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Abstract—The data-driven recovery of the unknown governing
equations of dynamical systems has recently received an increas-
ing interest. However, the identification of governing equations
remains challenging when dealing with noisy and partial observa-
tions. Here, we address this challenge and investigate variational
deep learning schemes. Within the proposed framework, we
jointly learn an inference model to reconstruct the true states
of the system and the governing laws of these states from
series of noisy and partial data. In doing so, this framework
bridges classical data assimilation and state-of-the-art machine
learning techniques. We also demonstrate that it generalises state-
of-the-art methods. Importantly, both the inference model and
the governing model embed stochastic components to account
for stochastic variabilities, model errors, and reconstruction
uncertainties. Various experiments on chaotic and stochastic
dynamical systems support the relevance of our scheme w.r.t.
state-of-the-art approaches.

Index Terms—dynamical system identification, variational in-
ference, data assimilation, neural networks.

I. INTRODUCTION

The identification of the governing equations of dynamical
processes, usually stated as Ordinary Differential Equations
(ODEs), Stochastic Differential Equations (SDEs) or Partial
Differential Equations (PDEs), is critical in many disciplines.
For example, in geosciences, it provides the basis for the
simulation of climate dynamics, short-term and medium-range
weather forecast, short-term prediction of ocean and atmo-
sphere dynamics, etc. In aerodynamics or in fluid dynamics,
it is at the core of the design of aircraft and control systems,
of the optimisation of energy consumption, etc.

Classically, the derivations of governing equations are based
on some prior knowledge of the intrinsic nature of the system
[1]–[4]. The derived models can then be combined with the
measurements (observations) to reduce errors, both in the
model and in the measurements. This approach forms the
discipline of Data Assimilation (DA) [5]. However, in many
cases, the underlying dynamics of the system are unknown
or only partially known, while a large number of observa-
tions are available. This has motivated the development of
learning-based approaches [6], where one aims at identifying
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the governing equations of a process from time series of
measurements. Recently, the ever increasing availability of
data thanks to developments in sensor technologies, together
with advances in Machine Learning (ML), has made this issue
a hot topic. Numerous methods have successfully captured
the hidden dynamics of systems under ideal conditions, i.e.
noise-free and high sampling frequency, using a variety of
data-driven schemes, including analog methods [7], sparse
regression schemes [8], reservoir computing [9], [10] and
neural approaches [11]–[15]. However, real life data are often
corrupted by noise and/or observed partially, as for instance
encountered in the monitoring of ocean and atmosphere dy-
namics from satellite-derived observation data [16]–[18]. In
such situations, the above-mentioned approaches are most
likely to fail to uncover unknown governing equations.

To address this challenge, we need to jointly solve the
reconstruction of the hidden dynamics and the identification
of governing equations. This may be stated within a data
assimilation framework [19] using state-of-the-art assimilation
schemes such as the Ensemble Kalman Smoother (EnKS)
[20]. Deep learning approaches are also particularly appealing
to benefit from their flexibility and computational efficiency.
Here, we investigate a variational deep learning framework.
More precisely, we frame the considered issue as a variational
inference problem with an unknown transition distribution
associated with the underlying dynamical model. The proposed
method generalises learning-based schemes such as [11], [21]–
[24], and also explicitly relates to data assimilation formula-
tions. Importantly, it can account for errors and uncertainties
both within the dynamical prior and the inference model.
Overall, our key contributions are:

• a general deep learning framework which bridges clas-
sical data assimilation and modern machine learning
techniques for the identification of dynamical systems
from noisy and partial observations. This framework uses
variational inference and random-n-step-ahead forecast-
ing, which can be considered as two complementary reg-
ularisation strategies to improve the learning of governing
equations;

• insights on the reason why many existing methods for
learning dynamical systems do not work when the avail-
able data are not perfect, i.e. noisy and/or partial;

• numerical experiments with chaotic systems which sup-
port the relevance of the proposed framework to improve
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the learning of governing equations from noisy and
partial observation datasets compared to state-of-the-art
schemes;

• numerical experiments which demonstrate that our
method can also capture the characteristics of dynamical
systems where stochastic factors are significant.

The paper is organised as follows. In Section II, we formu-
late the problem of learning non-linear dynamical systems. We
review state-of-the-art methods and analyse their drawbacks
in Section III. Section IV presents the details of the proposed
framework, followed by the experiments and results in Section
V. We close the paper with conclusions and perspectives for
future work in Section VI.

II. PROBLEM FORMULATION

Let us consider a dynamical system, described by an Ordi-
nary Differential Equation (ODE) as follows:

dzt
dt

= f
(
zt
)

(1)

where zt ∈ Rdz is a geometrical point, called the state of the
system (dz is the dimension of zt), f : Rdz −→ Rdz is a
deterministic function, called the dynamical model.

We aim at learning the dynamics of this system from
some observation dataset, that is to say identifying governing
equations f , given a series of observations xtk :

xtk = Φtk

(
H
(
ztk
)

+ εtk
)

(2)

where H : Rdz −→ Rdx is the observation operator, usually
known (dx is the dimension of xtk ), εtk ∈ Rdx is a zero-
mean additive noise and {tk}k refers to the time sampling,
typically regular such that tk = t0 + k × δ with respect to a
fine time resolution δ and a starting point t0. We introduce a
masking operator Φtk to account for the fact that observation
xtk may not be available at all time steps tk (Φtk,j = 0 if
the jth variable of xtk is missing). For the sake of simplicity,
from now on in this paper, we use the notation xk for xtk and
xk+n for xtk+n×δ .

From Eqs. (1) and (2), we derive a state-space formulation:

zk+n = Fn
(
zk
)

+ ωk+n (3)

xk = Φk

(
H
(
zk
)

+ εk
)

(4)

where zk+n results from an integration of operator f from
state zk: Fn

(
zk
)

= zk +
∫ k+n

k
f
(
zu
)
du. n is the number

of timesteps ahead that Fn forecasts, given the current state
zk. Fn is hence called the n-step-ahead model. ωk ∈ Rdz

is a zero-mean noise process, called the model error. ωk

may come from neglected physics, numerical approximations
and/or modelling errors. εk is the observation error (or
measurement error). Note that f is continuous, the time
discretisation only happens because we want to calculate
the integral Fn over the interval [tk, tk+n]. Furthermore, as
detailed later, the parametrisation of Fn may explicitly depend
on n or not. In this paper, to simplify the notation, k + n
includes both k+ 1 (i.e. n = 1) and k+ n (i.e. n 6= 1). If we
specify k + 1 and k + n in one sentence, it means n 6= 1 in
those contexts.

Within this general formulation, the identification of gov-
erning equations f amounts to maximising the log likelihood
ln p(x0:T ).

III. RELATED WORK

The identification of dynamical systems has attracted atten-
tion for several decades and closely relates to data assimilation
(DA) for applications to geoscience. Proposed approaches
typically consider a parametric model for operator Fn, for
example, a linear function in [25] or Radial Basis Func-
tions (RBFs) in [26]. While data assimilation mostly focuses
on the reconstruction of the hidden dynamics given some
observation series, a number of studies have investigated
the situation where the dynamical prior is unknown. They
typically learn the unknown parameters of the model using
an iterative Expectation-Maximisation (EM) procedure. The
E-step involves a DA scheme (e.g. the Kalman filter [27],
the Extended Kalman filter [28], the Ensemble Kalman filter
[29], the particle filter [30], etc.) to reconstruct the true states
{zk} from observations {xk}, whereas the M-step retrieves
the parameters of Fn best describing the reconstructed state
dynamics. Such methods address the fact that the observations
may not be ideal. They can also account for model errors and
uncertainties (ωk in Eq. (3)). However, since they rely on
analytic solutions, the choices of the candidates for Fn are
generally limited. For a comprehensive introduction as well
as an analysis of the limitations of those methods, the reader
is referred to [31].

