using the principal component analysis that allows us to write [X] as

[X] = [x] + [ϕ] [λ]1/2 [H] ,

in which [λ] is the (ν × ν) diagonal matrix of the ν positive eigenvalues of the empirical
estimate of the covariance matrix of X (computed using x1, . . . , xNd), where [ϕ] is the (n ×
ν) matrix of the associated eigenvectors such [ϕ]T [ϕ] = [Iν ], and where [x] is the matrix
in Mn,Nd with identical columns, each one being equal to the empirical estimate x ∈ Rn
of the mean value of random vector x (computed using x1, . . . , xNd). The sample [ηd] =
[η1 . . .ηNd ] ∈Mν,Nd of [H] (associated with the sample [xd] of [X]) is computed by

[ηd] = [λ]−1/2[ϕ]T ([xd]− [x]) .

When n is small, ν can be chosen as n. If some eigenvalues are zero, they must be eliminated
and then ν < n. When n is high, a statistical reduction can be done as usual and therefore
ν < n in such a case.

3. Diffusion-maps basis. For 1 < m ≤ Nd, let [g] = [g1 . . . gm] ∈ MNd,m be the ”diffusion-
maps basis” that is constructed by using the diffusion maps proposed by Coifman et al. (2005).
Let [b] be the positive-definite diagonal real matrix in MNd such that [b]ij = δij

∑Nd
j′=1[K]ij′

in which [K]ij′ = exp(− 1
4εdiff
‖ηi−ηj′‖2), depending on a real smoothing parameter εdiff > 0.

Let [P] be the transition matrix in MNd such that [P] = [b]−1 [K]. Letψ1, . . . ,ψm be the right
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eigenvectors of [P], associated with the eigenvalues 1 = Λ1 > Λ2 > . . . > Λm+1, such that

[P]ψα = Λαψ
α .

The normalization of the right eigenvectors of [P] is such that the matrix [ψ] = [ψ1 . . .ψm] is
chosen for that [ψ]T [b] [ψ] = [Im]. The eigenvectorψ1 associated with the largest eigenvalue
Λ1 = 1 is a constant vector (all its components are equal). We will defined the ”diffusion-
maps basis” by [g] = [g1 . . . gm] ∈MNd,m such that

gα = Λκαψ
α ∈ RNd ,

in which κ ≥ 0. It is proven in Soize and Ghanem (2020) that, for the PLoM method, κ = 0
can be used.

4. Reduced-order representation of random matrices [H] and [X]. The diffusion-maps vectors
g1, . . . , gm ∈ RNd span a subspace of RNd that characterizes the local geometry structure of
the dataset concentrated in the neighborhood of a subset of RNd . The reduced-order repre-
sentation is obtained in projecting each column of the MNd,ν-valued random matrix [H]T on
the subspace of RNd , spanned by {g1 . . . gm}. Let [Z] be the random matrix with values in
Mν,m such that [H] = [Z] [g]T . As the matrix [g]T [g] ∈ Mm is invertible, the least squares
approximation of Z is written as [Z] = [H] [a] in which

[a] = [g] ([g]T [g])−1 ∈MNd,m ,

and the realization [zd] ∈Mν,m of [Z] is written as

[zd] = [ηd] [a] ∈Mν,m .

The representation of random matrix [X] as function of random matrix [Z] is then given by

[X] = [x] + [ϕ] [λ]1/2 [Z] [g]T . (A5)

The construction introduces two hyperparameters: the dimension m ≤ Nd and the smoothing
parameter εdiff > 0. An algorithm is proposed in Soize et al. (2019) for estimating their values.
Most of the time,m and εdiff can be chosen as follows. Let εdiff 7→ m̂(εdiff) be the function from
]0 ,+∞[ into the set N = {0, 1, 2, . . .} of all the integers such that

m̂(εdiff) = arg min
α |α≥3

{
Λα(εdiff)

Λ2(εdiff)
< 0.1

}
. (A6)

If function m̂ is a decreasing function of εdiff in the broad sense (if not, see Soize et al. (2019)),
then the optimal value εopt

diff of εdiff can be chosen as the smallest value of the integer m̂(εopt
diff)

such that

{m̂(εopt
diff)< m̂(εdiff) ,∀εdiff ∈ ]0, εopt

diff[ } ∩ {m̂(εopt
diff) = m̂(εdiff) ,∀εdiff ∈ ]εopt

diff, 1.5 ε
opt
diff[ } . (A7)

The corresponding optimal value mopt of m is then given by mopt = m̂(εopt
diff)− 1.

