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Abstract—The data-driven recovery of the unknown govern-
ing equations of dynamical systems has recently received an
increasing interest. However, the identification of the governing
equations remains challenging when dealing with noisy and
partial observations. Here, we address this challenge and inves-
tigate variational deep learning schemes. Within the proposed
framework, we jointly learn an inference model to reconstruct
the true states of the system from series of noisy and partial data
and the governing equations of these states. In doing so, this
framework bridges classical data assimilation and state-of-the-
art machine learning techniques and we show that it generalizes
state-of-the-art methods. Importantly, both the inference model
and the governing equations embed stochastic components to
account for stochastic variabilities, model errors and reconstruc-
tion uncertainties. Various experiments on chaotic and stochastic
dynamical systems support the relevance of our scheme w.r.t.
state-of-the-art approaches.

Index Terms—dynamical systems identification, variational
inference, data assimilation, neural networks.

I. INTRODUCTION

The identification of the governing equations of dynamical
processes, usually stated as Ordinary Dynamical Equations
(ODE) or Partial Differential Equations (PDE), is critical in
many disciplines. For example, in geosciences, it provides the
basis for the simulation of climate dynamics, short-term and
medium-range weather forecast, short-term prediction of ocean
and atmosphere dynamics, etc. In aerodynamics or in fluid
dynamics, it is at the core of the design of aircrafts and control
systems, of the optimization of energy consumption, etc.

Classically, the derivations of governing equations are based
on some prior knowledge of the intrinsic nature of the system
[1]–[4]. The derived models can then be combined with the
measurements (observations) to reduce errors, both in the
model and in the measurements. This approach forms the
discipline of Data Assimilation (DA). However, in many cases,
the underlying dynamics of the system are unknown or only
partially known, while a large number of observations are
available. This has motivated the development of learning-
based approaches [5], where one aims at identifying the
governing equations of a process from time series of mea-
surements. Recently, the ever increasing availability of data
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thanks to developments in sensor technologies, together with
advances in Machine Learning (ML), has made this issue
a hot topic. Numerous methods have successfully captured
the hidden dynamics of systems under ideal conditions, i.e.
noiseless and high sampling frequency using a variety of
data-driven schemes, including analog methods [6], sparse
regression schemes [7], reservoir computing [8], [9] and neural
approaches [10]–[14]. However, real life data often involve
noisy and irregularly-sampled data as for instance encountered
in the the monitoring of ocean and atmosphere dynamics from
satellite-derived observation data [15]–[17]. In such situations,
the above-mentioned approaches are most likely to fail to
uncover the unknown governing equations.

To address this challenge, we need to jointly solve the
reconstruction of the hidden dynamics and the identification
of the governing equations. This may be stated within a data
assimilation framework [18] using state-of-the-art assimilation
schemes such as the Ensemble Kalman Smoother (EnKS)
[19]. Deep learning approaches are also particularly appealing
to benefit from their flexibility and computational efficiency.
Here, we investigate a variational deep learning framework.
More precisely, we state the considered issue as a variational
inference problem with an unknown transition distribution
associated with the underlying dynamical model. The proposed
method generalizes learning-based schemes such as [10], [20]–
[23] and also explicitly relates to data assimilation formula-
tions. Importantly, it can account for errors and uncertainties
both within the dynamical prior and the inference model.
Overall, our key contributions are:

• a general deep learning framework for learning dynamical
systems from noisy and partial observations using vari-
ational inference and random-n-step-ahead forecasting,
which can be considered as two complementary regular-
ization strategies to improve the data-driven identification
of governing equations of dynamical systems;

• insights on the reason why many existing methods for
learning dynamical systems do not work when the avail-
able data are not perfect, i.e. noisy and/or irregularly-
sampled;

• numerical experiments with chaotic systems which sup-
port the relevance of the proposed framework to improve
the learning of governing equations from noisy and
partial observation datasets compared to state-of-the-art
schemes;



2

• numerical experiments which demonstrate that our
method can capture the characteristics of dynamical sys-
tems where the stochastic factors are significant.

The paper is organized as follows. In Section II, we formu-
late the problem of learning non-linear dynamical systems. We
review state-of-the-art methods and analyze their drawbacks
in Section III. Section IV presents the details of the proposed
framework, followed by the experiments and results in Section
V. We close the paper with conclusions and perspectives for
future work in Section VI.

II. PROBLEM FORMULATION

Consider a dynamical system, described by a Ordinary
Differential Equation (ODE) as follows:

dzt
dt

= f
(
zt
)

(1)

where zt ∈ Rdz is a geometrical point, called the state of
the system (dz is the dimension of zt), f : Rdz −→ Rdz is a
deterministic function, called the dynamical model.

We aim at learning the dynamics of this system from some
observation dataset, that is to say identifying the governing
equations f , given a series of observations xtk :

xtk = Φtk

(
H
(
ztk
)

+ εt
)

(2)

where H : Rdz −→ Rdx is the observation operator, usually
known (dx is the dimension of xtk ), εt ∈ Rdx is a zero-mean
additive noise and {tk}k refers to the time sampling, typically
regular such that tk = t0 + k.δ with respect to a fine time
resolution δ and a starting point t0. We introduce a masking
operator Φtk to account for the fact that observation xtk may
not be available at all time steps tk (Φtk,j = 0 if the jth

variable of xtk is missing). For the sake of simplicity, from
now on in this paper, we use the notation xk for xtk and xk+n

for xtk+n.δ .
From Eq.(1) and (2), we derive a state-space formulation:

zk+n = Fn
(
zk
)

+ ωk+n (3)

xk = Φk

(
H
(
zk
)

+ εk
)

(4)

where zk+n results from an integration of operator f from
state zt: Fn

(
zk
)

= zk +
∫ k+n

k
f
(
ut

)
dut. ωk ∈ Rdz is a

zero-mean noise process, called the model error. ωk may come
form the neglected physics, numerical approximations and/or
errors of the modeling. εk is the observation error (or mea-
surement error). Note that f is continuous, the discretisation
only happens because we want to calculate the integral F over
the interval [tk, tk+n].

Within this formulation, maximising the log likelihood
ln p(x0:T ) results in finding the governing equations f from a
starting point zk to a time k + n where we have observation
xn.

III. RELATED WORK

The identification of dynamical systems has attracted atten-
tion for several decades and closely relates to data assimilation
(DA) for applications to geoscience. Proposed approaches
typically consider some parametric model for operator F ,

for example, a linear function in [24] or Radial Basis Func-
tions (RBFs) in [25]. While data assimilation mostly focuses
on the reconstruction of the hidden dynamics given some
observation series, a number of studies have investigated
the situation where the dynamical prior is unknown. They
typically learn the unknown parameters of the model using
an iterative Expectation-Maximization (EM) procedure. The
E-step involves a DA scheme (e.g. the Kalman filter [26],
the Extended Kalman filter [27], the Ensemble Kalman filter
[28], the particle filter [29], etc.) to reconstruct the true states
{zk} from observations {xk}, whereas the M-step retrieves
the parameters of F best describing the reconstructed state dy-
namics. Those methods address the fact that the observations
are not ideal. They may also account for model uncertainties
(ωk in Eq. (3)). However, since they rely on analytic solutions,
the choices of the candidates for F are generally limited. For
a comprehensive introduction as well as an analysis of the
limitations of those methods, the reader is referred to [30].