Recently, the domain of dynamical system identification has
received a new wave of contributions. Advances in machine
learning open new means for learning the unknown dynamics.
In this line of work, one of the pioneering contributions
is the Sparse Identification of Nonlinear Dynamics (SINDy)
presented in [8]. SINDy assumes that the governing equations
of a dynamical model consist of only a few basic functions
such as polynomial functions, trigonometric functions, expo-
nential functions, etc. The method creates a dictionary of
such candidates and uses sparse regression to retrieve the
corresponding coefficients of each basic function. Under ideal
conditions, SINDy can find the exact solution of Eq. (1).
The key advantage of SINDy is the interpretability of its
solutions, i.e. the parametric form of the governing equations
can be recovered. Another advantage is that the solutions
comprise only a few terms, which improves the generalisation
properties of the learnt models. However, SINDy requires
the time derivative dxt

dt to be observed. dxt
dt might be highly

corrupted by noise for noisy and partial observation datasets,
which may strongly affect the performance of SINDy. Besides,
it requires some prior knowledge about the considered system
to create a suitable dictionary of the basic functions.

Analog methods [32]–[34], including the Analog Data
Assimilation (AnDA) presented in [7], propose a non-
parametric approach for data assimilation. AnDA implicitly
learns Eqs. (3) and (4) by remembering every seen pair
{state, successor} = {xk,xk+1} and storing them in a
catalog. To predict the evolution of a new query point xk,
AnDA looks for k similar states in the catalog, the prediction is
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then a weighted combination of the corresponding successors
of these states. The performance of this method heavily
depends on the quality of the catalog. If the catalog contains
enough data and the data are clean, AnDA provides a good
and straightforward solution for data assimilation. However,
since AnDA relies on a k-Nearest Neighbor (k-NN) approach,
it may be strongly affected by noisy data, especially when
considering high-dimensional systems.

A number of neural-network-based (NN-based) methods
have been introduced recently. These methods leverage deep
neural networks as universal function approximators. They
vary from direct applications of standard NN architectures,
such as LSTMs in [35], ResNets in [13], etc. to some more
sophisticated designs, dedicated to dynamical systems and
often referred to as neural ODE schemes [11], [12], [36],
[37]. The reservoir computing, whose idea is derived from
Recurrent Neural Networks (RNNs), used in [9] and [10] can
also be regarded as a NN-based model. As illustrated in [11],
[12], [36], [37], through the combinations of a parametrisation
for differential operator f and some predefined integration
schemes (e.g., explicit Runge-Kutta 4 scheme (RK4) in [11],
black-box ODE solvers in [36], [37]), neural ODE schemes
provides significantly better forecasting performance than
that of standard NN models, especially when dealing with
chaotic dynamics. Powered by deep learning, these methods
can successfully capture the dynamics of the system under
ideal conditions (noise-free and regularly sampled with high
frequency). However, they have the following limitations: i)
the network requires fully-observed data1 and ii) when dealing
with noisy observations, no regularisation techniques have
been proved effective in preventing overfitting for dynamical
system identification.

Overall, the above-mentioned learning-based methods may
not apply or fail when the observations are noisy and partial.
Their learning step is stated as the minimisation of a short-
term prediction error of the observed variables:

loss =
∑

g(||xpred
k+n − xk+n||2) (5)

where xpred
k+n = Fn(xk) is the predicted observation at k + n

given the current observation xk, ||.||2 denotes the L2 norm,
g is a function of ||xpred

k+n − xk+n||2. As shown in Fig. 1,
with this family of cost functions, the model tends to overfit
the observations (the blue curve or the green and yellow
curves), instead of learning the true dynamics of the system
(the red curve). Another reason why those methods fail is
because they violate the Markovian property of the system.
Note that the process of the true states z0:T of the system is
Markovian (i.e., given zk, zk+1 does not depend on z0:k−1).
However, when the data are damaged by noise, the process of
observations x0:T is not Markovian. Given xk, we still need
the information contained in x0:k−1 to predict xk+1. For this
reason, applying Markovian architectures like SINDy, AnDA,
DenseNet, BiNN, etc. directly on the observations x0:T would
not succeed. Models with memory like LSTMs may capture
the non-Markovian dynamics in the training phase, however,

1Latent ODE [37] can apply for data observed partially in time, however,
data may be observed partially in space also.

Fig. 1: Problems of learning dynamical systems from imperfect
data. This figure plots the first component of the Lorenz-
63 system [1], when the observation operator is the identity
matrix. The observation is noisy and partial. If the learning
algorithm is applied directly on the observations (black dots),
which are noisy and partially sampled, and a linear inter-
polation is used to create grid data, the dynamics seen by
the network are the blue curve (for 1-step-ahead forecasting
models) or the green and the yellow curves (for 2-step-
ahead forecasting models, these two curves correspond to two
possible starting points of the sequence) instead of the true
dynamics (the red curve).

in the simulation phase, they still need the memory, which
implies that the learnt dynamics do not have the Markovian
property of the true dynamics of the system.

In this paper, we consider a variational deep framework
which derives from a variational inference for state-space
formulations (Eqs. 3, 4). This framework accounts for un-
certainty components in the dynamical prior as well as in
the observation model. It jointly solves the reconstruction of
the hidden dynamics and the identification of the govern-
ing equations. Importantly, this framework benefits from the
computational efficiency and the modeling flexibility of deep
learning frameworks for the specification of the dynamical
prior and of the inference model, as well as for the use of
a stochastic regularisation during the training phase through
a randomised n-step-ahead prediction loss. This framework
generalises our recent works presented in [21] and [22] and
similar works, which have been developed concurrently in
[19], [23] and [24]. As detailed in the next section, [19], [23]
and [24] may be regarded as specific instances of the proposed
framework with some specific settings, such as constant model
error covariance matrix (we relax this hypothesis), Ensemble
Kalman Smoothers for the inference scheme (we exploit
both strategies: Ensemble Kalman Smoothers and NN-based
schemes), EM for the optimisation (we exploit both EM and
gradient-based techniques).

IV. PROPOSED FRAMEWORK

In this section, we detail the proposed variational deep
learning framework for the data-driven identification of the
governing equations of dynamical systems from noisy and
partial observations. We first present the proposed framework
based on variational inference, then introduce the considered
NN-based parametrisations for the dynamical prior and the
inference model, along with the implemented learning scheme.
We further discuss how the proposed framework relates to
previous work.
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A. Variational inference for learning dynamical systems

Given a series of observations x0:T = {x0, ..,xk}, instead
of looking for a model Fn that minimises a loss function in
a family of short-term prediction error functions as in Eq. (5),
we aim to learn operator Fn such that it maximises the log
likelihood ln p(x0:T ) of the observed data. We assume that
x0:T are noisy and/or partial observations of the true states
z0:T , like in Eqs. (3) and (4). We can derive the log-likelihood
ln p(x0:T ) from the marginalisation of ln p(x0:T , z0:T ) over
z0:T :

ln p(x0:T ) = ln

∫
p(x0:T , z0:T )dz0:T (6)

With the exception of some simple cases, the integral in Eq. (6)
is intractable because the posterior distribution p(z0:T |x0:T ) is
intractable [38]. To address this issue, Variational Inference
(VI) approximates p(z0:T |x0:T ) by a distribution q which
maximises the Evidence Lower BOund (ELBO)2 [41]–[43]:

