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Robust control design of underactuated 2× 2
PDE-ODE-PDE systems

Jean Auriol1, Ulf Jakob F. Aarsnes2 , Florent Di Meglio3 , Roman Shor4

Abstract—In this paper, we design a robust stabilizing con-
troller for a system composed of two sets of linear heterodirec-
tional hyperbolic PDEs, with actuation at one boundary of one of
the PDEs, and couplings at the middle boundary with ODEs in a
PDE-ODE-PDE configuration. The system is underactuated since
only one of the PDE systems is actuated. The design approach
employs a backstepping transformation to move the undesired
system couplings to the proximal boundary (where the actuation
is located). We can then express this target system as a time-delay
neutral system for which we can design an appropriate control
law to obtain an exponentially stable target system.

Index Terms—Distributed parameter systems, Control of net-
works

I. INTRODUCTION

WE consider an interconnection of two sets of first-
order linear hyperbolic Partial Differential Equations

(PDE) coupled at their boundaries with Ordinary Differential
Equations (ODE). For this problem, actuation acts only at one
boundary of the first set of PDEs, which we will call the
proximal boundary of the proximal PDEs. The proximal PDEs
are coupled at their distal boundary with ODEs and a second
set of PDEs, referred to as the distal PDEs.

The stabilization of interconnections of ODEs and PDEs has
been the topic of numerous contributions since backstepping
was first employed to re-interpret the delay-compensating
Finite Spectrum Assignment controller in [16]. More involved
interconnections have gradually been tackled through this
method: non-linear ODEs with delays [8], ODEs coupled with
a beam [22] or a heat equation [20]. Several contributions deal
with the stabilization of coupled hyperbolic PDEs with ODEs
in either a PDE-ODE structure [14], [5] or an ODE-PDE-
ODE structure [21], [13]. The systems considered here arise
when there is a lumped element in an otherwise distributed
system such as heavy chain systems [19] or the Rijke tube [12].
Stabilizing controllers in particular instances of such systems
have been designed in, e.g., [10], [12]. Most generally, these
systems exist in situations where long continuous structures act
as conduits for mass, energy, or signal transport constrained
under some speed of propagation and acted on by a distributed
source, or non-linear damping, term and a single point of
actuation or control. In [12], a particular case of this problem
is treated where the distal set of PDEs is disconnected through
a backstepping transformation, and the proximal reflection
is canceled. An extension is presented in [1], where the
proximal PDEs feature coupling in the source terms. Using
a backstepping transformation, the original system is mapped
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Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France.
jean.auriol@l2s.centralesupelec.fr 2Ulf Jakob F.
Aarsnes is with NORCE, Norwegian Research Centre AS, Essendrops Gate
3, 0368, Oslo, Norway. 3Florent Di Meglio is with Centre Automatique et
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Fig. 1. Schematic representation of the considered system (4)-(12).

into a target delay system where stability is checked by Linear
Matrix Inequality (LMI) conditions.

In this paper, we consider the more general case where
we allow coupling in the source terms of both sets of PDEs
and with less stringent conditions on the ODE. The main
contribution is a robust stabilizing control law that relies on
an easily computable stabilizability condition, analogous to
that of a finite-dimensional linear system. The present result
extends the results from [4], [6] and [1]. However, contrary
to [4], only one PDE is actuated, which means that the
system under consideration is underactuated. The presence of
an ODE between the PDEs-subsystems is a major difference
with [6]. The specific location of this ODE (sandwiched
between two PDEs) and the in-domain couplings inside the
PDEs can create unstable loops that do not appear in [1]
and [4]. Then, although the proposed approach uses similar
tools (backstepping transformations, neutral formulation of the
target system), a deeper analysis must be used to deal with
these new unstable loops.

Our approach is as follows. We perform a new backstepping
transformation (different from the one used in [1]) that 1.
moves certain coupling source terms from the two PDEs
systems to the proximal boundary where they are canceled,
and, 2. modifies the couplings between the ODE and the
PDEs. Then, we show that the exponential stability of the
resulting target system is equivalent to that of a delay equation
of neutral type, which can be stabilized under a Kalman-like
condition. The proposed control law is strictly proper, thus
guaranteeing the existence of robustness margins. The paper
is organized as follows. In Section II, we describe the control
problem and introduce the notations for the rest of the paper.
The backstepping transformation is derived in Section III. The
system is then cast as a delay system in Section IV, and the
stabilizing control law is given in Section V. Finally, some
simulation results are given in Section VI.