Recently, the domain of dynamical systems identification
has received a new wave of contributions. Advances in ma-
chine learning opens new means for learning the unknown
dynamics of the systems. In line of work, one of the pio-
neering contribution is the Sparse Identification of Nonlinear
Dynamics (SINDy) presented in [7]. SINDy assumes that the
governing equation of a dynamical model can be decomposed
into only a few basic functions such as polynomial func-
tions, trigonometric functions, exponential functions, etc. The
method creates a dictionary of such possible functions and
uses sparse regression to retrieve the corresponding weighting
coefficients of each basic function. Under ideal conditions,
SINDy can find the exact solution of Eq. (1). The key
advantage of SINDy is its solutions are interpretable, i.e. the
parametric form of the governing equations can be recovered.
Another advantage is that the solution comprises only a few
terms, which improves the generalization properties of the
learnt models. However, SINDy requires the time derivative
dxt
dt , which might be highly corrupted by noise for noisy

and partial observation datasets, to be observed. Therefore,
SINDy’s performance may be strongly affected by noisy data.
Besides, it requires some prior knowledge of the considered
system to create a suitable library of the basic functions.

Analog methods [31]–[33], including the Analog Data
Assimilation (AnDA) presented in [6], propose a non-
parametric approach for data assimilation. AnDA implicitly
learns Eqs. (3) and (4) by remembering every seen pairs
{state, successor} = {xt,xk+1} and storing them in a cata-
log. To predict the evolution of a new query point xt, AnDA
looks for k similar states in the catalog, the prediction is then
a weighted combination of the corresponding successors of
these states. The performance of this method heavily depends
on the quality of the catalog. If the catalog contains enough
data and the data are clean, AnDA provides a good and
straightforward solution for data assimilation. However, since
AnDA relies on a k-Nearest Neighbor (k-NN) approach, it may
be strongly affected by noisy data especially when considering
high-dimensional systems.

A number of neural-network-based (NN-based) methods
have been introduced recently. These methods leverage deep
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neural networks as universal function approximators. They
vary from direct applications of standard NN architectures,
such as LSTMs in [34], ResNets in [12], etc. to some more
sophisticated designs, dedicated for dynamical systems and
often referred to as Neural ODE schemes [10], [11], [35],
[36]. The reservoir computing, whose idea is derived from
Recurrent Neural Networks (RNNs), used in [8] and [9] can
also be regarded as a NN-based model. As illustrated in [10],
[11], [35], [36], through the combination of a parametrization
for differential operator f and some predefined integration
schemes (e.g., explicit Runge-Kutta 4 scheme (RK4) in [10],
black-box ode solvers in [35], [36]), the Neural ODE schemes
provides significantly better forecasting performance, espe-
cially when dealing with chaotic dynamics. Powered by deep
learning, these methods can successfully capture the dynamics
of the system under ideal conditions (noise-free and regularly
sampled with high frequency). However, they have the fol-
lowing limits: i) the network requires regularly-sampled data1

and ii) when dealing with noisy observations, no regularization
techniques have been proved effective to prevent overfitting in
learning the hidden dynamics.

Overall, the above-mentioned learning-based methods do
not apply or fail when the observations are corrupted by
noise and irregularly-sampled. Their learning step is stated
as the minimization of a short-term prediction error of the
observations:

loss =
∑
t

g(||xpred
k+n − xk+n||2) (5)

where xpred
k+n = Fn(xk) is the predicted observation at k+ n

given the current observation xk, ||.||2 denotes the L2 norm,
g is a function of ||xpred

k+n − xk+n||2. As shown in Fig. 1,
with this family of cost functions, the model tends to overfit
the observations (the blue curve or the green and yellow
curves) instead of learning the true dynamics of the system
(the red curve). Another reason why the these methods fail
is because they violate the Markovian property of the system.
Note that the process of the true states z0:T of the system is
Markovian (i.e., given zt, zk+1 does not depend on z0:k−1).
However, when the data are damaged by noise, the process of
the observations x0:T is not Markovian. Given xt, we still need
the information contained in x0:k−1 to predict xk+1. For this
reason, applying Markovian architectures like SINDy, AnDA,
DenseNet, BiNN, etc. directly on the observations x0:T would
not succeed. Models with memory like LSTMs may capture
the non-Markovian dynamics in the training phase, however,
in the simulation phase, they still need the memory, which
implies that the learnt dynamics do not have the Markovian
property of the true dynamics of the system.

In this paper, we consider a variational deep framework
which derives from a variational inference for state-space
formulation (Eqs. 3, 4). This framework accounts for uncer-
tainty components in the dynamical prior as well as in the
observation model. Similarly to DA schemes [18], [20]–[23],
it jointly solves for the reconstruction of the hidden dynamics

1Latent ODE ( [36] can apply for data sampled irregularly in time, however,
data my be sampled irregularly in space also.

Fig. 1: Problems of learning dynamical systems from imperfect
data. This figure plots the first component of the Lorenz-
63 system, when the observation operator is the identity
matrix. The observation is noisy, partial and irregular. If the
learning algorithm is applied directly on the observations
(black dots), which are noisy and irregularly sampled, and
linear interpolation is used to create regularly-sampled data,
the dynamics seen by the network are the blue curve (for 1-
step-ahead forecasting models) or the green and the yellow
curve (for 2-step-ahead forecasting models, these two curves
correspond to two possible starting points of the sequence)
instead of the true dynamics (the red curve).

and the identification of the governing equations. Importantly,
it benefits from the computational efficiency and modeling
flexibility of deep learning frameworks for the specification
of the dynamical prior and the inference model as well as
for the use of a stochastic regularization during the training
phase through a randomized n-step-ahead prediction loss. The
proposed framework generalizes our recent works presented in
[20] and [21] and similar works, which have been developed
concurrently in [18], [22] and [23]. As will be detailed in
the next section, [18], [22] and [23] are specific instances of
the proposed framework with some specific settings, such as
the model error covariance matrix is constant (we relax this
hypothesis), the inference scheme is the Ensemble Kalman
Smoother (we exploit both strategies: Ensemble Kalman
Smoother and NN-based schemes), the optimization technique
is based on EM (we exploit both EM and gradient-based
techniques).

IV. PROPOSED FRAMEWORK

In this section, we detail the proposed variational deep
learning framework for the data-driven identification of the
governing equations of dynamical systems from noisy and
irregularly-sampled observations. We first present the general
framework based on variational inference. We then introduce
the considered NN-based parameterizations for the dynamical
prior and the inference model along with the implemented
learning scheme. We further discuss how the proposed frame-
work relates to previous work.

