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In this paper, we design a robust stabilizing controller for a system composed of two sets of linear heterodirectional hyperbolic PDEs, with actuation at one boundary of one of the PDEs, and couplings at the middle boundary with ODEs in a PDE-ODE-PDE configuration. The system is underactuated since only one of the PDE systems is actuated. The design approach employs a backstepping transformation to move the undesired system couplings to the proximal boundary (where the actuation is located). We can then express this target system as a time-delay neutral system for which we can design an appropriate control law to obtain an exponentially stable target system.

I. INTRODUCTION

W E consider an interconnection of two sets of first- order linear hyperbolic Partial Differential Equations (PDE) coupled at their boundaries with Ordinary Differential Equations (ODE). For this problem, actuation acts only at one boundary of the first set of PDEs, which we will call the proximal boundary of the proximal PDEs. The proximal PDEs are coupled at their distal boundary with ODEs and a second set of PDEs, referred to as the distal PDEs.

The stabilization of interconnections of ODEs and PDEs has been the topic of numerous contributions since backstepping was first employed to re-interpret the delay-compensating Finite Spectrum Assignment controller in [START_REF] Krstic | Backstepping boundary control for firstorder hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF]. More involved interconnections have gradually been tackled through this method: non-linear ODEs with delays [START_REF] Bekiaris-Liberis | Nonlinear control under nonconstant delays[END_REF], ODEs coupled with a beam [START_REF] Wu | Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems[END_REF] or a heat equation [START_REF] Tang | State and output feedback boundary control for a coupled pde-ode system[END_REF]. Several contributions deal with the stabilization of coupled hyperbolic PDEs with ODEs in either a PDE-ODE structure [START_REF] Di Meglio | Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems[END_REF], [START_REF] Auriol | Delay-robust stabilization of a hyperbolic PDE-ODE system[END_REF] or an ODE-PDE-ODE structure [START_REF] Wang | Control of a 2× 2 coupled linear hyperbolic system sandwiched between 2 ODEs[END_REF], [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF]. The systems considered here arise when there is a lumped element in an otherwise distributed system such as heavy chain systems [START_REF] Petit | Flatness of heavy chain systems[END_REF] or the Rijke tube [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE Rijke tube model[END_REF]. Stabilizing controllers in particular instances of such systems have been designed in, e.g., [START_REF] Buisson-Fenet | Control of Piston Position in Inviscid Gas by Bilateral Boundary Actuation[END_REF], [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE Rijke tube model[END_REF]. Most generally, these systems exist in situations where long continuous structures act as conduits for mass, energy, or signal transport constrained under some speed of propagation and acted on by a distributed source, or non-linear damping, term and a single point of actuation or control. In [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE Rijke tube model[END_REF], a particular case of this problem is treated where the distal set of PDEs is disconnected through a backstepping transformation, and the proximal reflection is canceled. An extension is presented in [START_REF] Aarsnes | Delay robust control design of under-actuated PDE-ODE-PDE systems[END_REF], where the proximal PDEs feature coupling in the source terms. Using a backstepping transformation, the original system is mapped jean.auriol@l2s.centralesupelec.fr 2 Ulf Jakob F.

Aarsnes is with NORCE, Norwegian Research Centre AS, Essendrops Gate 3, 0368, Oslo, Norway. 3 Florent Di Meglio is with Centre Automatique et Systèmes, Mines ParisTech, PSL Research University, Paris, France. 4 Roman Shor is with University of Calgary, Department of Chemical and Petroleum Engineering, Calgary, Canada. 4)- [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE Rijke tube model[END_REF].

into a target delay system where stability is checked by Linear Matrix Inequality (LMI) conditions. In this paper, we consider the more general case where we allow coupling in the source terms of both sets of PDEs and with less stringent conditions on the ODE. The main contribution is a robust stabilizing control law that relies on an easily computable stabilizability condition, analogous to that of a finite-dimensional linear system. The present result extends the results from [START_REF] Auriol | Delay-robust stabilization of an n + m PDE-ODE system[END_REF], [START_REF] Auriol | Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems[END_REF] and [START_REF] Aarsnes | Delay robust control design of under-actuated PDE-ODE-PDE systems[END_REF]. However, contrary to [START_REF] Auriol | Delay-robust stabilization of an n + m PDE-ODE system[END_REF], only one PDE is actuated, which means that the system under consideration is underactuated. The presence of an ODE between the PDEs-subsystems is a major difference with [START_REF] Auriol | Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems[END_REF]. The specific location of this ODE (sandwiched between two PDEs) and the in-domain couplings inside the PDEs can create unstable loops that do not appear in [START_REF] Aarsnes | Delay robust control design of under-actuated PDE-ODE-PDE systems[END_REF] and [START_REF] Auriol | Delay-robust stabilization of an n + m PDE-ODE system[END_REF]. Then, although the proposed approach uses similar tools (backstepping transformations, neutral formulation of the target system), a deeper analysis must be used to deal with these new unstable loops.