L(x0:T , p, q) =

∫
q(z0:T |x0:T ) ln

pθ(x0:T , z0:T )

q(z0:T |x0:T )
dz0:T (7)

Based on the state-space formulation in Eqs. (3) and (4), we
consider the following parametrisation for the joint likelihood
p(x0:T , z0:T ):

pθ(x0:T , z0:T ) = pθ(z0:T )pθ(x0:T |z0:T ) (8)

pθ(z0:T ) = pθ(z0)

n−1∏
k=1

pθ(zk|zk−1)

T∏
k=n

pθ(zk|zk−n)

(9)

pθ(x0:T |z0:T ) =

T∏
k=0

pθ(xk|zk) (10)

qφ(z0:T |x0:T ) =

T∏
k=0

qφ(zk|zfk ,x0:T ) (11)

with θ and φ are the sets of parameters of p and q, re-
spectively; zfk is the state forecast by F1 given zk−1 for
k = 1..n− 1, and by Fn given zk−n for k = n..T

The distributions in Eqs. (9), (10) and (11) are respectively
the classic distributions of a state-space formulation: 1) the
n-step ahead transition (or dynamic or prior) distribution
pθ(zk+n|zk) (including n = 1); 2) the emission (or ob-
servation) distribution pθ(xk|zk); and 3) the inference (or
posterior) distribution qφ(zk|zfk ,x0:T ). To better constrain
the time consistency of the learnt dynamics, the considered
dynamical prior embeds an n-step-ahead forecasting model.
Given an initialisation z0, it first applies a one-step-ahead
prior to propagate the initial state to the first n timesteps. The
application of the n-step-ahead prior then follows to derive
the joint distribution over the entire time range {0, .., T}.

By explicitly separating the transition, the inference and
the generative processes, the proposed framework is fully
consistent with the underlying state-space formulation and
the associated Markovian properties. Especially, the prior

2For the sake of simplicity, here we present only ELBO, however, one can
use other variants such as IWAE [39] or FIVO [40] instead.

pθ(zk+n|zk) will embed a Markovian architecture; by con-
trast, the posterior qφ(zk|zfk ,x0:T ) shall capture the non-
Markovian characteristics of the observed data. Given the
learnt model, the generation of simulated dynamics only
relies on the dynamical prior pθ(zk+1|zk) to simulate state
sequences, which conform to the Markovian property. Overall,
for a given observation dataset, the learning stage comes to
maximising Eq. (7) w.r.t. both φ and θ, which comprise all
the parameters of the inference and generative models, i.e. the
parameters of F , H, ωk and εk.

So far we have introduced the general form of the pro-
posed variational inference framework for learning dynamical
systems from noisy and potentially partial observations. In
the following sub-sections, we will analyse some specific
instances of the proposed framework and provide insights into
the associated implicit hypotheses.

B. Parametrisation of generative model pθ
Model pθ involves two sets of parameters: (i) θz—the

parameters of transition distribution pθ(zk+n|zk) and (ii) θx—
the parameters of emission distribution pθ(xk|zk).

Regarding the latter, similarly to [23] and [24], we assume
the observation noise to be a white noise process with a
multivariate covariance R such that pθ(xk|zk) is a conditional
multivariate normal distribution:

pθ(xk|zk) = N (H(zk),R) (12)

We may consider different experimental settings, with known
or unknown observation operator H.

Regarding the n-step-ahead dynamical prior pθ(zk+n|zk)
(including n = 1), we consider a conditional Gaussian
distribution where the mean path is driven by the governing
equation Fn: zk+n = Fn(zk) and the dispersion is repre-
sented by a covariance matrix Qk (usually called the model
error covariance in DA) [29]. Any state-of-the-art architecture
for learning dynamical systems can be used to model Fn.
Here, we consider NN-based methods associated with explicit
integration schemes. To account for second-order polynomial
model, as proposed in [11], we consider a bilinear architecture
to model f in Eq. (1) and a NN implementation of the RK4
integration scheme to derive the flow operator in Eq. (3).
Regarding the covariance dynamics, the covariance matrix Qk

is approximated by a diagonal matrix diag(df
k), with df

k the
output of a MultiLayer Perceptron (MLP):

df
k = MLP var dyn(zk−n,Fn(zk−n)) (13)

C. Parametrisation of inference model qφ
There is no restriction for the parametrisation of posterior

qφ. However, the parametrisation clearly affects the perfor-
mance of the overall optimisation. Here, we investigate two
strategies for qφ: 1) an Ensemble Kalman Smoother (EnKS)
[20] and 2) an LSTM Variational Auto Encoder (LSTM-VAE).
The former is a classic DA scheme that is widely used in many
domains in which dynamical systems play an important role,
for example in geosciences [44]. We use the implementation
presented in [20]. The latter is a modern NN architecture,
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which has been proven effective for modelling stochastic
sequential data [42] [43]. The backbone of the LSTM-VAE is a
bidirectional LSTM which captures the long-term correlations
in data. Specifically, we parameterise the inference scheme as
follows: the forward LSTM is given by:

hf
k = lstm(hf

k−1,MLP enc(xf
k−1)) (14)

and the backward LSTM is given by:

hb
k = lstm(hb

k+1,h
f
k ,MLP enc(xf

k)) (15)

where hf
k , hb

k are the hidden states of the forward and
backward LSTMs, respectively; lstm is the recurrence formula
of LSTM [45]; MLP enc is an encoder parameterised by
an MLP. We parameterise the posterior qφ by a conditional
Gaussian distribution with mean µq

k and a diagonal covariance
matrix diag(dq

k):

qφ(zk) = N (µq
k, diag(dq

k)) (16)

µq
k,d

q
k = MLP dec(Fn(zk−n),hf

k ,h
b
k) (17)

with MLP dec is a decoder parameterised by an MLP. Note
that in Eq. (17), qφ depends on zfk = Fn(zk−n). This
idea is inspired by DA, where Fn(zk−n) is analogous to
the forecasting step and qφ(zk|zfk ,x0:T ) is analogous to the
analysis step, which depends on the forecasting step. The
whole model, called Data-Assimilation-based ODE Network
(DAODEN) is illustrated in Fig. 2.

To our knowledge, DAODEN is the first stochastic RNN-
based model introduced for the identification of dynamical sys-
tems from noisy and partial observations. In this respect, the
model used in [35] is a purely deterministic RNN-based net-
work. However, similar architectures have been used in Natural
Language Processing (NLP) such as the Variational Recurrent
Neural Network (VRNN) presented in [42], the Sequential
Recurrent Neural Network (SRNN) presented in [43]. Fig. 2
shows how DAODEN differs from those architectures. The
main difference is that the transition zk → zk+1 is independent
of observation xk (i.e. the dynamic is autonomous). Besides,
the emission zk → xk is also independent of the historical
state z0, .., zk−1. These differences relate to domain-related
priors. In dynamical systems theory and associated application
domains such as geoscience, the underlying dynamics follow
physical principles. Therefore, they are autonomous and are
not affected by the measurements (the observations). As a
consequence, zk+1 does not depend on x1:k−1 conditionally
to zk. At a given time k, observation xk is a measurement
of state zk of the system, this measurement does not depend
on any other state zk′ 6=k, i.e. given zk, xk and zk′ are
independent for any k′ 6= k. For this reason, architectures
used in NLP like VRNN, SRNN do not apply for dynamical
system identification.