5. Generation of additional realizations {x`ar, ` = 1, . . . , νar} of random vector X. The gener-
ation of additional realizations [z1ar], . . . , [z

nMC
ar ] of random matrix [Z] is carried out by using an
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unusual MCMC method based on a reduced-order Itô stochastic differential equation (ISDE)
that is constructed as the projection on the diffusion-maps basis of the ISDE related to a dis-
sipative Hamiltonian dynamical system Soize (2008); Soize and Ghanem (2016) for which
the invariant measure is the pdf of random matrix [H] constructed with the Gaussian kernel-
density estimation method and [ηd]. This method preserves the concentration of the proba-
bility measure and avoids the scatter phenomenon. The constructed reduced-order ISDE is
then used for generating nMC additional realizations, [z1ar], . . . , [z

nMC
ar ] in Mν,m, of random ma-

trix [Z], and therefore, for deducing the nMC additional realizations, [η1ar], . . . , [η
nMC
ar ] in Mν,Nd

of random matrix [H], such that [η`ar] = [z`ar] [g]T for ` = 1, . . . , nMC. Let {([Z(r)], [Y(r)]),
r ∈ R+} be the unique asymptotic (for r → +∞) stationary and ergodic diffusion stochas-
tic process with values in Mν,m × Mν,m, of the following reduced-order ISDE (stochastic
nonlinear second-order dissipative Hamiltonian dynamical system), for r > 0,

d[Z(r)] =[Y(r)] dr ,

d[Y(r)] =[L([Z(r)])] dr − 1

2
f0 [Y(r)] dr +

√
f0 [dW(r)] ,

with the initial condition

[Z(0)] = [zd] , [Y(0)] = [N ] [a] a.s .

(i) The random matrix [L([Z(r)])] with values in Mν,m is such that [L([Z(r)])] =
[L([Z(r)] [g]T )] [a]. For all [u] = [u1 . . .uNd ] in Mν,Nd with u` = (u`1, . . . , u

`
ν) in Rν , the

matrix [L([u])] in Mν,Nd is defined, for all k = 1, . . . , ν and for all ` = 1, . . . , Nd, by

[L([u])]k` =
1

p(u`)
{∇u` p(u`)}k ,

p(u`) =
1

Nd

Nd∑
j=1

exp{− 1

2ŝ 2ν
‖ ŝν
sν
ηj − u`‖2} ,

∇u` p(u`) =
1

ŝ 2ν

1

Nd

Nd∑
j=1

(
ŝν
sν
ηj − u`) exp{− 1

2ŝ 2ν
‖ ŝν
sν
ηj − u`‖2} ,

sν =

{
4

Nd(2 + ν)

}1/(ν+4)

, ŝν =
sν√

s2ν + Nd−1
Nd

.

(ii) [dW(r)] = [dW(r)] [a] where [dW(r)] is the Mν,Nd-valued normalized Wiener stochas-
tic process.
(iii) [N ] is the Mν,Nd-valued normalized Gaussian random matrix.
(iv) The free parameter f0 > 0 allows the dissipation term of the nonlinear second-order dy-
namical system (dissipative Hamiltonian system) to be controlled in order to kill the transient
part induced by the initial conditions.
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(v) We then have [Z] = limr→+∞ [Z(r)] in probability distribution, which allows for
generating the additional realizations, [z1ar], . . . , [z

nMC
ar ], and then, generating the additional

realizations [x1ar], . . . , [x
nMC
ar ] by using Equation (A5), which are reshaped in order to deduce

the νar = nMC ×Nd additional realizations, {x`ar, ` = 1, . . . , νar}.

6. Algorithm for solving the reduced-order ISDE. The algorithm for solving the reduced-order
ISDE is detailed in Soize and Ghanem (2016) and is summarized hereinafter. The Störmer-
Verlet scheme Burrage, Lenane, and Lythe (2007); Hairer, Lubich, and Wanner (2006), is
used. Let M = nMC × M0 be the positive integer in which nMC and M0 are integers. The
reduced-order ISDE is solved on the finite interval R = [0 ,M ∆r], in which ∆r is the
sampling step of the continuous index parameter r. The integration scheme is based on the
use of the M + 1 sampling points r`′ such that r`′ = `′∆r for `′ = 0, . . . ,M . The following
notations are introduced: [Z`′ ] = [Z(r`′)], [Y`′ ] = [Y(r`′)], and [W`′ ] = [W(r`′)], for
`′ = 0, . . . ,M , with [Z0] = [zd], [Y0] = [N ] [a], and [W0] = [0ν,m]. For `′ = 0, . . . ,M−1,
let [∆W`′+1] = [∆W`′+1] [a] be the sequence of random matrices with values in Mν,m, in
which [∆W`′+1] = [W`′+1]−[W`′ ]. The increments [∆W1], . . . , [∆WM ] areM independent
random matrices with values in Mν,Nd . For all k = 1, . . . , ν and for all j = 1, . . . , Nd, the
real-valued random variables {[∆W`′+1]kj}kj are independent, Gaussian, second-order, and
centered random variables such that

E{[∆W`′+1]kj [∆W`′+1]k′j′} = ∆r δkk′ δjj′ .

For `′ = 0, . . . ,M − 1, the Störmer-Verlet scheme applied to the reduced-order ISDE yields

[Z`′+ 1

2
] = [Z`′ ] +

∆r

2
[Y`′ ] ,

[Y`′+1] =
1− b
1 + b

[Y`′ ] +
∆r

1 + b
[L`′+ 1

2
] +

√
f0

1 + b
[∆W`′+1] ,

[Z`′+1] = [Z`′+ 1

2
] +

∆r

2
[Y`′+1] ,

with the initial condition defined before, where b = f0 ∆r /4, and where [L`′+ 1

2
] is the Mν,m-

valued random variable such that

[L`′+ 1

2
] = [L([Z`′+ 1

2
])] = [L([Z`′+ 1

2
] [g]T )] [a] .
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