Our approach is as follows. We perform a new backstepping transformation (different from the one used in [START_REF] Aarsnes | Delay robust control design of under-actuated PDE-ODE-PDE systems[END_REF]) that 1. moves certain coupling source terms from the two PDEs systems to the proximal boundary where they are canceled, and, 2. modifies the couplings between the ODE and the PDEs. Then, we show that the exponential stability of the resulting target system is equivalent to that of a delay equation of neutral type, which can be stabilized under a Kalman-like condition. The proposed control law is strictly proper, thus guaranteeing the existence of robustness margins. The paper is organized as follows. In Section II, we describe the control problem and introduce the notations for the rest of the paper. The backstepping transformation is derived in Section III. The system is then cast as a delay system in Section IV, and the stabilizing control law is given in Section V. Finally, some simulation results are given in Section VI.

II. PROBLEM FORMULATION

A. Definitions and notations

In this section, we define the various notations used in the rest of the paper. For any integer p > 0, || • || R p is the classical euclidean norm on R p . We denote L 2 ([0, 1], R) the space of real-valued square-integrable functions defined on [0, 1] with the standard L 2 norm, i.e., for any

f ∈ L 2 ([0, 1], R), ||f || 2 L 2 = 1 0 f 2 (x)dx. We define χ = (L 2 ([-1, 0], R)) 2 × (L 2 ([0, 1], R)) 2 × R p , with the associated norm ||(u 1 , v 1 , u 2 , v 2 , X)|| χ = (||u 1 || 2 L 2 +||u 2 || 2 L 2 +||v 1 || 2 L 2 + ||v 2 || 2 L 2 + ||X|| 2 R p ) 1 2
. The sets T , T 1 T 2 are defined as

T = {(x, ξ) ∈ [-1, 0] × [0, 1]}, (1) 
T 1 = {(x, ξ) ∈ [-1, 0] 2 s.t. ξ ≥ x}, (2) 
T 2 = {(x, ξ) ∈ [0, 1] 2 s.t. ξ ≥ x}. (3) 
We denote L ∞ (T i ) the space of real-valued L ∞ functions on T i . For any (p, q) ∈ N, we denote M p×q (R) the set of real matrices with p rows and q columns. The symbol Id p (or Id if no confusion arises) represents the p × p identity matrix. We denote s ∈ C the Laplace variable.

B. System under consideration

In this paper, we consider a PDE-ODE-PDE interconnection, which is schematically pictured in Figure 1. The different subsystems are only coupled between them through their boundaries. The global system is given by two sets of PDEs:

∂ t u 1 (t, x) + λ 1 ∂ x u 1 (t, x) = σ + 1 (x)v 1 (t, x), ( 4 
) ∂ t v 1 (t, x) -µ 1 ∂ x v 1 (t, x) = σ - 1 (x)u 1 (t, x), (5) 
∂ t u 2 (t, x) + λ 2 ∂ x u 2 (t, x) = σ + 2 (x)v 2 (t, x), (6) 
∂ t v 2 (t, x) -µ 2 ∂ x v 2 (t, x) = σ - 2 (x)u 2 (t, x), (7) 
coupled at the boundary at x = 0

Ẋ(t) = AX(t) + B 1 u 1 (t, 0) + B 2 v 2 (t, 0), (8) 
v 1 (t, 0) = C 1 X(t) + q 11 u 1 (t, 0) + q 12 v 2 (t, 0), (9) u 2 (t, 0) = C 2 X(t) + q 21 u 1 (t, 0) + q 22 v 2 (t, 0), [START_REF] Buisson-Fenet | Control of Piston Position in Inviscid Gas by Bilateral Boundary Actuation[END_REF] and finally we have the boundary conditions

u 1 (t, -1) = ρ 1 v 1 (t, -1) + V (t), (11) 
v 2 (t, 1) = ρ 2 u 2 (t, 1). (12) 
The scalar PDE states (u 

A ∈ M p×p (R), B 1 ∈ M p×1 (R), B 2 ∈ M p×1 (R), C 1 ∈ M 1×p (R), C 2 ∈ M 1×p (R). The function V (t)
is the control input. The subsystem (4)-(5) will be referred to as the proximal PDEs, while the subsystem (6)- [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] will be referred to as the distal PDEs. The initial condition ((u i ) 0 , (v i ) 0 , X 0 ) lies in χ and we consider weak solutions of (4)- [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE Rijke tube model[END_REF]. Such a system is well-posed [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF]. This interconnected system features multiple couplings that can cause instabilities (in domain couplings, boundary couplings, unstable ODE). In what follows, for each set of PDEs, we denote τ i = 1 λi + 1 µi , as the sum of the transport times in each direction.