A. Variational inference for learning dynamical systems

Given a series of observations x0:T = {x0, ..,xk}, instead
of looking for a model F that minimizes a loss function in
a family of short-term prediction error functions as in Eq.
(5), we aim to learn operator F such that it maximizes the
log likelihood ln p(x0:T ) of the observed data. We assume
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that x0:T are noisy and/or irregularly-sampled observations
of the true states z0:T , like in Eqs. (3) and (4). We can
derive the log-likelihood ln p(x0:T ) from the marginalization
of ln p(x0:T , z0:T ) over z0:T :

ln p(x0:T ) = ln

∫
p(x0:T , z0:T )dz0:T (6)

With the exception of some simple cases, the computation
in Eq. (6) is intractable because the posterior distribution
p(z0:T |x0:T ) is intractable [37]. To address this issue, Varia-
tional Inference (VI) proposes approximating p(z0:T |x0:T ) by
a distribution q which maximizes the Evidence Lower BOund
(ELBO)2:

L(x0:T , p, q) =

∫
q(z0:T |x0:T ) ln

pθ(x0:T , z0:T )

q(z0:T |x0:T )
dz0:T (7)

Based on the state-space formulation in Eqs. (3) and (4), we
consider the following parameterization for the joint likelihood
p(x0:T , z0:T ):

pθ(x0:T , z0:T ) = pθ(z0:T )pθ(x0:T |z0:T ) (8)

pθ(z0:T ) = pθ(z0)

n−1∏
t=1

pθ(zk|zk−1)

T∏
t=n

pθ(zk|zk−n)

(9)

pθ(x0:T |z0:T ) =

T∏
k=0

pθ(xk|zk) (10)

qφ(z0:T |x0:T ) =

T∏
t=0

qφ(zk|zfk ,x0:T ) (11)

with θ and φ are the sets of parameters of p and q, respec-
tively; zfk is the state forecast by F .

The distributions in Eqs. (9), (10) and (11), are respectively
the classic distributions of a state-space formulation: 1) the
transition (or the dynamic, or the prior) distribution one-
step ahead pθ(zk+1|zk) or n-step ahead pθ(zk+n|zk); 2) the
emission (or the observation) distribution pθ(xk|zk); and 3)
the inference (or the posterior) distribution qφ(zk|zfk ,x0:T ).
To better constrain the time consistency of the learnt dynam-
ics, the considered dynamical prior embeds a n-step-ahead
forecasting model. Given an initialization z0, it first applies a
one-step-ahead prior to propagate the initial state to the first n
time steps. The application of the n-step-ahead prior follows
to derive the joint distribution over the entire time range
{0, .., T}. This n-step-ahead prior is regarded as a mean to
further regularize the time consistency of the learnt dynamical
model.

By explicitly separating the transition, the inference and
the generative processes, the proposed framework is fully
consistent with the underlying state-space formulation and
the associated Markovian properties. Especially, the prior
pθ(zk+n|zk) will embed a Markovian architecture; by con-
trast, the posterior qφ(zk|zfk ,x0:T ) shall capture the non-
Markovian characteristics of the observed data. Given the
learnt model, the generation of simulated dynamics only

2For the sake of simplicity, here we present only ELBO, however, one can
use ELBO’s variants such as IWAE [38] or FIVO [39] instead.

relies on the dynamical prior pθ(zk+1|zk) to simulate state
sequences, which conform to the Markovian property. Overall,
for a given observation dataset, the learning stage comes to
maximize Eq. (7) w.r.t. both φ and θ, which comprise all
the parameters of inference and the forward model, i.e. the
parameters of F , H, ωk+n and εk.

So far we have presented the general form of the variational
inference framework for learning dynamical systems from
noisy and potentially partial observations. In the following
sub-sections, we will analyse some specific instances of the
proposed framework and provide insights into the implicit
hypotheses behind methods in the literature.

B. Parametrisation of the forward model pθ
Model pθ involves two sets of parameters: (i) θz—the

parameters of the transition distributions pθ(zk+n|zk) and (ii)
θx—the parameters of the emission distribution pθ(xk|zk).

Regarding the later, we assume the observation noise to
be a white noise process with a multivariate covariance R
similarly to [22] and [23] such that pθ(xk|zk) is a conditional
multivariate normal distribution:

pθ(xk|zk) = N (H(zk),R) (12)

We may consider different experimental settings: especially, a
known observation operator H and an unknown covariance R
as well as unkown observation operator H and covariance R.

Regarding the n-step-ahead dynamical prior pθ(zk+n|zk)
(including n = 1), we consider a conditional Gaussian
distribution where the mean path is driven by the the governing
equation F : zk+n = Fn(zk) and we denote by Qk+n the
covariance matrix (usually called the model error covariance
in DA) representing the dispersion around the mean path
[28]. Any state-of-the-art architecture for learning dynamical
systems can be used to model F . Here, we consider NN-
based methods associated with explicit integration schemes.
To account for second-order polynomial model, as proposed
in [10], we consider a bilinear fully-connected architecture
to model f in Eq. (1) and an NN implementation of the
RK4 integration scheme to derive the flow operator Eq. (3).
Regarding the covariance dynamics, the covariance matrix
Qk+n is approximated by a diagonal matrix Idf

k , with I is the
identity matrix and df

k is the output of a MultiLayer Perceptron
(MLP):

df
k+n = MLP var dyn(zk,Fn(zk)) (13)

C. Parameterization of the inference model qφ
There is no restriction the parameterization of posterior qφ.

However, the parameterization clearly affects the performance
of the overall optimisation. Here, we investigate two strategies
for qφ: 1) an Ensemble Kalman Smoother (EnKS) [19] and
2) an LSTM Variational Auto Encoder (LSTM-VAE). The
former one is a classic DA scheme that is widely used in many
domains in which dynamical systems play an important role,
for example in Geosciences [40]. We use the implementation
presented in [19]. The latter is a modern NN architecture,
which has been proven effective for modeling stochastic
sequential data [41] [42]. The backbone of LSTM-VAE is a
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bidirectional LSTM which captures the long-term correlations
in data. Specifically, we parameterize the inference scheme as
follows. The forward LSTM is given by:

hf
k = lstm(hf

k−1,MLP enc(xf
k−1)) (14)

and the backward LSTM by:

hb
k = lstm(hb

k+1,h
f
k ,MLP enc(xf

k)) (15)

where hf
k , hb

k are the hidden states of the forward and the
backward LSTM, respectively; lstm is the recurrence formula
of LSTM [43]; MLP enc is an encoder parameterized by
an MLP. We parameterize the posterior qφ by a conditional
Gaussian distribution with mean µq

k and a diagonal covariance
matrix Idq

k:

qφ(zk) = N (µq
k,d

q
kI) (16)

µq
k,d

q
k = MLP dec(Fn(zk−n),hf

k ,h
b
k) (17)

with MLP dec is a decoder parameterized by an MLP. Note
that in Eq. (17), qφ(zk|x0:T ) depends on Fn(zk−n). This
idea is inspired by DA, where Fn(zk−n) is analogous to
the forecasting step and qφ(zk|x0:T ) to the analysis step,
which depends on the forecasting step. The whole model,
called Data-Assimilation-based ODE Network (DAODEN) is
illustrated in Fig. 2. To our knowledge, the latter is the
first end-to-end RNN-based stochastic model introduced for
the identification of in the dynamical systems from noisy
and partial observations. In this respect, the model used in
[34] is a purely deterministic RNN-based network. However,
similar architectures have been used in Natural Language
Processing (NLP) such as the Variational Recurrent Neural
Network presented in [41], the Sequential Recurrent Neural
Network presented in [42]. Fig. 2 shows how DAODEN differs
from those works. The main difference is that the transition
zk → zk+1 is independent of observation xk (i.e. the dynamic
is autonomous). Besides, the emission zk → xk is also inde-
pendent of the historical state z0, .., zk−1. These differences
relate to domain-related priors. In dynamical systems’ theory
and associated application domains such as geoscience, the
underlying dynamics follow physical principles. Therefore,
they are autonomous and are not affected by the measurements
(the observations). As a consequence, zk+1 does not depend of
x1:k−1 conditionally to zk. At a given time t, observation xk

is a measurement of state zk of the system, this measurement
does not depend on any other state zt′ 6=t, i.e. given zk, xk

and zt′ are independent with any t′ 6= t. For this reason,
architectures used in NLP like VRNN, SRNN can not apply
for dynamical systems identification.