D. Objective function

Following a variational Bayesian setting, the learning phase
comes to minimising a loss given the negative of ELBO:

lossELBO = −L(x0:T , pθ, qφ) (18)

Fig. 2: Architecture of VRNN, SRNN and DAODEN when
n = 1. We denote as xk the observations, zk the system’s
states, hf

k the latent states of the forward LSTM and hb
k the

latent states of the backward LSTM. The black, red, blue
and orange arrows denote respectively the transition of the
system’s states, the emission of the observations, the inference
of the system’s states and recurrence of the LSTMs, respec-
tively. In VRNN (a) and SRNN (b), the dynamic zk → zk+1

is not independent of the observation xk. The generation of
the observation is also entangled with the recurrence of the
LSTMs.

Instead of solving Eq. (7), one can solve its Maximum A
Posteriori (MAP) solution by restricting qφ to Dirac distribu-
tions:

LMAP =

T∑
k=0

ln pθ(xk|z∗k)

+ ln pθ(z∗0) +

n−1∑
k=1

ln pθ(z∗k|z∗k−1) +

T∑
k=n

ln pθ(z∗k|z∗k−n)

(19)

with z∗k = E
[
qφ(zk|zfk ,x0:T )

]
if qφ is parameterised by

an EnKS and z∗k = qφ(zk|zfk ,x0:T ) = δ(zk|zfk ,x0:T ) if
qφ is parameterised by a neural network. If we remove the
covariance part in Eq. (17), the LSTM-VAE becomes an
LSTM Auto Encoder (LSTM-AE) :

z∗k = µq
k = dec(Fn(zk−n),hf

k ,h
b
k) (20)

The MAP loss function, which relates to the weak-constraint
4D-Var in DA [46], is given by:

lossMAP = −LMAP (x0:T , pθ, qφ) (21)

This is the objective function used in [19], [23] and [24], with
the assumption that Qk is time invariant, i.e. Qk = Q.

One may further assume that the covariance matrices of
transition distribution pθ(z∗k|z∗k−n) and the covariance matri-
ces of the observation distribution pθ(xk|z∗k) are diagonal and
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constant, both in time and in space, Eq. (19) then becomes3:

Ldeterm = −λ
T∑

k=0

||φk(H(z∗k))− xk||22

−
n−1∑
k=1

||z∗k −F1(z∗k−1)||22 −
T∑

k=n

||z∗k −Fn(z∗k−n)||22 (22)

The associated loss function is given by:

lossdeterm = −Ldeterm(x0:T , pθ, qφ) (23)

which is the objective function used in [21] and [22]. We may
note that if xk = zk, (23) becomes the short-term prediction
error widely used in the literature [9]–[11], [13]. In other
words, [9]–[11], [13] implicitly suppose that the observations
are ideal.

E. Optimisation strategy

To learn parameters θ and φ (i.e. the parameters of the gen-
erative and the inference models), there are two optimisation
strategies: 1) alternatively optimise θ then φ (Expectation-
Maximisation-like or EM-like) to minimise the loss function;
or 2) jointly optimise the loss function over θ and φ.

For models whose posterior qφ is implemented by an
EnKS, since EnKS uses analytic formulas and the NN-based
parametrisation of pθ is usually optimised by Gradient Descent
(GD) techniques, we consider an alternated EM procedure
as the optimisation strategy for the whole model. In the E-
step, the EnKS computes the posterior qφ, represented by an
ensemble of states z

(i)
k . Given this ensemble of states, the

M-step minimises the loss function over θ using a stochastic
gradient descent algorithm.

For DAODEN settings, we can fully benefit from the
resulting end-to-end architecture, as both generative model pθ
and posterior model qφ are parameterised by neural networks,
to jointly optimise all model parameters using a stochastic
gradient descent technique. The gradient descent technique
may be regarded as a particular case of EM where the M-step
takes only one single gradient step. For NN-based models,
gradient descent strategies usually work better than EM [47].

F. Random-n-step-ahead training

Within the considered framework, we noted experimentally
that the model may overfit the data, when the number of the
forecasting timesteps is fixed. For example, if the observa-
tion operator H is an identity matrix, a possible overfitting
situation is when the inference scheme also becomes an
identity operator: E [qφ(zk|x0:T )] → xk. In such situations,
the dynamics seen by the dynamical sub-module would be
the noisy dynamics.

To deal with these overfitting issues, we further exploit
the flexibility of the proposed n-step-ahead dynamical prior
during the training phase. For each mini-batch iteration in
the training phase, we draw a random value of n between
1 and a predefined maximum number of forecasting steps n-
step-ahead max. We then apply a gradient descent step with

3The derivation of (22) can be found in our previous paper [21].

the sampled value of n. The resulting randomised training
procedure is detailed in Alg. 1.

This randomised procedure is regarded as a regularisation
procedure to fit a time-consistent dynamical operator Fn. We
noted in previous works that neural ODE schemes may not
distinguish well the dynamical operator from the integration
scheme [48]. Here, through the randomisation of parameter
n, we constrain the end-to-end architecture by applying it
for different prediction horizons, which in turn constrains the
identification of the dynamical model f . Asymptotically, the
proposed procedure would be similar to a weighted sum of
loss (18) computed for different values of n, which have
been proposed for the data-driven identification of governing
equations in the noise-free case [12].

Algorithm 1: Random-n-step-ahead training.
Result: The set of parameters {θ,φ} of the learnt

model.
Inputs: x0:T , z0, R, the initial values of {θ,φ},
n-step-ahead max, n iteration max;

iter = 0;
while iter < n iteration max do

t = 0;
n-step-ahead = randint(1,n-step-ahead max);
while t < k − n do

if t < n-step-ahead −2 then
n = 1;

else
n = n-step-ahead;

zfk+n = Fn(zk);
df
k+n = MLP var dyn(zk,Fn(zk));
pθ(zk+n|zk) = N (zfk+n,d

f
k+n);

Calculate qφ(zk+n|zfk+n,x0:T );
Sample zk+n ∼ qφ(zk+n|zfk+n,x0:T );
pθ(xk+n|zk+n) = N (H(zk+n),R);

Calculate loss;
Optimise loss w.r.t. {θ,φ};

G. Initialisation by optimisation

In this section, we present the initialisation technique used
in the experiments in this paper. Although this technique is
not compulsory, it improves the stability of the training.

To calculate the state of the system at any time k, we need
both the true dynamics and the precise initial condition z0. If
we use DAODEN, we also have to initialise hf

0 and hb
T+1.

The common approach is “wash out” [49], i.e. to initialise hf
0

and hb
T+1 to zeros or random values and run the LSTMs until

the effect of the initial values disappears. However, this initial-
isation technique may not be suitable for learning dynamical
systems, because during the wash out period, the network
is not stable, especially when using an explicit integration
scheme (here is the RK4). These instabilities may make the
training fail. The value of the objective function also varies
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Fig. 3: Initialization by optimisation. An auxiliary network is
added for the initialization of x0 and h0.

highly during this period, leading to an unreliable outcome of
the final loss.

Sharing a similar idea with [37] and [50], we use a different
initialisation strategy. We add two auxiliary networks, a For-
ward Auxiliary Net to provide h0 and z0, and a Backward
Auxiliary Net to provide hT+1 for the main model. Each
auxiliary network is an LSTM. We use one segment at the
beginning of the sequence and one segment at the end of the
sequence as the inputs of these networks.