II. PROBLEM FORMULATION

A. Definitions and notations
In this section, we define the various notations used in

the rest of the paper. For any integer p > 0, || · ||Rp is



the classical euclidean norm on Rp. We denote L2([0, 1],R)
the space of real-valued square-integrable functions de-
fined on [0, 1] with the standard L2 norm, i.e., for any
f ∈ L2([0, 1],R), ||f ||2L2 =

∫ 1

0
f2(x)dx. We define χ =

(L2([−1, 0],R))2× (L2([0, 1],R))2×Rp, with the associated
norm ||(u1, v1, u2, v2, X)||χ = (||u1||2L2 + ||u2||2L2 + ||v1||2L2 +

||v2||2L2 + ||X||2Rp)
1
2 . The sets T , T1 T2 are defined as

T = {(x, ξ) ∈ [−1, 0]× [0, 1]}, (1)
T1 = {(x, ξ) ∈ [−1, 0]2 s.t. ξ ≥ x}, (2)
T2 = {(x, ξ) ∈ [0, 1]2 s.t. ξ ≥ x}. (3)

We denote L∞(Ti) the space of real-valued L∞ functions
on Ti. For any (p, q) ∈ N, we denote Mp×q(R) the set of
real matrices with p rows and q columns. The symbol Idp
(or Id if no confusion arises) represents the p × p identity
matrix. We denote s ∈ C the Laplace variable.

B. System under consideration
In this paper, we consider a PDE-ODE-PDE interconnec-

tion, which is schematically pictured in Figure 1. The different
subsystems are only coupled between them through their
boundaries. The global system is given by two sets of PDEs:

∂tu1(t, x) + λ1∂xu1(t, x) = σ+
1 (x)v1(t, x), (4)

∂tv1(t, x)− µ1∂xv1(t, x) = σ−1 (x)u1(t, x), (5)
∂tu2(t, x) + λ2∂xu2(t, x) = σ+

2 (x)v2(t, x), (6)
∂tv2(t, x)− µ2∂xv2(t, x) = σ−2 (x)u2(t, x), (7)

coupled at the boundary at x = 0

Ẋ(t) = AX(t) +B1u1(t, 0) +B2v2(t, 0), (8)
v1(t, 0) = C1X(t) + q11u1(t, 0) + q12v2(t, 0), (9)
u2(t, 0) = C2X(t) + q21u1(t, 0) + q22v2(t, 0), (10)

and finally we have the boundary conditions

u1(t,−1) = ρ1v1(t,−1) + V (t), (11)
v2(t, 1) = ρ2u2(t, 1). (12)

The scalar PDE states (u1, v1) are evolving in {(t, x) s.t. t >
0, x ∈ [−1, 0]} while the states (u2, v2) are evolving
in {(t, x) s.t. t > 0, x ∈ [0, 1]}. The ODE state X belongs
to Rp (where p ∈ N\{0}). We assume that the transport
velocities satisfy −µi < 0 < λi (where i is either 1 or 2).
Note that the two subsystems can have identical velocities.
The in-domain coupling terms σ+

i and σ−i are continuous
functions. The different boundary couplings are constant. We
have A ∈ Mp×p(R), B1 ∈ Mp×1(R), B2 ∈ Mp×1(R),
C1 ∈ M1×p(R), C2 ∈ M1×p(R). The function V (t) is the
control input. The subsystem (4)-(5) will be referred to as the
proximal PDEs, while the subsystem (6)-(7) will be referred to
as the distal PDEs. The initial condition ((ui)0, (vi)0, X0) lies
in χ and we consider weak solutions of (4)-(12). Such a system
is well-posed [7]. This interconnected system features multiple
couplings that can cause instabilities (in domain couplings,
boundary couplings, unstable ODE). In what follows, for each
set of PDEs, we denote τi = 1

λi
+ 1

µi
, as the sum of the

transport times in each direction.
Although the proximal subsystem is fully actuated at the

boundary x = −1, the system (4)-(7) can be considered as an
underactuated PDE-ODE system. The underactuation naturally
arises when performing the change of variables x̄ = −x on

the distal subsystem. Then, system (4)-(10) rewrites as a PDE-
ODE system where the PDE is composed of two leftward
convecting equations and two rightward convecting ones. As
only one of the rightward convecting equations is actuated
(contrary to [4] where all the equations propagating in one
direction are actuated), the system can be said underactuated.
However, system (4)-(10) is a specific case of underactuated
system as it presents a cascade structure between the differ-
ent subsystems that simplifies its stabilization. See also the
discussion in [1].

C. Stabilization problem and robustness aspects
The objective of this paper is to design a control law that

guarantees the stabilization of the state (ui, vi, X) in the sense
of the χ-norm. To design such a control law, we make the
following assumption.