Although the proximal subsystem is fully actuated at the boundary x = -1, the system ( 4)-( 7) can be considered as an underactuated PDE-ODE system. The underactuation naturally arises when performing the change of variables x = -x on the distal subsystem. Then, system (4)-( 10) rewrites as a PDE-ODE system where the PDE is composed of two leftward convecting equations and two rightward convecting ones. As only one of the rightward convecting equations is actuated (contrary to [START_REF] Auriol | Delay-robust stabilization of an n + m PDE-ODE system[END_REF] where all the equations propagating in one direction are actuated), the system can be said underactuated. However, system (4)-( 10) is a specific case of underactuated system as it presents a cascade structure between the different subsystems that simplifies its stabilization. See also the discussion in [START_REF] Aarsnes | Delay robust control design of under-actuated PDE-ODE-PDE systems[END_REF].

C. Stabilization problem and robustness aspects

The objective of this paper is to design a control law that guarantees the stabilization of the state (u i , v i , X) in the sense of the χ-norm. To design such a control law, we make the following assumption.

Assumption 1: The boundary couplings ρ 2 and q 21 satisfy, ρ 2 = 0 and q 21 = 0 . The first condition given in this Assumption is a consequence of the choice of the target system and backstepping transformation we make in this paper. However, we believe that the method described in this paper may be adjusted for the case ρ 2 = 0 following [START_REF] Coron | Local exponential H 2 stabilization of a 2× 2 quasilinear hyperbolic system using backstepping[END_REF]. The condition (q 21 = 0) limits us to a specific class of systems, where q 21 = 0 requires a different approach, such as [START_REF] Bou Saba | Strictly proper control design for the stabilization of 2 × 2 linear hyperbolic ODE-PDE-ODE systems[END_REF] or a multi-step approach [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF].

Besides, considering the robustness aspects, it has been shown in [START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF] that a necessary condition to guarantee the existence of robustness margins for the closed-loop system is that the open-loop transfer function must have a finite number of poles in the closed right half-plane. For the class of system we consider in this paper, using the condition given in [START_REF] Auriol | Delay-robust stabilization of an n + m PDE-ODE system[END_REF], it means that the open-loop PDE system must be exponentially stable in the absence of the ODE and of in-domain coupling terms. This means that the 'principal part' of the system (4)-( 12) must generate an exponentially stable semigroup. In the absence of the ODE and in-domain couplings (i.e. σ ± i ≡ 0, i ∈ {1, 2}), using the method of characteristics, we obtain

u 1 (t, 0) = ρ 1 q 11 u 1 (t -τ 1 , 0) + ρ 1 q 12 v 2 (t -τ 1 , 1), (13) v 2 (t, 1) = ρ 2 q 21 u 1 (t -τ 2 , 0) + ρ 2 q 22 v 2 (t -τ 2 , 1). (14)
Using the transport structure of ( 4)- [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE Rijke tube model[END_REF] (in the absence of indomain coupling and of the ODE), it can easily be seen that the exponential stability of the states u 1 (t, 0), v 2 (t, 1) is equivalent to the exponential stability of the whole system. Thus, in order to be able to design a robust feedback law for the system (4)-( 12), we need ( 13)-( 14) to be exponentially stable. More precisely, if this is not the case, the transfer function associated to ( 13)-( 14) will have an infinite number of poles in the complex right half-plane. As the in-domain couplings and the ODE terms correspond to strictly proper terms that vanish at high frequencies, this will also be the case for the open-loop transfer function of (4)-( 12) [START_REF] Auriol | Delay-robust control design for heterodirectional linear coupled hyperbolic PDEs[END_REF]. Consequently, as we want a robust control design, we are lead to the following necessary assumption.

Assumption 2: [START_REF] Auriol | Delay-robust stabilization of an n + m PDE-ODE system[END_REF] The system ( 13)-( 14) must be exponentially stable. In the case of rationally independent τ 1 and τ 2 , this is equivalent to [START_REF] Hale | Introduction to functional differential equations[END_REF] sup

θ∈[0,2π] Sp ρ 1 q 11 ρ 1 q 12 ρ 2 q 21 e iθ ρ 2 q 22 e iθ < 1, (15) 
where Sp denotes the spectral radius.

III. BACKSTEPPING TRANSFORMATIONS: REMOVAL OF IN-DOMAIN COUPLINGS

In this section, we use a backstepping transformation to simplify the structure of the system (4)-( 12) by removing most of the in-domain couplings of ( 4)- [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] and by changing the structure of the couplings between the ODE and the PDEs. This transformation is inspired by the ones given in [START_REF] Auriol | Delay-robust stabilization of a hyperbolic PDE-ODE system[END_REF], [START_REF] Auriol | Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems[END_REF], but features several differences due to the specific structure of the considered problem.