V. EXPERIMENTS AND RESULTS

In this section, we report numerical experiments to evalu-
ate the proposed framework. We include a comparison with
respect to state-of-the-art methods. Beyond the application to
deterministic dynamics as considered in previous work [9],
[10], [13], [19], [21]–[24], we also investigate an application
to stochastic dynamics and a reduced-order modelling, where
observation operator H is unknown. As case-study models, we
focus on Lorenz-63 and Lorenz-96 dynamics, which provides
a benchmarking basis w.r.t. previous work [6], [7], [11], [51].

A. Benchmarking dynamical models

We report numerical experiments for three chaotic dynami-
cal systems: a Lorenz 63 system (L63) [1], a Lorenz 96 system
(L96) [52] and a stochastic Lorenz 63 system (L63s) [53].
The details of the L63, the L96 and the L63s are presented
in the Appendices. Note that these models are chaotic, i.e.
they are highly sensitive to initial conditions such that a small
difference in a state may lead to significant changes in future.
Because of this chaotic nature, applying directly standard deep
neural network architectures would not be successful.

We chose the L63 as a benchmarking system because of its
famous butterfly attractor. The system involves 3-dimensional
states, making it easy to visualise for a qualitative interpre-
tation. Experiments on the L96 provides a means to evaluate
how the proposed schemes can scale up to higher-dimensional
systems. The last system—the L63s, is considered to show the
benefit of stochastic architectures over deterministic ones.

For each system, we generated 200 sequences of length of
150 using 200 different initial conditions z0 with time step
δ = 0.01, δ = 0.05 and δ = 0.01 for the L63, L96 and
L63s, respectively4. In total, the training set of each system
comprises 30000 points. Those training sets are relatively

4This is the setting used in [51]

TABLE I: Implementations of the proposed framework.

Model name pθ(zk+1|zk) qφ(zk|zfk ,x0:T )
Objective Optimiserfunction

BINN EnKS BiNN EnKS Eq. (23) EM

DAODEN determ BiNN LSTM-AE Eq. (23) GD

DAODEN MAP BiNN LSTM-AE Eq. (21) GD

DAODEN full BiNN LSTM-VAE Eq. (18) GD

small in comparison with those in [51] (512000 points) and
[23] (40000 points). Another setting when we generated only
one long sequence of length of 4000 from one initial condition
z0, then split it into smaller segments of length of 150 also
gave similar results5 (not reported in this paper).

For the test sets, we generated 50 sequences of length of
150 using 50 different initial conditions z0 which are not
observed in the training set. Let us recall that the true hidden
states z0:T of sequences are never used during the training
phase, however, they are used in the test phase to give a
quantitative evaluation. As in [19], [21]–[24], we first consider
an experimental setting whereH is an identity operator, and εk
a zero-mean Gaussian white noise. We tested several signal-
to-noise ratio values r = stdε

stdz
. Then we tested the proposed

framework on a setting where H is unknown, as in [51].

B. Baseline schemes

In the reported experiments, we considered different state-
of-the-art schemes for benchmarking purposes, namely the
Analog Data Assimilation (AnDA) [7], the Sparse Identifica-
tion of Nonlinear Dynamics (SINDy) [8], the Bilinear Neural
Network (BiNN) [11], and the Latent ODE [37], the latter
being among the state-of-the-art schemes in the deep learning
literature. As explained earlier in this paper, regardless of the
network architecture, as long as the objective function does
not take into account the fact that the observations are noisy
and potentially partial, the method would not work. BiNN
and Latent ODE embed the true solution of the L63 and the
L96. Under ideal conditions, they should work as well as other
NN-based ODE models (such as those in [12], [13], [35], etc.)
do. The difference between BiNN and Latent ODE is BiNN
uses an explicit integration scheme (the RK4), while Latent
ODE uses a black-box ODE solver. Latent ODE also uses
an additional network to infer the initial condition z0. Since
VRNN [42] and SRNN [43] are not designed for dynamical
system identification (no autonomous dynamics in the hidden
space), we do not consider these architectures in this paper.

C. Instances of the proposed framework

We synthesise in Table. I the different configurations of the
proposed framework that we implemented in our numerical
experiments. We may point out that BiNN EnKS configura-
tion is similar to [24]. All configurations use a BiNN with
a fourth-order Runge-Kutta scheme to parameterise Fn. As

5This is the setting used in [7], [10], [23] [24]
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presented above, other architectures can also be used to pa-
rameterise Fn, we choose BiNN to highlight the performance
of learning dynamical systems with and without inference
schemes (by comparing the performance of BiNN and that
of models following the proposed framework). The hyper-
parameters of each model are presented in the Appendices. We
provide the code to reproduce the result presented in this pa-
per at: https://github.com/CIA-Oceanix/DAODEN. Interested
users are highly encouraged to try those models on different
dynamical systems or to replace the dynamical sub-module
by different learning methods to see the improvement of its
performance on noisy and partial observations.

In this paper, unless specified otherwise n-step-ahead max
parameter was set to 4 for DAODEN models and 1 for baseline
models (1-step-ahead is the default setting in the original
papers of those methods). As in [24], for BiNN EnKS, we
suppose that we know R. However, for DAODEN, we do not
need the exact value of R, when using a fixed value of R that
was from 1 to 2 times larger than the true value of R, the
results were similar.

D. Evaluation metrics

We evaluate both the short-term and long-term performance
of the learnt models using the following metrics:
• The Root Mean Square Error (RMSE) of the short-term

forecast at tn = t0 + n× δ:

en =

√√√√ 1

n

n∑
k=1

(zpredk − ztruek )2 (24)

with zpredk
∆
= Fk(z0) and z0 is the first state of each

sequence in the test set.
• The reconstruction capacity given the observations, de-

noted as rec:

rec =

√√√√ 1

T

T∑
k=0

(z∗k − ztruek )2 (25)

with z∗k = E
[
qφ(zk|zfk ,x0:T )

]
.

• The first time (in Lyapunov unit) the RMSE reaches half
of the standard deviation of the true system, denoted as
π0.5.

• The capacity to maintain the long-term topology of the
system, evaluated via the first Lyapunov exponent λ1

calculated in a forecasting sequence of length of 20000
time steps, using the method presented in [54]. The true
λ1 of the L63 is 0.91 and the true λ1 of the L96 is 1.67.

For each metric, we compute the average of the results on 50
sequences in the test set.

As Lorenz dynamics may be interpreted in terms of geo-
physical dynamics, we may also give some physical interpre-
tation to the considered metrics. For example, in geosciences,
for experiments on the L96 system with δ=0.05 (correspond
to 6 hours in real-world time), e4 would relate to the precision
of a weather forecast model for the next day, π0.5 indicates
how long the forecast is still meaningful, λ1 indicates whether
a model can be used for long-term forecast such as the

simulation of climate change, and rec indicates the ability
of a model to reconstruct the true states of a system when the
observations are noisy and partial, such as reconstructing the
sea surface condition from satellite images.

E. L63 case-study

In this section we report the results for the L63 case-study.
We first assess the identification performance on noisy but
complete observations (i.e. φk is an identity matrix at all
time steps) of the L63 system, then address cases where the
observations are sampled partially, both in time and in space.

Table II shows the performance of the considered models
on noisy L63 data. We compare the performance of the
4 proposed models with the baselines’ w.r.t the short-term
prediction error and the capacity to maintain the long-term
topology. All the models based on the proposed framework
outperform the baselines by a large margin. This asserts
the ability of the proposed framework to deal with noisy
observations. In Fig. 4 we show the first component of a L63
sequence in the test set reconstructed by the inference scheme
of DAODEN determ. qφ is expected to infer a mapping that
converts data from the corrupted observation space (black
dots) to the true space of the dynamics (the red curve). In
this space, data-driven methods can successfully learn the
governing equations of the system. The reconstructed sequence
is very close to the true sequence.