Assumption 1: The boundary couplings ρ2 and q21 satisfy,
ρ2 6= 0 and q21 6= 0 .
The first condition given in this Assumption is a consequence
of the choice of the target system and backstepping transfor-
mation we make in this paper. However, we believe that the
method described in this paper may be adjusted for the case
ρ2 = 0 following [11]. The condition (q21 6= 0) limits us to a
specific class of systems, where q21 = 0 requires a different
approach, such as [9] or a multi-step approach [13].

Besides, considering the robustness aspects, it has been
shown in [18] that a necessary condition to guarantee the
existence of robustness margins for the closed-loop system
is that the open-loop transfer function must have a finite
number of poles in the closed right half-plane. For the class
of system we consider in this paper, using the condition
given in [4], it means that the open-loop PDE system must
be exponentially stable in the absence of the ODE and of
in-domain coupling terms. This means that the ‘principal
part’ of the system (4)-(12) must generate an exponentially
stable semigroup. In the absence of the ODE and in-domain
couplings (i.e. σ±i ≡ 0, i ∈ {1, 2}), using the method of
characteristics, we obtain

u1(t, 0) = ρ1q11u1(t− τ1, 0) + ρ1q12v2(t− τ1, 1), (13)
v2(t, 1) = ρ2q21u1(t− τ2, 0) + ρ2q22v2(t− τ2, 1). (14)

Using the transport structure of (4)-(12) (in the absence of in-
domain coupling and of the ODE), it can easily be seen that the
exponential stability of the states u1(t, 0), v2(t, 1) is equivalent
to the exponential stability of the whole system. Thus, in
order to be able to design a robust feedback law for the
system (4)-(12), we need (13)-(14) to be exponentially stable.
More precisely, if this is not the case, the transfer function
associated to (13)-(14) will have an infinite number of poles
in the complex right half-plane. As the in-domain couplings
and the ODE terms correspond to strictly proper terms that
vanish at high frequencies, this will also be the case for the
open-loop transfer function of (4)-(12) [3]. Consequently, as
we want a robust control design, we are lead to the following
necessary assumption.

Assumption 2: [4] The system (13)-(14) must be exponen-
tially stable. In the case of rationally independent τ1 and τ2,
this is equivalent to [15]

sup
θ∈[0,2π]

Sp
(

ρ1q11 ρ1q12

ρ2q21eiθ ρ2q22eiθ

)
< 1, (15)

where Sp denotes the spectral radius.



III. BACKSTEPPING TRANSFORMATIONS: REMOVAL OF
IN-DOMAIN COUPLINGS

In this section, we use a backstepping transformation to
simplify the structure of the system (4)-(12) by removing most
of the in-domain couplings of (4)-(7) and by changing the
structure of the couplings between the ODE and the PDEs.
This transformation is inspired by the ones given in [5], [6],
but features several differences due to the specific structure of
the considered problem.

A. Transformation and target system
Let us consider the following integral transformation

α1 = u1 −
∫ 0

x

(Kuu
1 (x, ξ)u1(ξ) +Kuv

1 (x, ξ)v1(ξ))dξ

−
∫ 1

0

(Fu(x, ξ)u2(ξ) + F v(x, ξ)v2(ξ))dξ + γu(x)X(t), (16)

β1 = v1 −
∫ 0

x

(Kvu
1 (x, ξ)u1(ξ) +Kvv

1 (x, ξ)v1(ξ))dξ, (17)

α2 = u2 −
∫ 1

x

(Kuu
2 (x, ξ)u2(ξ) +Kuv

2 (x, ξ)v2(ξ))dξ, (18)

β2 = v2 −
∫ 1

x

(Kvu
2 (x, ξ)u2(ξ) +Kvv

2 (x, ξ)v2(ξ))dξ, (19)

Y (t) = X(t) −
∫ 1

0

(Mu(ξ)u2(ξ) +Mv(ξ)v2(ξ))dξ, (20)