D. Objective function

Following a variational Bayesian setting, the learning phase
comes to minimize a loss given the opposite of the ELBO:

lossELBO = −L(x0:T , pθ, q) (18)

Fig. 2: Architecture of VRNN, SRNN and DAODEN when
n = 1. We denote as xk the observations, zk the system’s
states, hf

k the latent state of the forward LSTM and hb
k the

latent state of the backward LSTM. The black, red, blue and
orange arrows denote respectively the transition of the sys-
tem’s states, the emission of the observations, the inference of
the system’s states and recurrence of the LSTMs, respectively.
In VRNN (a) and SRNN (b), the dynamic zk → zk+1 is
not independent of the observation xk. The generation of
the observation is also entangled with the recurrence of the
LSTMs.

Instead of solving Eq. (7), one can solve its Maximum A
Posteriori (MAP) solution by restricting qφ to Dirac distribu-
tions:

LMAP =

k∑
k=0

ln pθ(xk|z∗k)

+ ln pθ(z∗0) +

n−2∑
t=0

ln pθ(z∗k+1|z∗k) +

k−n∑
t=0

ln pθ(z∗k+n|z∗k)

(19)

with z∗k = E [qφ(zk|x0:T )] if qφ is parameterized by EnKS
and z∗k = q(zk|x0:T ) = δ(zk|x0:T ) if qφ is parameterized by
a neural network. To do so, we remove the covariance part in
Eq. (17) (the LSTM-VAE becomes an LSTM Auto Encoder
(LSTM-AE)) :

z∗k = µq
k = dec(F1(zk−1),hf

k ,h
b
k) (20)

The MAP loss function, which relates to the weak-constraint
4D-Var in DA [44], is given by:

lossMAP = −LMAP (x0:T , pθ, q) (21)

This is the objective function used in [18], [22] and [23].
However, these models suppose that Qk is time invariant, i.e.
Qk = Q.

One may further assume that the covariance matrices of the
transition distribution pθ(z∗k+n|z∗k) and the covariance matri-
ces of the observation distribution pθ(xk|z∗k) are diagonal and
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constant, both in time and in space, Eq. (19) then becomes3:

Ldeterm = −λ
k∑

t=0

||φk(H(z∗k))− xk||22

−
n−2∑
t=0

||F1(z∗k)− z∗k+1||22 −
k−n∑
t=0

||Fn(z∗k)− z∗k+1||22 (22)

The associated loss function is given by:

lossdeterm = −Ldeterm(x0:T , pθ, q) (23)

which is the objective function used in [20] and [21]. We may
note that if xk = zk, (23) becomes the shorkt-terms prediction
error widely used in the literature [8]–[10], [12]. In other
words, [8]–[10], [12] implicitly suppose that the observations
are ideal.

E. Optimization strategy

There are two optimization strategies: 1) alternatively op-
timize θ then φ (Expectation-Maximization-like or EM-like)
to minimize the loss function or 2) jointly optimize the loss
function over θ and φ.

For models whose posterior qφ is implemented by an
EnKS, since EnKS uses analytic formulas and the NN-based
parametrization of pθ is usually optimized by Gradient De-
scent (GD) techniques, we consider an alternated EM pro-
cedure as optimization strategy for the whole model. In the
E-step, the EnKS computes the posterior qφ, represented by
an ensemble of states z

(i)
k . Given this ensemble of states, the

M-step minimizes the loss function over θ using a stochastic
gradient descent.

For DAODENs, we can fully benefit from the resulting end-
to-end architecture, as both the forward model pθ and the
posterior qφ are parameterized by neural networks, to jointly
optimize all model parameters using a stochastic gradient
descent. This gradient descent may regarded as a particular
case of EM where the M-step takes only one single gradient
step. For NN-based models, gradient descent strategies usually
work better than EM ones [45].

F. Random-n-step-ahead training

Within the considered framework, we noted experimentally
that the model may overfit the data, when the number of the
forecasting steps is fixed. For example, if the observation oper-
ator H is an identity matrix, a possible overfitting situation is
when the inference scheme also becomes an identify operator:
E [qφ(zk|x0:T )] → xk. In such situations, the dynamics seen
by the dynamical sub-modules would be the noisy dynamics.

To deal with these overfitting issues, we further exploit
the flexibility of the proposed n-step-ahead dynamical prior
during the training phase. At each mini-batch iteration in the
training phase, we draw a random value of n between 1 and a
predefined n-step-ahead max. We then apply gradient descent
with the sampled value of n. The resulting randomized training
procedure is detailed in Alg. 1. This randomized procedure is

3The derivation of (22) can be found in our previous paper [20].

regarded as a regularization procedure to fit a time-consistent
dynamical operator F . We noted in previous works that neural
ODE schemes may tend not to distinguish well the dynamical
operator from the integration scheme [46]. Here, through
the randomization of parameter n, we constrain the end-to-
end architecture to apply for different prediction horizons,
which in turn constrain the identification of dynamical prior f .
Asymptotically, the proposed procedure would be similar to a
weighted sum of loss (18) computed for different values of n,
which have been proposed for the data-driven identification of
governing equations in the noise-free case [36].

Algorithm 1: Random-n-step-ahead training.
Result: The set of parameters {θ,φ} of the learnt

model.
Inputs: x0:T , z0, the initial values of {θ,φ},
n-step-ahead max, n iteration max;

iter = 0;
while iter < n iteration max do

t = 0;
n-step-ahead = randint(1,n-step-ahead max);
while t < k − n do

if t < n-step-ahead −2 then
n = 1;

else
n = n-step-ahead;

zfk+n = Fn(zk);
df
k+n = MLP var dyn(zk,Fn(zk));
pθ(zk+n|zk) = N (zfk+n,d

f
k+n);

Calculate qφ(zk+n|zfk+n,x0:T );
zk+n ∼ qφ(zk+n|x0:T );
pθ(xk+n|zk+n) = N (H(zk+n),R);

Calculate loss;
Optimize loss w.r.t. {θ,φ};

G. Initialization by optimization
In this section, we present the initialization technique used

for in the experiments in this paper. Although this technique is
not compulsory, it helps improve the stability of the training.

To calculate the state of the system at any given time
t, we need both the true dynamics and the precise initial
condition z0. If we use DAODEN, we also have to initialize
hf

0 and hb
k+1. The common approach is “wash out” [47],

i.e. to initialize hf
0 and hb

k+1 to zeros or random values
and run the LSTMs until the effect of the initial values
disappears. However, these initialization techniques are not
suitable for learning dynamical systems, because during the
washout period, the network is not stable, especially when
using an explicit integration scheme (here is the RK4). These
instabilities may make the training fail. The value of the
objective function also varies highly during this period, leading
to an unreliable outcome of the final loss.

Sharing a similar idea with [48] and [36], we use a different
initialization strategy. We add two auxiliary networks, a For-
ward Auxiliary Net to provide h0 and z0, and an Backward
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Fig. 3: Initialization by optimization. An auxiliary network is
added for the initialization of x1 and h1.