At first glance, we can see that no model is better than all
the others in all 4 criteria. This is aligned with the finding
of [55]. BiNN EnKS and DAODEN full have very good
forecasting scores, however, the performance of BiNN EnKS
in reconstructing the true states is not as good as DAODEN
models. The dynamics learnt by DAODEN models are also
more synchronised to the true dynamics (indicated by π0.5)
than those learnt by BiNN EnKS. This might suggest that NN-
based models (here are LSTM-AE and LSTM-VAE) can be an
alternative for classic inference schemes like EnKS, which are
among the state-of-the-art methods in data assimilation [5].

In Fig. 5, we show the attractors generated by the learnt
models. AnDA is more suitable for data assimilation than
for forecasting. When the noise level is small (r=8.5% and
r=16.7%), SINDy and BiNN can still capture the dynamics
of the system. When the noise level is significant (r=33.3%
and r=66.7%), the attactors generated by SINDy and BiNN
are distorted, which indicates that the learnt models are not
valid for long-term simulations. On the other hand, all the
models of the proposed framework successfully reconstructed
the butterfly topology of the attractor, even when the noise
level is high.

In real life applications, we cannot always measure a process
regularly with a high sampling frequency. Hence, we address
here the problem of learning dynamical systems from not only
noisy but also partial observations6. Specifically, we consider a
case study where the noisy L63 data are sampled partially, both

6The term “partial” in this context means the observations are not complete
at every time step. Some components of the observations may be missing,
in both spatial and temporal dimensions; however, all the components of
the states of the system are seen at least once. For the cases where some
components of the systems are never observed, please refer to [14], [56].
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TABLE II: Performance of models trained on noisy L63 data. For each index, the best score is marked in bold and the second
best score is marked in italic.

Model r
8.5% 16.7% 33.3% 66.7%

AnDA

e4 0.351±0.184 0.777±0.350 1.683±0.724 3.682±1.346
rec 0.416±0.019 0.941±0.037 2.134±0.076 4.876±0.168
π0.5 0.820±0.480 0.380±0.172 0.249±0.174 0.104±0.116
λ1 26.517±7.665 27.146±42.927 76.267±28.150 127.047±0.881

SINDy
e4 0.068±0.052 0.149±0.106 0.311±0.196 0.694±0.441
π0.5 0.490±0.261 0.165±0.085 0.077±0.049 0.034±0.034
λ1 0.898±0.008 0.840±0.035 0.840±0.035 nan±nan

BiNN
e4 0.045±0.030 0.119±0.085 0.283±0.185 0.684±0.408
π0.5 3.608±1.364 2.053±0.666 0.975±0.488 0.308±0.125
λ1 0.900±0.011 0.868±0.010 0.122±0.208 -0.422±0.047

Latent-ODE
e4 0.051±0.027 0.062±0.034 0.065±0.042 0.213±0.084
π0.5 2.504±1.332 2.336±1.472 2.852±1.352 2.118±1.129
λ1 0.892±0.018 0.877±0.018 0.885±0.015 0.675±0.027

BiNN EnKS

e4 0.019±0.016 0.024±0.023 0.037±0.024 0.276±0.160
rec 0.323±0.024 0.431±0.042 0.598±0.093 1.531±0.332
π0.5 2.807±1.128 3.004±1.355 2.996±1.641 2.081±1.214
λ1 0.856±0.031 0.869±0.024 0.826±0.065 0.868±0.014

DAODEN determ

e4 0.049±0.031 0.056±0.034 0.077±0.048 0.268±0.201
rec 0.216±0.125 0.269±0.110 0.448±0.199 0.873±0.216
π0.5 3.519±1.282 3.488±1.327 3.470±1.562 1.803±1.104
λ1 0.882±0.036 0.895±0.021 0.911±0.013 0.793±0.021

DAODEN MAP

e4 0.038±0.027 0.038±0.038 0.101±0.070 0.233±0.088
rec 0.209±0.096 0.234±0.065 0.525±0.253 0.817±0.330
π0.5 3.271±1.270 3.219±1.260 2.993±1.413 2.650±1.382
λ1 0.860±0.047 0.876±0.029 0.916±0.012 0.920±0.008

DAODEN full

e4 0.023±0.015 0.027±0.016 0.072±0.045 0.187±0.127
rec 0.178±0.050 0.258±0.066 0.469±0.168 1.003±0.380
π0.5 3.533±1.139 3.496±1.215 3.426±1.512 1.897±0.918
λ1 0.869±0.036 0.858±0.028 0.881±0.024 0.884±0.013

Fig. 4: An example of the the first dimension of the L63 system
reconstructed by the inference module of DAODEN determ,
r = 33%. Given the noisy observations (black dots), inference
module qφ(zk|zfk ,x0:T ) reconstructs a clean sequence of the
hidden state (blue curve), which is very close to the true un-
known dynamic (red curve). Given this sequence, the transition
network (BiNN) can successfully learn the governing laws of
the system, as it can do under ideal conditions. The green dash
shows the forecast z∗k+1 = F1(z∗k) given the mean z∗k of qφ.

in time and in space, with a missing rate of 87.5% (see Fig.
6). For this configuration, baseline schemes do not apply. We
report in Table. III and Fig. 7 the performance of the different
configurations of the proposed framework. If the noise level is
not significantly high (r=33.3% or r=66.7%), all the models
are able to capture the dynamical characteristics of the data.

When the noise level is small, BiNN EnKS tends to perform
better than DAODEN. However, when the data are awash with
noise, BiNN EnKS does not work well anymore. On the other
hand, DAODEN models, especially DAODEN full work well
in these cases. This may come from the capacity of LSTM
architectures to capture long-term correlations in data.

F. L96 case-study

In this section we present experiments on a L96 system. The
objective is to assess how the proposed framework applies in
higher-dimensional spaces. We choose the deterministic and
the full version of DAODEN as the candidate models. The
results of models trained on noisy observations are shown
in Table. IV. DAODEN models outperform state-of-the-art
methods both in terms of short-term prediction and long-
term topology. In Fig. 8 we show the error between the true
sequence and the sequence generated by the DAODEN determ
learnt on noisy observation with r = 19.4%. Both sequences
have the same starting point.

G. L63s case-study

Whereas most related work is designed for ODE only,
(i.e. the governing equations are deterministic), the proposed
framework accounts for stochastic perturbations, hence it can
apply to Stochastic Differential Systems (SDEs). Using the
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TABLE III: Performance of models trained on noisy and partial L63 data. The data are observed partially, both in time and in
space, with a missing rate of 87.5%. For each index, the best score is marked in bold and the second best score is marked in
italic.