A. Transformation and target system

Let us consider the following integral transformation

α1 = u1 - 0 x (K uu 1 (x, ξ)u1(ξ) + K uv 1 (x, ξ)v1(ξ))dξ - 1 0 (F u (x, ξ)u2(ξ) + F v (x, ξ)v2(ξ))dξ + γu(x)X(t), ( 16 
)
β1 = v1 - 0 x (K vu 1 (x, ξ)u1(ξ) + K vv 1 (x, ξ)v1(ξ))dξ, (17) 
α2 = u2 - 1 x (K uu 2 (x, ξ)u2(ξ) + K uv 2 (x, ξ)v2(ξ))dξ, (18) 
β2 = v2 - 1 x (K vu 2 (x, ξ)u2(ξ) + K vv 2 (x, ξ)v2(ξ))dξ, (19) 
Y (t) = X(t) - 1 0 (Mu(ξ)u2(ξ) + Mv(ξ)v2(ξ))dξ, (20) 
where the kernels

K •• 1 belong to L ∞ (T 1 ), the kernels K •• 2 belong to L ∞ (T 2 ), the kernels F u , F v belong to L ∞ (T ). For all x ∈ [-1, 0] The function γ u (x) belongs to M 1×p (R) while for all x ∈ [0, 1] the kernels M u (x) and M v (x) belong to M p×1 (R).
All these kernels are defined below. Note that the arguments of the functions have been omitted when no confusion was possible. Although it appears to be of Fredholm type, the transformation ( 16)-(20) (provided its existence is guaranteed) is invertible. More precisely, since ( 18)-( 19) is a Volterra transformation acting on the state (u 2 , v 2 ), it is invertible [START_REF] Yoshida | Lectures on differential and integral equations[END_REF]. This means that the states u 2 , v 2 can be expressed as functions of α 2 , β 2 . Consequently, equation ( 20) is immediately invertible (as it only depends on (u 2 , v 2 )) and the state X can be expressed as a function of Y , α 2 and β 2 . Finally, the transformation ( 16)-( 17) is a Volterra transformation to which is added an affine part that only depends on X, u 2 v 2 . Using the aforementioned invertibility properties, this affine part of ( 16) can be expressed as a function of Y, α 2 and β 2 . Thus, due to [START_REF] Yoshida | Lectures on differential and integral equations[END_REF], the states u 1 and v 1 can be expressed as functions of α 1 , β 1 , Y, α 2 and β 2 . Consequently, the whole transformation ( 16)-( 20) is invertible, the inverse transformation presenting a structure similar to the one of ( 16)- [START_REF] Tang | State and output feedback boundary control for a coupled pde-ode system[END_REF]. This inverse transformation is not given here due to space restrictions. On their domain of definition, the different kernels satisfy the following set of PDEs (with i ∈ {1, 2})

λi∂xK uu i + λi∂ ξ K uu i = -σ - i (ξ)K uv i , (21) 
λi∂xK uv i -µi∂ ξ K uv i = -σ + i (ξ)K uu i , (22) 
µi∂xK vu i -λi∂ ξ K vu i = σ - i (ξ)K vv i , (23) 
µi∂xK vv i + µi∂ ξ K vv i = σ + i (ξ)K vu i , (24) 
λ1∂xF u + λ2∂ ξ F u = -σ - 2 (ξ)F v , ( 25 
)
λ1∂xF v -µ2∂ ξ F v = -σ + 2 (ξ)F u , ( 26 
) λ1γ u (x) = -γu(x)A + µ1K uv 1 (x, 0)C1 + λ2F u (x, 0)C2, (27) λ2M u (x) = -σ - 2 Mv(x) + ĀMu(x) + B1F u (0, x), (28) 
µ2M v (x) = σ + 2 Mu(x) -ĀMv(x) -B1F v (0, x), (29) 
with the boundary conditions

K uv i (x, x) = - σ + i λi + µi , K vu i (x, x) = σ - i λi + µi , ( 30 
)
K uu 2 (x, 1) = µ2 λ2 ρ2K uv 2 (x, 1), K vv 1 (x, 0) = 0, (31) 
K vv 2 (x, 1) = λ2 ρ2µ2 K vu 2 (x, 1), (32) 
K uu 1 (x, 0) = 1 λ1 (λ2q21F u (x, 0) + µ1q11K uv 1 (x, 0) -γu(x)B1), (33) 
F u (0, ξ) = 1 q21 (K uu 2 (0, ξ) -q22K vu 2 (0, ξ)), (34) 
F v (0, ξ) = 1 q21 (K uv 2 (0, ξ) -q22K vv 2 (0, ξ)), (35) 
F u (x, 1) = µ2 λ2 ρ2F v (x, 1), (36) 
F v (x, 0) = 1 µ2 (µ1q12K uv 1 (x, 0) + λ2q22F u (x, 0) -γu(x)B2), (37) 
γu(0) = 1 q21 C2, Mu(0) = 0, Mv(0) = -B2 µ2 , (38) 
where we have used the fact that ρ 2 and q 21 are not equal to zero (Assumption 1) and where we set

Ā = A -1 q21 B 1 C 2 .
Provided that the set of equations ( 21)-(38) admits a unique solution (which will be assessed in the next section), we can show that ( 16)-( 20) maps the original system ( 4)-( 12) to the following target system:

∂ t α 1 (t, x) + λ 1 ∂ x α 1 (t, x) = 0, ( 39 
) ∂ t β 1 (t, x) -µ 1 ∂ x β 1 (t, x) = λ 1 K vu 1 (x, 0)u 1 (t, 0), ( 40 
) ∂ t α 2 (t, x) + λ 2 ∂ x α 2 (t, x) = 0, (41) ∂ t β 2 (t, x) -µ 2 ∂ x β 2 (t, x) = 0, (42) 
with the boundary conditions