Auxiliary Net to provide hk+1 for the main model. Each
auxiliary network is an LSTM. We use one segment at the
beginning of the sequence and one segment at the end of the
sequence for the inputs of these networks.

V. EXPERIMENTS AND RESULTS

In this section, we report numerical experiments to evalu-
ate the proposed framework. We include a comparison with
respect to state-of-the-art methods. Beyond the application to
deterministic dynamics as considered in previous work [8],
[9], [12], [18], [20]–[23], we also investigate an application
to stochastic dynamics and a reduced-ordre modeling, where
observation the operator H is unknown. As case-study mod-
els, we focus on Lorenz-63 and Lorenz-96 dynamics, which
provides a benchmarking basis w.r.t. previous work.

A. Benchmarked dynamical models

We report numerical experiments for three chaotic dynam-
ical systems: the Lorenz 63 (L63) systems [1], the Lorenz
96 (L96) system [49] and a stochastic Lorenz 63 (L63s)
system [50]. The details of the L63, the L96 and the L63s
are presented in the Appendices. Note that these models are
chaotic, i.e. they are are highly sensitive to initial conditions
such that a small difference in a state may lead to significant
changes in future. Because of this chaotic nature, applying
directly standard deep neural network architectures would not
be successful.

We chose the L63 as a benchmarking system because
of its famous butterfly attractor. The system involves in 3-
dimensional states, making it easy to visualize for a qualitative
interpretation. Experiments on the L96 provides means to
evaluate how the proposed schemes can scale up to higher-
dimensional systems. The last system—the L63s, is to show
the benefit of stochastic models over deterministic ones.

For each system, we generated 200 sequences of length
of 150 using 200 different initial conditions z0 with time
step δ = 0.01, δ = 0.05 and δ = 0.01 for the L63,
L96 and L63s, respectively4. In total, each training set of
each system comprises 30000 points in total. Those training
set are relatively small in comparison with those in [51]
(512000 points), [22] (40000 points). Another setting when
we generated only 1 long sequence of length of 4000 from
1 initial condition z0, then split it into smaller segments of

4This is the setting used in [51]

TABLE I: Implementations of the proposed framework.

Model name pθ(zt+1|zt) qφ(zt|x0:T )
Objective Optimizerfunction

BINN EnKS BiNN EnKS Eq. (23) EM

DAODEN determ BiNN LSTM-AE Eq. (23) GD

DAODEN MAP BiNN LSTM-AE Eq. (21) GD

DAODEN full BiNN LSTM-VAE Eq. (18) GD

length of 150 also gave similar results5 (not reported in this
paper).

For the test set, we generated 50 sequences of length of 150
using 50 different initial conditions z0 which are not observed
in the training set. Let us recall that the true hidden states
z0:T of sequences are never used during the training phase.
As in [18], [20]–[23], we first consider an experimental setting
where H is an identity operator, and εt a zero-mean Gaussian
white noise. We tested several signal-to-noise ratio values r =
stdε
stdz

.

B. Baseline schemes

In the reported experiments, we considered different state-
of-the-art schemes for benchmarking purposes, namely the
Analog Data Assimilation (AnDA) [6], the Sparse Identifica-
tion of Nonlinear Dynamics (SINDy) [7], the Bilinear Neural
Network (BiNN) [10], and the Latent ODE [36]. AnDA and
SINDy are unique as their own, while BiNN and Latent
ODE represent all the NN-based methods in the literature.
As explained earlier in this paper, regardless of the network
architecture, as long as the objective function does not take
into account the fact that the observations are noisy and
potentially partial, the method would not work. BiNN and
Latent ODE embed the true solution of the L63 and the L96,
under ideal conditions, they should work as good as other
NN-based ODE model, such as those in [11], [12], [34], etc.
The different between BiNN and Latent ODE is BiNN uses an
explicit integration scheme (the RK4), while Latent ODE uses
a black-box ODE solver. Latent ODE also uses an additional
network to infer the initial condition z0.

Since VRNN and SRNN are not designed for dynamical
systems identification (no autonomous dynamics in the hidden
space), we do not consider these architectures in this paper.

C. Instances of the proposed framework

We synthesize in Table. I the different configurations of the
proposed framework we implemented in our numerical exper-
iments. We may point out that BiNN EnKS configuration is
similar to [23]. All configurations use a BiNN with a fourth-
order Runge-Kutta scheme to parameterize F . As presented
above, other architectures can also be used to parameterize
F , we choose BiNN to highlight the performance of learning
dynamical systems with and without inference schemes (by
comparing the performance of BiNN and models following
the proposed framework). The parameters of each model are

5This is the setting used in [6], [9], [22] [23]
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presented in the Appendices. We provide the code that can
reproduce the result in this paper: https://github.com/CIA-
Oceanix/DAODEN. Interested users are highly encouraged to
try those models above on different dynamical systems or
to replace the dynamical sub-module by different learning
methods to see the improvement of its performance on noisy
and partial observations.

In this paper, unless specified otherwise the n-step-
ahead max was set to 4 for DAODEN models and 1 for base-
line models (1-step-ahead is the default setting in the original
papers of those methods). As in [23], for BiNN EnKS, we
suppose that we know R. However, for DAODEN, we do not
need the exact value of R, instead we used a fixed value of
R that was from 1 to 2 times larger than the true value of R,
the results were similar.

D. Evaluation metrics

We evaluate both the short-term and long-term performance
of the learnt models using the following metrics:
• The Root Mean Square Error (RMSE) of the short-term

forecast at tn = t0 + n.δ:

en =

√√√√ 1

n

n∑
t=1

(zpredk − ztruek )2 (24)

with zpred0+n
∆
= Fn(z0) and z0 is the first state of each

sequence in the test set.
• The reconstruction capacity given the observation, de-

noted as rec:

rec =

√√√√ 1

T

n∑
t=T

(z∗t − ztruet )2 (25)

with z∗t = E [qφ(zt|x0:T )].
• The first time (in Lyapunov unit) when the RMSE reach

half of the standard deviation of the true system, denoted
as π0.5.

• The capacity to maintain the long-term topology of the
system, evaluated via the first Lyapunov exponent λ1

calculated in a forecasting sequence of length of 20000
time steps, using the method presented in [52]. The true
λ1 of the L63 is 0.91 and the true λ1 of the L96 is 1.67.

For each metric, we compute the average of the results on
50 sequences in the test set.

As Lorenz dynamics may interpreted in terms of geophys-
ical dynamics, we may also give some physical interpretation
to the considered metrics. For example, in geosciences, for
experiments on the L96 system with δ=0.05 (correspond to 6
hours in real-world time), e4 would relate to the precision of
a weather forecast model for the next day, π0.5 indicates how
long the forecast is still meaningful, λ1 indicates whether a
model can be used for long-term forecast such as the simula-
tion of climate change and rec indicates the performance of
a model to reconstruct the true states of a system when the
observations are noisy and partial, such as reconstructing the
sea surface condition from satellite images.

E. L63 case-study

In this section we report the results on the L63. We first
assess the identification performance on noisy but complete
observations (i.e. φt is an identity matrix at all time steps) of
the L63 system, then extend to cases where the observations
are sampled partially, both in time and in space.