Model r
8.5% 16.7% 33.3% 66.7%

BiNN EnKS

e4 0.129±0.081 0.143±0.065 0.350±0.204 0.973±0.649
rec 0.721±0.204 1.062±0.401 2.342±1.622 6.675±1.410
π0.5 1.873±1.034 2.146±1.048 1.616±1.042 0.290±0.153
λ1 0.801±0.016 0.782±0.012 0.304±0.147 -1.588±0.009

DAODEN determ

e4 0.135±0.082 0.170±0.105 0.290±0.202 25.034±19.821
rec 1.300±1.525 1.448±1.332 1.985±1.474 4.222±2.191
π0.5 2.399±1.360 2.140±1.110 1.441±0.823 0.022±0.087
λ1 0.905±0.014 0.888±0.013 0.809±0.018 -0.011±0.014

DAODEN MAP

e4 0.175±0.119 0.325±0.235 0.459±0.343 9.105±7.136
rec 1.352±0.997 1.705±1.434 1.972±1.247 3.704±1.180
π0.5 2.628±1.448 1.706±1.125 1.505±0.949 0.064±0.216
λ1 0.894±0.010 0.844±0.016 0.736±0.017 0.453±0.030

DAODEN full

e4 0.089±0.062 0.158±0.104 0.162±0.104 0.254±0.142
rec 1.052±0.612 1.268±0.718 1.685±0.928 2.725±1.356
π0.5 2.590±1.193 1.943±0.904 1.984±0.949 1.347±1.014
λ1 0.892±0.011 0.846±0.013 0.859±0.013 0.720±0.019

r = 8.5% r = 16.7% r = 33.3% r = 66.7%
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Fig. 5: Attactors generated by models trained on noisy data.

stochastic Lorenz-63 system (L63s) presented in [53], we
illustrate in this experiment the ability of DAODEN full
scheme to infer stochastic governing equations from noisy
observation data. We may recall that DAODEN full scheme
embeds a parametric form of the covariance of perturbation
ωk given by (3). Note that this parametrisation is consistent
with the true parametrisation for L63s [53].

Here, we ran experiments similar to those in Section V-E

Fig. 6: An example of the the first dimension of the L63 system
reconstructed by the inference module of DAODEN determ
trained on noisy and partial data. The observations are noisy
(r = 33%) and observed partially with a missing rate of
87.5%.

r = 8.5% r = 16.7% r = 33.3% r = 66.7%
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Fig. 7: Attractors generated by models trained on noisy and
partially observed data.



11

TABLE IV: Performance of models trained on noisy L96 data.
For each index, the best score is marked in bold.

Model r
19.4% 38.8%

AnDA
e4 0.582±0.106 1.140±0.174
π0.5 1.491±0.481 0.768±0.281
λ1 53.362±0.734 92.733±0.883

SINDy
e4 0.309±0.048 0.767±0.117
π0.5 0.628±0.166 0.150±0.047
λ1 1.444±0.048 1.316±0.045

BiNN
e4 0.310±0.046 0.788±0.112
π0.5 2.503±0.565 1.111±0.274
λ1 1.409±0.019 1.041±0.016

DAODEN determ
e4 0.048±0.006 0.157±0.022
π0.5 4.790±0.960 3.178±0.779
λ1 1.624±0.022 1.601±0.023

DAODEN full
e4 0.067±0.014 0.145±0.030
π0.5 4.076±1.084 3.146±0.962
λ1 1.543±0.026 1.348±0.020

Fig. 8: The true L96 sequence (top), the sequence generated
by the model trained on noisy data with r = 19.4% (middle)
and the error between the true and the generated sequence
(bot).
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Fig. 9: Several attractors generated by the true L63s models
(top), by DAODEN determ (middle) and by DAODEN full
(bottom). The true L63s and DAODEN full system are
stochastic, hence each runtime we obtain a different sequence,
even with the same initial condition. The models were trained
on noisy observations with r = 33.3%.

using L63s datasets with an additive Gaussian noise with
r = 33.3%. We then ran the identification of governing
equations using both a deterministic parametrisation (e.g.,
BiNN EnKS and DAODEN determ) and the fully-stochastic
scheme DAODEN full. For weak stochastic perturbations,
(typically, γ larger than 8.0 in Eq. (A.3) in Appendix A),
deterministic models like BiNN EnKS or DAODEN determ
can still be able to capture the dynamics of the system (not
reported in this paper). However, when ωk plays an important
role in controlling the large-scale statistical characteristics of
the system, deterministic models fail, as illustrated in Fig. 9 for
L63s dynamics with γ = 5.0. By contrast, the fully-stochastic
model successfully uncovers the stochastic dynamics in both
situations. In Fig. 9 top, we depict four different L63s trajec-
tories from the same initial conditions. Due to the stochastic
perturbation, the trajectories may strongly differ but all show
a wide spreadout within the attractor. When considering a
deterministic model (Fig. 9 middle), the four trajectories are
strictly similar as there is no stochastic perturbation. Besides,
the deterministic model simulates trajectories trapped on one
side of the attractor, which cannot reproduce the spread of the
true model. As illustrated in Fig. 9 bottom, DAODEN full
scheme succeed in capturing this stochastic patterns by em-
bedding the stochastic factors of the system in the dispersion
matrix Qk. Using a Monte Carlo technique, as presented in
Alg. 1 in Appendix C, to forecast the state of the dynamics,
we can obtain sequences with similar characteristics to the true
L63s system.

H. Dealing with an unknown observation operator

In previous experiments, the observation operator H was
known. We may also address the situation where it is unknown.
It may for instance refer to reduced-order modelling [57],
when one looks for a lower-dimensional representation of a
higher-dimensional dynamical system.

As case-study, we consider an experimental setting with
Lorenz-63 dynamics similar to [51]. The 128-dimensional ob-
servation space derives from a 3-dimensional space, where the
system is governed by L63 ODE, according to a polynomial
of zt and z3

t with six spatial modes of Legendre coefficients
(for details, see [51]). Whereas noise-free cases were con-
sidered in [51], we report here experiments with a Gaussian
additive noise with r=19.4%. Fig. 10 shows the observations
in a high-dimensional space. The inference scheme in [51]
is a NN-based encoder, this architecture does not take into
account the sequential correlations in the data, hence when
the observations are noisy, it can not apply (because p(zt|xt)
is intractable). Moreover, [51] supposes that the time derivative
dxt
dt is observed. This assumption may not be true for many

real-life systems. Our model, on the other hand, uses a state-
space assimilation formulation. The inference scheme in our
model is a sequential model, and we do not need the time
derivative of the data, though it could be accounted for in the
observation model.

The unknown observation operator H was parameterised
by the same MLP architecture as the one used in [51]. We
run this experiment with DAODEN determ. Fig. 11 shows
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Fig. 10: Higher-dimensional Legendre observations governed
by lower-dimensional L63 dynamics. Following [51], the
observations (top right) are in a 128-dimensional space, while
L63 dynamics (bottom left) are in a 3-dimensional space. The
observation operator involves a non-linear mapping according
to Legendre polynomials [51].
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Fig. 11: Low-dimensional attractor generated by the proposed
model trained from noisy higher-dimensional Legendre obser-
vations of L63 dynamics. This attractor recovers the topology
of L63 dynamics. We let the reader refer to the main text for
details on this experiment.

that the proposed framework successfully captures the low-
dimensional attractor of the observed high-dimensional ob-
servation sequences. This is further supported by the first
Lyapunov exponent of the learnt model λ1 = 0.92, which
is close to the true value (0.91). Because there are several
possible solutions for this problem (any affine transformation
of the original L63 is a solution), the coordinates of the learnt
system are different, however, the topology is well captured.

VI. CONCLUSION

This paper introduces a novel deep learning scheme for
the identification of governing equations of a given system
from noisy and partial observation series. We combine a
Bayesian formulation of the data assimilation with state-of-
the-art deep learning architectures. Compared with related
work [23], [24], we account for stochastic dynamics rather
than only deterministic ones and derive an end-to-end archi-
tecture using a variational deep learning model, which fully

conforms to the state-space formulation considered in data
assimilation. Through numerical experiments for chaotic and
stochastic dynamics, we have demonstrated that we can extend
the observation configurations where we can recover hidden
governing dynamics from noisy and partial data w.r.t. the state-
of-the-art, including for high-dimensional systems governed
by lower-dimensional dynamics.