α 1 (t, -1) = ρ 1 β 1 (t, -1) + V (t) + I 1 [u 1 , v 1 , u 2 , v 2 , X], (43) 
Ẏ (t) = ĀY (t) + B 1 α 1 (t, 0) + B2 α 2 (t, 1) (44) β 1 (t, 0) = q 11 α 1 (t, 0) + q 12 β 2 (t, 0) (45) + (C 1 -q 11 γ u (0))X(t) + I 2 [u 2 , v 2 ]
(46) α 2 (t, 0) = q 21 α 1 (t, 0) + q 22 β 2 (t, 0), (47)

β 2 (t, 1) = ρ 2 α 2 (t, 1), (48) 
where

B2 = λ 2 M u (1) -µ 2 ρ 2 M v (1)
and

I 1 [u 1 , v 1 , u 2 , v 2 , X] = γ u (-1)X(t) - 0 -1 (K uu 1 (-1, ξ) -ρ 1 K vu 1 (-1, ξ))u 1 (t, ξ)dξ - 0 -1 (K uv 1 (-1, ξ) -ρ 1 K vv 1 (-1, ξ))v 1 (t, ξ)dξ - 1 0 F u (-1, ξ)u 2 (t, ξ) + F v (-1, ξ)v 2 (t, ξ)dξ. ( 49 
) I 2 [u 2 , v 2 ] = 1 0 (q 11 F u (0, ξ) + q 12 K vu 2 (0, ξ))u 2 (t, ξ)dξ + 1 0 (q 11 F v (0, ξ) + q 12 K vv 2 (0, ξ))v 2 (t, ξ)dξ. (50) 
The target system (39)-(48) still contains some terms from the original system (the terms u 1 (t, 0) in equations ( 40) and ( 46) and the integral terms I 1 and I 2 in the boundary conditions ( 43), ( 46)). This is not standard as target systems do not usually contain functions that depend on the original state. These terms could have been expressed in terms of the states α i , β i , Y by using the inverse of the transformation ( 16)- [START_REF] Tang | State and output feedback boundary control for a coupled pde-ode system[END_REF]. As it will appear in the next sections, this is not necessary for the design of a stabilizing control law, as these terms will somehow be cancelled by the actuation. Finally, due to the boundedness and the invertibility of the transformation ( 16)-( 20), the target system and the original system have equivalent stability properties for the norm χ. Note that this target system is different from the ones considered in [START_REF] Auriol | Delay-robust stabilization of an n + m PDE-ODE system[END_REF] and [START_REF] Aarsnes | Delay robust control design of under-actuated PDE-ODE-PDE systems[END_REF]. In particular, the ODE (44) now depends on α 1 (t, 0) and α 2 (t, 1) (and not on β 2 (t, 0)). Moreover, unlike [START_REF] Auriol | Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems[END_REF], only one transformation is required to obtain the target system. The advantage of the target system (39)-( 48) is that we have a clear path between the actuation and the 'ODE-distal PDEs' subsystem.

B. Well-posedness of the system (30)-(38)

In this section, we prove the well-posedness of the system (30)-(38). We have the following lemma.

Lemma 1: Consider system (30)-( 38). There exist a unique solution

K •• 1 in L ∞ (T 1 ), K •• 2 in L ∞ (T 2 ), F u , F v in L ∞ (T ) and γ u , M u , M v , differentiable vectors.
Proof: Due to space restrictions, we only give a sketch of the proof. The kernels K •• 2 satisfy independent equations. Using [START_REF] Coron | Local exponential H 2 stabilization of a 2× 2 quasilinear hyperbolic system using backstepping[END_REF], we immediately have the existence of these kernels on their corresponding domain of definition. Consider the kernels F u and F v . Note that the boundary conditions (34)-( 35) are now perfectly defined. Let us consider the rectangular domain [START_REF] Di Meglio | Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems[END_REF]Theorem 3.2] we can prove that (25)-( 26) admit a unique solution on R u . This allows us to compute the kernels F u and F v on the line x = x 0 ξ of R. We now perform the change of variables ξ = 1 x0 ξ in order to express the kernels K •• 1 on the domain R b . Considering the extension of the ODE kernel γ u on the triangular domain R b , we can apply [START_REF] Di Meglio | Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems[END_REF]Theorem 3.2] to prove the existence of the kernels F u , F v on the domain R and the kernels γ u , K

R = {(x, ξ) ∈ [x 0 , 0] × [0, 1]} where x 0 = max(-1, -λ1 µ2 ). Let us define the two triangular domains R u = {(x, ξ) ∈ R, x ≥ x 0 ξ} and R l = {(x, ξ) ∈ R, x ≤ x 0 ξ}. Applying
•• 1 on the domain {(x, ξ) ∈ [x 0 , 0] 2 | x ≤ ξ}.
Iterating such an approach (on the intervals [(k + 1)x 0 , x 0 ]) we have the existence of the kernels γ u , K •• 1 , F u , F v on their corresponding domains of definition. Finally, Cauchy-Lipschitz's (aka Picard-Lindelöf's) theorem applied on (28)-(29) concludes the proof as it allows us to assess the existence of the kernels M u and M v .