Table II shows the performance of the considered model
on noisy L63 data. We compare the performance of the
4 proposed models with the baselines’, w.r.t the short-term
prediction error and the capacity to maintain the long-term
topology. All the models based on the proposed framework
outperform the baselines by a large margin. This asserts
the ability of the proposed framework to deal with noisy
observations. In Fig. 4 we show the first component of a L63
sequence in the test set reconstructed by the inference scheme
of DAODEN determ. qφ is expected to infer a mapping that
converts data from the corrupted observation space (black
dots) to the true space of the dynamics (the red curve). In
this space, data-driven methods can successfully learn the
governing equations of the system. The reconstructed sequence
is very close to the true sequence.

At first glance, we can see that no model is better than all
the others in all 4 criteria. This is aligned with the finding
of [53]. BiNN EnKS and DAODEN full have very good
forecasting score, however, the performance of BiNN EnKS
in reconstructing the true states is not as good as DAODEN
models. The dynamics learnt by DAODEN models are also
more synchronized to the true dynamics (indicated by π0.5)
than those learnt by BiNN EnKS. This might suggest that NN-
based models (here are LSTM-AE and LSTM-VAE) can be
an alternative for classic inference schemes like EnKS, which
are among the state-of-the-art methods in data assimilation.

In Fig. 5, we show the attractors generated by the learnt
models. AnDA is more suitable for data assimilation than
for forecasting. When the noise level is small (r=8.5% and
r=16.7%), SINDy and BiNN can still capture the dynamics
of the system.When the noise level is significant (r=33.3%
and r=66.7%), the attactors generated by SINDy and BiNN
are distorted, which indicates that the learnt models are not
valid for long-term simulations. On the other hand, all the
models of the proposed framework successfully reconstructed
the butterfly topology of the attractor, even when the noise
level is high.

In real life, we cannot always measure a process regularly
with a high sampling frequency. Hence, we address here the
problem of learning dynamical systems from not only noisy
but also partial observations6. Specifically, we consider a case
study where the noisy L63 data are sampled irregularly, both
in time and in space, with a missing rate of 87.5% (see Fig.
6. For this configuration, baseline schemes do not apply. We
report in Table. III and Fig. 7 the performance of the different
configurations of the proposed framework.

6The term ”partial” in this context means the observations are not complete
at every time step. Some components of the observations may be missing, in
both spatial and temporal dimension; however, all the components of states
of the system are seen at least once. For the cases where some components
of the systems are never observed, please refer to [13], [54]
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TABLE II: Performance of models trained on noisy L63 data. For each index, the best score is marked in bold and the second
best score is marked in italic.

Model r
8.5% 16.7% 33.3% 66.7%

AnDA

e4 0.351±0.184 0.777±0.350 1.683±0.724 3.682±1.346
rec 0.416±0.019 0.941±0.037 2.134±0.076 4.876±0.168
π0.5 0.820±0.480 0.380±0.172 0.249±0.174 0.104±0.116
λ1 26.517±7.665 27.146±42.927 76.267±28.150 127.047±0.881

SINDy
e4 0.068±0.052 0.149±0.106 0.311±0.196 0.694±0.441
π0.5 0.490±0.261 0.165±0.085 0.077±0.049 0.034±0.034
λ1 0.898±0.008 0.840±0.035 0.840±0.035 nan±nan

BiNN
e4 0.045±0.030 0.119±0.085 0.283±0.185 0.684±0.408
π0.5 3.608±1.364 2.053±0.666 0.975±0.488 0.308±0.125
λ1 0.900±0.011 0.868±0.010 0.122±0.208 -0.422±0.047

Latent-ODE
e4 0.051±0.027 0.062±0.034 0.065±0.042 0.213±0.084
π0.5 2.504±1.332 2.336±1.472 2.852±1.352 2.118±1.129
λ1 0.892±0.018 0.877±0.018 0.885±0.015 0.675±0.027

BiNN EnKS

e4 0.019±0.016 0.024±0.023 0.037±0.024 0.276±0.160
rec 0.323±0.024 0.431±0.042 0.598±0.093 1.531±0.332
π0.5 2.807±1.128 3.004±1.355 2.996±1.641 2.081±1.214
λ1 0.856±0.031 0.869±0.024 0.826±0.065 0.868±0.014

DAODEN determ

e4 0.049±0.031 0.056±0.034 0.077±0.048 0.268±0.201
rec 0.216±0.125 0.269±0.110 0.448±0.199 0.873±0.216
π0.5 3.519±1.282 3.488±1.327 3.470±1.562 1.803±1.104
λ1 0.882±0.036 0.895±0.021 0.911±0.013 0.793±0.021

DAODEN MAP

e4 0.038±0.027 0.038±0.038 0.101±0.070 0.233±0.088
rec 0.209±0.096 0.234±0.065 0.525±0.253 0.817±0.330
π0.5 3.271±1.270 3.219±1.260 2.993±1.413 2.650±1.382
λ1 0.860±0.047 0.876±0.029 0.916±0.012 0.920±0.008

DAODEN full

e4 0.023±0.015 0.027±0.016 0.072±0.045 0.187±0.127
rec 0.178±0.050 0.258±0.066 0.469±0.168 1.003±0.380
π0.5 3.533±1.139 3.496±1.215 3.426±1.512 1.897±0.918
λ1 0.869±0.036 0.858±0.028 0.881±0.024 0.884±0.013

Fig. 4: An example of the the first dimension of the L63 system
reconstructed by the inference module of DAODEN determ,
r = 33%. Given the noisy observations (black dots), the
inference module qφ(zt|x0:T ) reconstructs a clean sequence
of the hidden state (blue curve), which is very close to the
true unknown dynamic (red curve). Given this sequence, the
transition network (BiNN) can successfully learn the govern-
ing laws of the system, as it can do under ideal conditions.
The green dash shows the forecast z∗t+1 = F1(z∗t ) given the
output z∗t of qφ.

We can see that if the noise level is not significantly high
(r=33.3% or r=66.7%), all the models are able to capture
the dynamical characteristics of the data. When the noise
level is small, BiNN EnKS tends to perform better than
DAODEN. On the other hand, DAODEN models, especially
DAODEN full work well in these case. This may come from

the capacity of LSTM to capture long-term correlations in
data.

F. L96 case-study

In this section present experiments on the L96 system. The
objective is to prove that the proposed framework can apply in
high-dimensional spaces. We choose the deterministic and the
full version of DAODEN as the candidate model. The results
of models trained on noisy observations are shown in Table.
IV. DAODEN models outperforms state-of-the-art methods
both in terms of short-term prediction and long-term topology.
In Fig. 8 we show the error between the true sequence and the
sequence generated by the DAODEN determ learnt on noisy
observation with r = 19.4%. Both sequences have the same
starting point.

G. L63s case-study

Whereas most related works are designed for ODE only,
(i.e. the governing equations are deterministic), the proposed
framework accounts for stochastic perturbations, hence it can
apply to Stochastic Differential Systems (SDEs). Using the
stochastic Lorenz-63 system (L63s) presented in [50], we il-
lustrate in this experiment the ability of DAODEN full scheme
to infer such stochastic governing equations from noisy obser-
vation data. We may recall that DAODEN full scheme embeds
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TABLE III: Performance of models trained on noisy and partial L63 data. The observations are sampled irregularly, both in
time and in space, with a missing rate of 87.5%. For each index, the best score is marked in bold and the second best score
is marked in italic.