Beyond the generalisation of previous work through a varia-
tional Bayesian formulation, the proposed framework involves
two key contributions w.r.t. state-of-the-art data assimilation
schemes. We first show that neural network architectures bring
a new means for the parametrisation of both the dynamical
model and the inference scheme. Especially, our experiments
support the relevance of LSTM-based architectures as alter-
natives to state-of-the-art data assimilation schemes such as
Ensemble Kalman methods [20]. Future work shall further
explore these aspects and could benefit from the resulting
end-to-end architecture to improve reconstruction performance
[55]. For deep learning practitioners, our experiments point out
that assimilation schemes and random n-step-ahead forecast-
ing can be considered as regularisation techniques to prevent
overfitting. We have also shown that the stochastic implemen-
tation of the proposed framework can capture characteristics of
stochastic dynamical systems from noisy data. These results
open new research avenues for dealing with real dynamical
systems, for which the stochastic perturbations often play a
significant role in driving long-term patterns.

From a practical point of view, the results showed in this
paper suggest that although some models might be able to
discover the governing equations of an unknown dynamical
system when the data are not corrupted, one should incorporate
those models with data assimilation schemes to account for
that fact that the model may contain error, and the data are
not perfect. Other results also support the use of NN-based
method for the identification of dynamical systems.
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APPENDIX A
DYNAMICAL SYSTEMS

A. The Lorenz-63 system

The Lorenz-63 system (L63), named after Edward Lorenz,
is a 3-dimensional dynamical system that model the atmo-
spheric convection [1]. The L63 is governed by the following
ODE:

dzt,1
dt

= σ (zt,2 − zt,1)

dzt,2
dt

= (ρ− zt,3) zt,1 − zt,2

dzt,3
dt

= zt,1zt,2 − βzt,3

(A.1)

When σ = 11, ρ = 28 and β = 8/3, this system has a
chaotic behavior, with the Lorenz attractor shown in Fig. 1.
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Fig. 1: The attractor of the Lorenz–63 system when σ = 10,
ρ = 28 and β = 8/3.

Some characteristics of the L63 with the above set of
parameters are as follows:

• The system is chaotic, a minor change in the initial
condition will lead to a completely different trajectory
in long term.
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• The attractor of the L63 has a “butterfly form”, the
particles frequently change side of the attractor. The
density of the particles in two sides of the attractor is
also similar.

B. The Lorenz-96 system

The Lorenz-96 system (L96) [2] is a periodic 40-
dimensional dynamical system governed by the following
ODEs:

For i = 1, ..Nz:
dzt,i
dt

= (zt,i+1 − zt,i−2)zt,i−1 − zt,i + F (A.2)

with Nz = 40, zt,−1 = zt,Nz−1, zt,0 = zt,Nz and
zt,Nz+1 = zt,1.

We choose F = 8 to have chaotic system.

C. The stochastic Lorenz-63 system

The stochastic Lorenz-63 system (L63s) is presented in
[3]. It is a modified version of the L63 to model situations
where the large-scale characteristics of a physical event may be
changed because of accumulated perturbations in fine scales.
The governing equations of the L63s are as follow:

dzt,1 =

(
σ (zt,2 − zt,1)−

4

2γ
zt,1

)
dt

dzt,2 =

(
(ρ− zt,3) zt,1 − zt,2 −

4

2γ
zt,2

)
dt+

ρ− zt,3
γ0.5

dBt

dzt,3 =

(
zt,1zt,2 − βzt,3 −

8

2γ
zt,3

)
dt+

zt,2
γ0.5

dBt

(A.3)
with Bt a Brownian motion.

In the L63s, the noise level is controlled by γ. The data
used in this paper were generated with σ = 11, ρ = 28 and
β = 8/3 and γ = 5. With this set of parameters, the particles
are easily trapped in one side of the attractor, as shown in Fig.
9 in the paper.

APPENDIX B
MODEL SETUP

A. Models used for the L63 and the L63s

All the four models (BiNN EnKs, DAODEN determ,
DAODEN MAP and DAODEN full) use the same dynam-
mical sub-module: a BiNN. The architecture of this network
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is presented in Table. I. The terms Linear and Bilinear are for
the Linear and the Bilinear modules implemented in Pytorch.

TABLE I: Architecture of the BiNN used for the L63 and the
L63s.

Parameter Value

Number of Linear cells 1

Linear cell size [3, 3]

Linear cell activation Linear

Number of Bilinear cells 3

Bilinear cell size [3, 3, 3]

Bilinear activation Linear

For BiNN EnKS, we used the EnKS implementation sug-
gested in [4]. The size of the ensemble was choosen as 50.

As shown in Fig. 2 in the paper, the inference scheme of
DAODEN models is an LSTM-based network. The parameters
of the inference sub-module of DAODEN full is presented
in Table. II. All the encoders and the decoders are MLPs.
Similar architectures were used for DAODEN determ and
DAODEN MAP, by removing the variance parts.

TABLE II: Architecture of the inference scheme of
DAODEN full used for the L63 and the L63s.

Parameter Value

LSTM layers 2

LSTM hidden state dimension 9

MLP enc size [3, 7, 3]

MLP enc activation ReLU

MLP dec size [21, 7, 6]

MLP dec activation ReLU

B. Models used for the L96

For the L96, we used the convolutional version of BiNN,
as presented in [5].

The architecture of the inference scheme is presented in
Table. III.

TABLE III: Architecture of the inference scheme of
DAODEN determ used for the L96.

Parameter Value

LSTM layers 2

LSTM hidden state dimension 80

MLP enc size [40, 80, 40]

MLP enc activation ReLU

MLP dec size [200, 80, 40]

MLP dec activation ReLU

C. Models used for the L63 with Legendre observations

The dynamical sub-module of the DAODEN determ model
used in Section V-H is the same as the one presented in Section

B-B. The architecture of the inference scheme used in Section
V-H is presented in Table. IV.

TABLE IV: Architecture of the inference scheme of
DAODEN determ used for the L63 with Legendre observa-
tions

Parameter Value

LSTM layers 2

LSTM hidden state dimension 9

MLP enc size [128, 64, 32, 3]

MLP enc activation Sigmoid

MLP dec size [21, 32, 64, 128]

MLP dec activation Sigmoid

APPENDIX C
SIMULATION OF STOCHASTIC DYNAMICS

To simulate a stochastic sequence given the learnt stochastic
model (F and MLP var dyn in the case of DAODEN full), we
use the following algorithm:

Algorithm 1: Generate stochastic sequence
Result: A sequence S of length N , generated by the

model {F ,MLP var dyn}, starting form the
initial condition x0.

Inputs: N , F , MLP var dyn, x0;
x = x0;
S = list();
t = 0;
while t < N do

µ = F1(x);
ddyn =MLP var dyn(x);
x ∼ N (µ,ddynI);
S.append(x);
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[3] B. Chapron, P. Dérian, E. Mémin, and V. Resseguier, “Large-scale flows
under location uncertainty: a consistent stochastic framework,” Quarterly
Journal of the Royal Meteorological Society, vol. 144, no. 710, pp. 251–
260, 2018.

[4] G. Evensen and P. J. van Leeuwen, “An Ensemble Kalman Smoother
for Nonlinear Dynamics,” Monthly Weather Review, vol. 128, no. 6, pp.
1852–1867, Jun. 2000.

[5] M. Bocquet, J. Brajard, A. Carrassi, and L. Bertino, “Bayesian inference
of chaotic dynamics by merging data assimilation, machine learning and
expectation-maximization,” Foundations of Data Science, vol. 2, no. 1,
pp. 55–80, 2020, arXiv: 2001.06270.