IV. DELAY FORM OF THE TARGET SYSTEM

Although the structure of the target system (39)-( 48) is simpler compared to the one of the original system ( 4)-( 12), there are still multiple couplings between the different subsystems that make the analysis difficult and different from the one done in [START_REF] Aarsnes | Delay robust control design of under-actuated PDE-ODE-PDE systems[END_REF] and [START_REF] Auriol | Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems[END_REF]. In this section, we first rewrite the target system (39)-(48) as a time-delay system. We then show that, with a specific choice of structure for V , the state Y (t) actually satisfies an autonomous delay-equation of neutral type which is directly actuated. This simpler system will be of specific interest for the design of a stabilizing control.

A. A neutral system

Since (41)-( 42) are transport equations, using the method of characteristics, we immediately have for any t ≥ τ 2 :

α 2 (t, 1) = ρ 22 q 22 α 2 (t -τ 2 , 0) + q 21 α 1 (t - 1 λ 2 , 0). (51)
Similarly, we obtain for t ≥ 1 µ1 :

β 1 (t, -1) = q 11 α 1 (t - 1 µ 1 , 0) + q 12 β 2 (t - 1 µ 1 , 0) + I 3 [u 1 , v 1 , u 2 , v 2 , X], (52) 
where

I 3 [u 1 , v 1 , u 2 , v 2 , X] = (C 1 -q 11 γ u (0))X(t - 1 µ 1 ) + I 2 (u 2 (t - 1 µ 1 , •), v 2 (t - 1 µ 1 , •))dξ + 1 µ 1 0 λ 1 K vu 1 (νµ 1 -1, 0)u 1 (t -ν, 0)dν. (53) 
Inserting ( 52) into (43) we get α 1 (t, -1)

= ρ 1 q 11 α 1 (t -1 µ1 , 0) + q 12 β 2 (t -1 µ1 , 0) + V (t) + I 1 [u 1 , v 1 , u 2 , v 2 , X] + ρ 1 I 3 [u 1 , v 1 , u 2 , v 2 , X].
Using the actuation to cancel the strictly proper terms

V (t) = Ṽ (t) -I 1 [u 1 , v 1 , u 2 , v 2 , X] -ρ 1 I 3 [u 1 , v 1 , u 2 , v 2 , X], (54) 
and using the transport structure of the system, we get the following (neutral) time-delay system

α 1 (t, 0) = Ṽ (t - 1 λ 1 ) + ρ 1 ρ 2 q 12 α 2 (t -τ 1 - 1 µ 2 , 1) 
+ ρ 1 q 11 α 1 (t -τ 1 , 0), (55) 
α 2 (t, 1) =ρ 2 q 22 α 2 (t -τ 2 , 1) + q 21 α 1 (t - 1 λ 2 , 0), (56) 
Ẏ (t) = ĀY (t) + B 1 α 1 (t, 0) + B2 α 2 (t, 1), (57) 
where the last equation is just a copy of (44). The proposed actuation design does not cancel the pointwise delay terms in (55) (or equivalently ρ 1 β 1 (t, -1)). Although this would simplify equation (55), such a cancellation can be the origin of potential robustness issues (see [START_REF] Auriol | Delay-robust control design for heterodirectional linear coupled hyperbolic PDEs[END_REF] for details).

B. A time-delay equation satisfied by Y

The state Y (t) can be expressed as the solution of a timedelay equation of neutral type that does not depend on α 1 (t, 0) nor α 2 (t, 1). To do so, we will use (55)-(56) and Assumption 2. Taking the Laplace transform of (55)-(56), we obtain

(Id -F (s))(α 1 (s, 0), α 2 (s, 1)) = 1 0 e -1 λ 1 s Ṽ (s), (58) 
where F (s) is the holomorphic function defined by

F (s) = ρ 1 q 11 e -τ1s ρ 1 ρ 2 q 12 e -(τ1+ 1 µ 2 )s q 21 e -1 λ 2 s ρ 2 q 22 e -τ2s . (59) 
Let us define F 1 (s) = ρ 1 q 11 e -τ1s ρ 1 q 12 e -τ1s ρ 2 q 21 e -τ2s ρ 2 q 22 e -τ2s . Due to Assumption 2, the system (13)-( 14) is exponentially stable. Thus, the determinant of Id -F 1 (s) cannot vanish on the complex closed right half-plane [START_REF] Hale | Introduction to functional differential equations[END_REF]. Since the matrices Id -F (s) and Id -F 1 (s) have the same determinants, we obtain that Id -F (s) is invertible on the right-half plane. We can consequently invert equation (58) to obtain