Model r
8.5% 16.7% 33.3% 66.7%

BiNN EnKS

e4 0.129±0.081 0.143±0.065 0.350±0.204 0.973±0.649
rec 0.721±0.204 1.062±0.401 2.342±1.622 6.675±1.410
π0.5 1.873±1.034 2.146±1.048 1.616±1.042 0.290±0.153
λ1 0.801±0.016 0.782±0.012 0.304±0.147 -1.588±0.009

DAODEN determ

e4 0.135±0.082 0.170±0.105 0.290±0.202 25.034±19.821
rec 1.300±1.525 1.448±1.332 1.985±1.474 4.222±2.191
π0.5 2.399±1.360 2.140±1.110 1.441±0.823 0.022±0.087
λ1 0.905±0.014 0.888±0.013 0.809±0.018 -0.011±0.014

DAODEN MAP

e4 0.175±0.119 0.325±0.235 0.459±0.343 9.105±7.136
rec 1.352±0.997 1.705±1.434 1.972±1.247 3.704±1.180
π0.5 2.628±1.448 1.706±1.125 1.505±0.949 0.064±0.216
λ1 0.894±0.010 0.844±0.016 0.736±0.017 0.453±0.030

DAODEN full

e4 0.089±0.062 0.158±0.104 0.162±0.104 0.254±0.142
rec 1.052±0.612 1.268±0.718 1.685±0.928 2.725±1.356
π0.5 2.590±1.193 1.943±0.904 1.984±0.949 1.347±1.014
λ1 0.892±0.011 0.846±0.013 0.859±0.013 0.720±0.019

r = 8.5% r = 16.7% r = 33.3% r = 66.7%
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Fig. 5: Attactors generated by models trained on noisy data.

a parametric form of the covariance of perturbation ωt given
by (3). Note that this parameterization is consistent with its
true parametrization for L63s [50].

Here, we run experiments similar to Section V-E using
L63s datasets with an additive Gaussian noise with r =
33.3%. We then run the identification of the governing
equations using both a deterministic parametrization (e.g.,
BiNN EnKS and DAODEN determ) and the fully-stochastic

Fig. 6: An example of the the first dimension of the L63 system
reconstructed by the inference module of DAODEN determ.
The observations are noisy (r = 33%) and irregularly sampled
with a missing rate of 87.5%.
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Fig. 7: Attractors generated by models trained on partially
observed data.

scheme DAODEN full. For weak stochastic perturbations, i.e.
ωt 6= 0 (typically, γ larger than 8.0 in (28) in Appendix A-C).
deterministic models like BiNN EnKS or DAODEN determ
can still successfully capture the dynamics of the system (not
reported in this paper). However, when ωt plays in important
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TABLE IV: Performance of models trained on noisy L96 data.
For each index, the best score is marked in bold.

Model r
19.4% 38.8%

AnDA
e4 0.582±0.106 1.140±0.174
π0.5 1.491±0.481 0.768±0.281
λ1 53.362±0.734 92.733±0.883

SINDy
e4 0.309±0.048 0.767±0.117
π0.5 0.628±0.166 0.150±0.047
λ1 1.444±0.048 1.316±0.045

BiNN
e4 0.310±0.046 0.788±0.112
π0.5 2.503±0.565 1.111±0.274
λ1 1.409±0.019 1.041±0.016

DAODEN determ
e4 0.048±0.006 0.157±0.022
π0.5 4.790±0.960 3.178±0.779
λ1 1.624±0.022 1.601±0.023

DAODEN full
e4 0.067±0.014 0.145±0.030
π0.5 4.076±1.084 3.146±0.962
λ1 1.543±0.026 1.348±0.020

Fig. 8: The true L96 sequence (top), the sequence generated
by the model trained on noisy data with r = 19.4% (middle)
and the error between the true and the generated sequence
(bot).
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Fig. 9: Several attractors generated by the true L63s models
(top), by DAODEN determ (middle) and by DAODEN full
(bottom). The true L63s and DAODEN full system are
stochastic, hence each runtime we obtain a different sequence,
even with the same initial condition. The models were trained
on noisy observations with r = 33.3%.

role in controlling the large-scale statistical characterization
of the system, deterministic models fail as illustrated in Fig.
9 for L63s dynamics with γ = 5.0. By contrast, the fully-
stochastic model successfully uncover the stochastic dynamics
in both situations. In Fig. 9 top, we depict four different
L63s trajectories from the same initial conditions. Due to the
stochastic perturbation, the trajectories may strongly differ
but all show a wide spreadout within the attractor. When
considering a deterministic model (Fig. 9 middle), the four
trajectories are strictly similar as there is no stochastic pertur-
bation. Besides, the deterministic model simulates trajectories
trapped on one side of the attractor, which cannot reproduce
the spread of the true model. As illustrated in Fig. 9 bottom,
DAODEN full scheme succeed in capturing this stochastic
patterns by embedding the stochastic factors of the system in
the dispersion matrix Qt. Using a Monte Carlo technique, as
presented in Alg. 2 in Appendix C, to forecast the state of the
dynamics, we can obtain sequences with similar characteristics
to the true L63s system.

H. Dealing with an unkown observation operator

In previous experiments, the observation operator H was
known. We may also address the situation where it is unknown.
It may for instance refer to the identification of some lower-
dimensional governing equations of high-dimensional obser-
vations. Reduced-order modeling may also regarded as a situ-
ation where one looks for a lower-dimensional representation
of some higher-dimensional dynamical system.

As case-study, we consider an experimental setting with
Lorenz-63 dynamics similar to [51]. The 128-dimensional
observation space derives from a 3-dimensional space, where
the system is governed by L63 ODE, according to a poly-
nomial of zt and z3

t with six spatial modes of Legendre
coefficients (for details, see [51]). Whereas noise-free are
considered in [51], we report here experiments with a Gaussian
additive noise with r=19.4%. Fig. 10 shows the observations
in a high-dimensional space. The inference scheme in [51]
is an NN-based encoder, this architecture does not take into
account the sequential correlations in the data, hence when the
observations are noisy, it can not apply (because p(zt|xt) is
intractable). Moreover, [51] supposes that the time derivative
dxt
dt is observed. This assumption may not be true for many

real-life systems. Our model, on the other hand, uses a state-
space assimilation formulation. The inference scheme in our
model is a sequential model, and we do not need the time
derivative of the data.

The unknown observation operator H was parameterized
by the same MLP architecture as the one used in [51]. We
run this experiment with DAODEN determ. Fig. 11 shows
that the proposed framework successfully captures the low-
dimensional attractor of the observed high-dimensional ob-
servation sequences. This is further supported by the first
Lyapunov exponent of the learnt model λ1 = 0.92 which
is close to the true value (0.91). Because there are several
possible solutions for this problem (any affine transformation
of the original L63 is a solution), the coordinates of the learnt
system are different, however, the topology is the same.
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Fig. 10: Higher-dimensional Legendre observations governed
by lower-dimensional L63 dynamics. Following [51], the
observations (top right) are in a 128-dimensional space, while
L63 dynamics (bottom left) are in a 3-dimensional space. The
observation operator involves a non-linear mapping according
to Legendre polynomials [51].
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Fig. 11: Low-dimensional attractor generated by the proposed
model trained from noisy higher-dimensional Legendre obser-
vations of L63 dynamics. This attractor recovers the topology
of L63 dynamics. We let the reader refer to the main text for
details on this experiment.