D(s)α 1 (s, 0) = (1 -ρ 2 q 22 e -τ2s )e -1 λ 1 s Ṽ (s), (60) 
D(s)α 2 (s, 1) = q 21 e -( 1 λ 1 + 1 λ 2 )s Ṽ (s), (61) 
where D(s) = (1 -ρ 2 q 22 e -τ2s )(1 -ρ 1 q 11 e -τ1s )ρ 1 ρ 2 q 12 q 21 e -(τ1+τ2)s = 0. Thus, taking the Laplace transform of (57) and multiplying it by D(s), we obtain

D(s)sY (s) = ĀD(s)Y (s) + B 1 (1 -ρ 2 q 22 e -τ2s )e -1 λ 1 s Ṽ (s) + B2 q 21 e -( 1 λ 1 + 1 λ 2 )s Ṽ (s). (62) 
Note that we have omitted the effect of the initial condition of Y when taking the Laplace transform of (57) since it does not modify the stability analysis (it only impacts the transient) [START_REF] Hale | Introduction to functional differential equations[END_REF]. Due to the fact that the operator D(s) does not vanish on the right-half plane, we can define Z(s) = D(s)Y (s). We then have the detectability of Y from the new variable Z (i.e. if Z goes to zero, so does Y ), [START_REF] Hale | Introduction to functional differential equations[END_REF]. This yields

Ż(t) = ĀZ(t) + B 1 Ṽ (t - 1 λ 1 ) + B2 q 21 Ṽ (t - 1 λ 1 - 1 λ 2 ) -ρ 2 q 22 B 1 Ṽ (t - 1 λ 1 -τ 2 ). (63) 
We can now design a feedback law Ṽ to stabilize (63).

V. STABILIZATION A. Stabilization of the state Z(t) Equation ( 63) is a linear system with delayed controls. It has been broadly studied in the literature [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF], [START_REF] Zhong | Robust control of time-delay systems[END_REF]. Let us consider the following change of variables:

Z = Z + t t-1 λ 1 e (t-ν-1 λ 1 ) ĀB 1 Ṽ (ν)dν + q 21 t t-1 λ 1 -1 λ 2 e (t-ν-1 λ 1 -1 λ 2 ) Ā B2 Ṽ (ν)dν, -ρ 2 q 22 t t-1 λ 1 -τ2 e (t-ν-1 λ 1 -τ2) ĀB 1 Ṽ (ν)dν, (64)
with which we immediately obtain

Ż(t) = Ā Z(t) + (e -1 λ 1 ĀB 1 + q 21 e -( 1 λ 1 + 1 λ 2 ) Ā B2 -ρ 2 q 22 e -(τ2+ 1 λ 1 ) ĀB 1 ) Ṽ (t). (65) 
A necessary and sufficient [START_REF] Zhong | Robust control of time-delay systems[END_REF] condition for the stabilization of equation ( 65) is given by the following assumption Assumption 3: Let us define

B = e -1 λ 1 ĀB 1 -ρ 2 q 22 e -(τ2+ 1 λ 1 ) ĀB 1 + q 21 e -( 1 λ 1 + 1 λ 2 ) Ā B2 ,
where we recall that

Ā = A-1 q21 B 1 C 2 and B2 = λ 2 M u (1)- µ 2 ρ 2 M v (1) (M u
and M v being defined by ( 28)-( 29)). We assume that the pair ( Ā, B) is stabilizable, i.e. there exists K such that Ā + BK is Hurwitz.

Then, choosing

Ṽ (t) = K Z(t) = KZ(t) + K t t-1 λ 1 e (t-ν-1 λ 1 ) ĀB 1 Ṽ (ν)dν + q 21 K t t-1 λ 1 -1 λ 2 e (t-ν-1 λ 1 -1 λ 2 ) Ā B2 Ṽ (ν)dν. -ρ 2 q 22 K t t-1 λ 1 -τ2 e (t-ν-1 λ 1 -τ2) ĀB 1 Ṽ (ν)dν, ( 66 
)
where K is defined in Assumption 3, exponentially stabilizes Z(t) in (65).

B. Stabilization of (4)- [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE Rijke tube model[END_REF] This analysis enables us to state the main result of the paper. Theorem 1: Consider system (4)-( 12) and let Assumptions 1, 2 and 3 be satisfied. Let us choose the control law V (t) as,

V (t) = Ṽ (t) -I 1 [u 1 , v 1 , u 2 , v 2 , X] -ρ 1 I 3 [u 1 , v 1 , u 2 , v 2 , X], (67) 
where I 1 , I 3 and Ṽ are defined by ( 49), ( 53) and (66), respectively. Then, the zero equilibrium of the system is exponentially stable in the sense of the || • || χ norm.

Proof: We have already shown that the state Z exponentially converges to zero. Using the detectability of Y from Z, so does the state Y (and Ṽ ). Thus, using the variations of constants formula on (55)-(56) (see [START_REF] Hale | Introduction to functional differential equations[END_REF]Section 9.5]), the state (α 1 (t, 0), α 2 (t, 1)) exponentially converges to zero. The rest of the proof is a consequence of the transport structure of (39)-( 42) and of the invertibility of the transformation ( 16)- [START_REF] Tang | State and output feedback boundary control for a coupled pde-ode system[END_REF]. We first show the convergence of (α 2 , β 2 ) which implies the stabilization of (u 2 , v 2 , X) and u 1 (t, 0). Then, we consider the remaining states (u 1 , v 1 ).

Remark that the control law V (t) defined by (67) has been chosen as strictly proper (we do not cancel the PDEs reflection) which means that it is robust to small delays in the input and uncertainties on the parameters. The proof follows the same ideas as that in [START_REF] Auriol | Delay-robust control design for heterodirectional linear coupled hyperbolic PDEs[END_REF].

Remark 1: The reader should be aware that due to the proposed design, the convergence rate of the closed-loop system will be bounded by the natural dissipative rate of ( 13)-( 14) (since the system (4)-( 12) is equivalent to (55)-( 57)). Thus, even by choosing a large convergence rate for Z, the proposed design does not allow an arbitrarily large convergence rate. It is worth mentioning that such a convergence rate can be increased by canceling a part of the reflection terms in (43). However, as mentioned in [START_REF] Auriol | Delay-robust control design for heterodirectional linear coupled hyperbolic PDEs[END_REF], this may raise robustness issues.

Remark 2: In the absence of the ODE (i.e. p = 0), the proposed control law is identical to the one developed in [START_REF] Auriol | Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems[END_REF].

Remark 3: Under Assumptions 1 and 2, Assumption 3 is a necessary condition for the existence of a feedback law stabilizing system (4)- [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE Rijke tube model[END_REF]. We only give here a sketch of the proof because of space constraints. System (4)-( 12) and ( 55)-(57) have equivalent stabilizability properties since they are related by an invertible change of state and control coordinates. The latter rewrites

A(s) (α 1 (s, 0) α 2 (s, 1) Y (s)) = B(s) Ṽ (s) (68) 
in the Laplace domain, for some A, B. Straighforward computation shows that if Assumption 3 is not satisfied, then

M(s) = (A(s) B(s)) is rank deficient in the Right-Half Plane, i.e. ∃s * ∈ C -, v * , ∈ R p+2 s.t. v * M(s * ) = 0
This, in turn 1 , implies that there is no controller stabilizing (55)-(57). This means that under Assumptions 1 and 2, Assumption 3 is necessary and sufficient for the stabilization of ( 4)-( 12) with non-zero delay robustness.

VI. SIMULATION RESULTS

The proposed control law has been tested in simulations using Matlab. The PDE system is simulated using a classical finite volume method based on a Godunov scheme [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]. We 1 one can, e.g., construct an unstable output unaffected by the control input using v * and s * used 101 spatial discretization points (and a CFL number of 1). The algorithm we use to compute the different kernels is adapted from the one proposed in [START_REF] Auriol | Delay-robust stabilization of a hyperbolic PDE-ODE system[END_REF]. Using the method of characteristics, we write the integral equations associated to the kernel PDE-systems. These integral equations are solved using a fixed-point algorithm. The numerical values used are: λ 1 = µ 1 = 1, λ 2 = 2, µ 2 = 0.7, σ + 1 = 1, σ - 1 = 0.8, σ + 2 = 0.8, σ - 2 = 0.6, q 11 = 0.2, q 12 = 0.7, q 21 = 0.4, q 22 = 0.6, ρ 1 = 0.5, ρ 2 = 0.3, C 1 = (1 0) , C 2 = (0.5 1)

A = 0.1 0 0 0.2 , B 1 = 0 0.3 , B 2 = 0.2 0.2 .
These coefficients are chosen such that the ODE system and the PDEs system are independently unstable in open-loop (and remain so when interconnected). However, it can be shown after some numerical computations that Assumptions 1, 2 and 3 are satisfied. Also, an input delay of 0.25 was introduced in the control action to show the robustness of the design to small delays in the loop. We have pictured in Figure 2 the evolution of the χ-norm of the closed-loop system without any delay and with an input delay of 0.25. As expected, it exponentially converges to zero and is robust to delays. We have not plotted the open-loop behavior since it was diverging extremely fast. Note that there is a transient phase which is due to the control design we have chosen, that require to have old values of the ODE state available to obtain the control law.

The control effort has been plotted in Figure 3.

VII. CONCLUDING REMARKS In this paper we have designed a full-state feedback control law for the stabilization of an interconnected hyperbolic PDE-ODE-PDE system. The proposed approach is based on an original backstepping transformation that allows us to reformulate the stabilization problem in terms of a time-delay system of neutral type. We have given a necessary and sufficient robust stabilizability condition for the considered interconnection. Future works will attempt to generalize the proposed results to arbitrary cascade networks.
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 21 Fig. 1. Schematic representation of the considered system (4)-(12).
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 23 Fig.2. Evolution of the χ-norm of the closed-loop system without delay and with an input delay of 0.25.
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