VI. CONCLUSIONS

This paper a novel deep learning scheme for the iden-
tification of governing equations of a given system from
noisy and partial observation series. We combine a Bayesian
formulation of the data assimilation to state-of-the-art deep
learning architectures. Compared with related work [22], [23],
we account for stochastic dynamics rather than only deter-
ministic ones and derive an end-to-end architecture using
a variational deep learning model, which fully conforms to
the state-space formulation considered in data assimilation.
Through numerical experiments for chaotic and stochastic
dynamics, we have demonstrated that we can extend the obser-
vation configurations where we can recover hidden governing
dynamics from noisy and partial data w.r.t. the state-of-the-art,
including for high-dimensional systems governed by lower-
dimensional dynamics.

Beyond the generalization of previous work through a varia-

tional Bayesian formulation, the proposed framework involves
two key contributions w.r.t. state-of-the-art data assimilation
schemes. We first show that neural network architectures bring
new means for the parameterization of both the dynamical
models and the inference scheme. Especially, our experiments
support the relevance of LSTM-based architectures as alter-
natives to state-of-the-art data assimilation schemes such as
Ensemble Kalman methods. Future work shall further explore
these aspects and could benefit from the resulting end-to-end
architecture to improve reconstruction performance [53]. For
deep learning practitioners, our experiments point out that
assimilation schemes and random n-step-ahead forecasting can
be loosely considered as regularization techniques to prevent
overfitting. We have also proved that the stochastic implemen-
tation of the proposed framework can capture characteristics of
stochastic dynamical systems from noisy data. These results
open new research avenues for dealing with real dynamical
systems, for which the stochastic perturbations often play a
significant role in driving long-term patterns.
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APPENDIX A
DYNAMICAL SYSTEMS

A. The Lorenz-63 system

The Lorenz-63 system (L63), named after Edward Lorenz,
is a 3-dimensional dynamical system that model the atmo-
spheric convection [1]. The L63 is governed by the following
ODE:

dxt,1

dt
= σ (xt,2 − xt,1)

dxt,2

dt
= (ρ− xt,3)xt,1 − xt,2

dxt,3

dt
= xt,1xt,2 − βxt,3

(26)

When σ = 11, ρ = 28 and β = 8/3, this system has a
chaotic behavior, with the Lorenz attractor shown in Fig. 12.
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Fig. 12: The attractor of the Lorenz–63 system when σ = 10,
ρ = 28 and β = 8/3.

Some characteristics of the L63 with the above set of
parameters are as follows:
• The system is chaotic, a minor change in the initial

condition will lead to a completely different trajectory
in long term.

• The attractor of the L63 has a “butterfly form”, the
particles frequently change side of the attractor. The
density of the particles in two sides of the attractor is
also similar.

B. The Lorenz-96 system
The Lorenz-96 system (L96) [49] is a periodic 40-

dimensional dynamical system governed by the following
ODEs:

For i = 1, ..Nx:
dxt,i

dt
= (xt,i+1 − xt,i−2)xt,i−1 − xt,i + F (27)

with Nx = 40, xt,−1 = xt,Nx−1, xt,0 = xt,Nx and
xt,Nx+1 = xt,1.

We choose F = 8 to have chaotic system.

C. The stochastic Lorenz-63 system
The stochastic Lorenz-63 system (L63s) is presented in

[50]. It is a modified version of the L63 to model situations
where the large-scale characteristics of a physical event may be
changed because of accumulated perturbations in fine scales.
The governing equations of the L63s are as follow:

dxt,1 =

(
σ (xt,2 − xt,1)− 4

2γ
xt,1

)
dt

dxt,2 =

(
(ρ− xt,3)xt,1 − xt,2 −

4

2γ
xt,2

)
dt+

ρ− xt,3

γ0.5
dBt

dxt,3 =

(
xt,1xt,2 − βxt,3 −

8

2γ
xt,3

)
dt+

xt,2

γ0.5
dBt

(28)
with Bt a Brownian motion.

In the L63s, the noise level is controlled by γ. The data
used in this paper were generated with σ = 11, ρ = 28 and
β = 8/3 and γ = 5. With this set of parameters, the particles
are easily trapped in one side of the attractor, as shown in Fig.
9 in the paper.

APPENDIX B
MODEL SETUP

A. Models used for the L63 and the L63s

All the four models (BiNN EnKs, DAODEN determ,
DAODEN MAP and DAODEN full) use the same dynam-
mical sub-module: a BiNN. The architecture of this network
is presented in Table. V. The terms Linear and Bilinear are for
the Linear and the Bilinear modules implemented in Pytorch.

TABLE V: Architecture of the BiNN used for the L63 and the
L63s.

Parameter Value

Number of Linear cells 1

Linear cell size [3, 3]

Linear cell activation Linear

Number of Bilinear cells 3

Bilinear cell size [3, 3, 3]

Bilinear activation Linear

For BiNN EnKS, we used the EnKS implementation sug-
gested in [19]. The size of the ensemble was choosen as 50.

As shown in Fig. 2 in the paper, the inference scheme of
DAODEN models is an LSTM-based network. The parameters
of the inference sub-module of DAODEN full is presented
in Table. VI. All the encoders and the decoders are MLPs.
Similar architectures were used for DAODEN determ and
DAODEN MAP, by removing the variance parts.

TABLE VI: Architecture of the inference scheme of
DAODEN full used for the L63 and the L63s.

Parameter Value

LSTM layers 2

LSTM hidden state dimension 9

MLP enc size [3, 7, 3]

MLP enc activation ReLU

MLP dec size [21, 7, 6]

MLP dec activation ReLU

B. Models used for the L96

For the L96, we used the convolutional version of BiNN,
as presented in [23].

The architecture of the inference scheme is presented in
Table. VII.
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TABLE VII: Architecture of the inference scheme of
DAODEN determ used for the L96.

Parameter Value

LSTM layers 2

LSTM hidden state dimension 80

MLP enc size [40, 80, 40]

MLP enc activation ReLU

MLP dec size [200, 80, 40]

MLP dec activation ReLU

C. Models used for the L63 with Legendre observations

The dynamical sub-module of the DAODEN determ model
used in Section V-H is the same as the one presented in Section
B-B. The architecture of the inference scheme used in Section
V-H is presented in Table. VIII.

TABLE VIII: Architecture of the inference scheme of
DAODEN determ used for the L63 with Legendre observa-
tions

Parameter Value

LSTM layers 2

LSTM hidden state dimension 9

MLP enc size [128, 64, 32, 3]

MLP enc activation Sigmoid

MLP dec size [21, 32, 64, 128]

MLP dec activation Sigmoid

APPENDIX C
SIMULATION OF STOCHASTIC DYNAMICS

To simulate a stochastic sequence given the learnt stochastic
model (F and MLP var dyn in the case of DAODEN full), we
use the following algorithm:

Algorithm 2: Generate stochastic sequence
Result: A sequence S of length N , generated by the

model {F ,MLP var dyn}, starting form the
initial condition x0.

Inputs: N , F , MLP var dyn, x0;
x = x0;
S = list();
t = 0;
while t < N do

µ = F1(x);
ddyn = MLP var dyn(x);
x ∼ N (µ,ddynI);
S.append(x);