where the kernels K ··1 belong to L∞(T1), the kernels K ··2
belong to L∞(T2), the kernels Fu, F v belong to L∞(T ).
For all x ∈ [−1, 0] The function γu(x) belongs to M1×p(R)
while for all x ∈ [0, 1] the kernels Mu(x) and Mv(x) belong
to Mp×1(R). All these kernels are defined below. Note that
the arguments of the functions have been omitted when no
confusion was possible. Although it appears to be of Fredholm
type, the transformation (16)-(20) (provided its existence is
guaranteed) is invertible. More precisely, since (18)-(19) is
a Volterra transformation acting on the state (u2, v2), it is
invertible [23]. This means that the states u2, v2 can be
expressed as functions of α2, β2. Consequently, equation (20)
is immediately invertible (as it only depends on (u2, v2)) and
the state X can be expressed as a function of Y , α2 and β2.
Finally, the transformation (16)-(17) is a Volterra transforma-
tion to which is added an affine part that only depends on X ,
u2 and v2. Using the aforementioned invertibility properties,
this affine part of (16) can be expressed as a function of
Y, α2 and β2. Thus, due to [23], the states u1 and v1 can be
expressed as functions of α1, β1, Y, α2 and β2. Consequently,
the whole transformation (16)-(20) is invertible, the inverse
transformation presenting a structure similar to the one of (16)-
(20). This inverse transformation is not given here due to space
restrictions. On their domain of definition, the different kernels
satisfy the following set of PDEs (with i ∈ {1, 2})
λi∂xK

uu
i + λi∂ξK

uu
i = −σ−i (ξ)Kuv

i , (21)

λi∂xK
uv
i − µi∂ξK

uv
i = −σ+

i (ξ)Kuu
i , (22)

µi∂xK
vu
i − λi∂ξK

vu
i = σ−i (ξ)Kvv

i , (23)

µi∂xK
vv
i + µi∂ξK

vv
i = σ+

i (ξ)Kvu
i , (24)

λ1∂xF
u + λ2∂ξF

u = −σ−2 (ξ)F v, (25)

λ1∂xF
v − µ2∂ξF

v = −σ+
2 (ξ)Fu, (26)

λ1γ
′
u(x) = −γu(x)A+ µ1K

uv
1 (x, 0)C1 + λ2F

u(x, 0)C2, (27)

λ2M
′
u(x) = −σ−2 Mv(x) + ĀMu(x) +B1F

u(0, x), (28)

µ2M
′
v(x) = σ+

2 Mu(x) − ĀMv(x) −B1F
v(0, x), (29)

with the boundary conditions

Kuv
i (x, x) = − σ+

i

λi + µi
, Kvu

i (x, x) =
σ−i

λi + µi
, (30)

Kuu
2 (x, 1) =

µ2

λ2
ρ2K

uv
2 (x, 1), Kvv

1 (x, 0) = 0, (31)

Kvv
2 (x, 1) =

λ2

ρ2µ2
Kvu

2 (x, 1), (32)

Kuu
1 (x, 0) =

1

λ1
(λ2q21F

u(x, 0) + µ1q11K
uv
1 (x, 0)

− γu(x)B1), (33)

Fu(0, ξ) =
1

q21
(Kuu

2 (0, ξ) − q22K
vu
2 (0, ξ)), (34)

F v(0, ξ) =
1

q21
(Kuv

2 (0, ξ) − q22K
vv
2 (0, ξ)), (35)

Fu(x, 1) =
µ2

λ2
ρ2F

v(x, 1), (36)

F v(x, 0) =
1

µ2
(µ1q12K

uv
1 (x, 0) + λ2q22F

u(x, 0)

− γu(x)B2), (37)

γu(0) =
1

q21
C2, Mu(0) = 0, Mv(0) =

−B2

µ2
, (38)

where we have used the fact that ρ2 and q21 are not equal to
zero (Assumption 1) and where we set Ā = A − 1

q21
B1C2.

Provided that the set of equations (21)-(38) admits a unique
solution (which will be assessed in the next section), we can
show that (16)-(20) maps the original system (4)-(12) to the
following target system:

∂tα1(t, x) + λ1∂xα1(t, x) = 0, (39)
∂tβ1(t, x)− µ1∂xβ1(t, x) = λ1K

vu
1 (x, 0)u1(t, 0), (40)

∂tα2(t, x) + λ2∂xα2(t, x) = 0, (41)
∂tβ2(t, x)− µ2∂xβ2(t, x) = 0, (42)

with the boundary conditions

α1(t,−1) = ρ1β1(t,−1) + V (t)

+ I1[u1, v1, u2, v2, X], (43)

Ẏ (t) = ĀY (t) +B1α1(t, 0) + B̄2α2(t, 1) (44)
β1(t, 0) = q11α1(t, 0) + q12β2(t, 0) (45)

+ (C1 − q11γu(0))X(t) + I2[u2, v2] (46)
α2(t, 0) = q21α1(t, 0) + q22β2(t, 0), (47)
β2(t, 1) = ρ2α2(t, 1), (48)

where B̄2 = λ2Mu(1)− µ2ρ2Mv(1) and

I1[u1, v1, u2, v2, X] = γu(−1)X(t)

−
∫ 0

−1

(Kuu
1 (−1, ξ)− ρ1K

vu
1 (−1, ξ))u1(t, ξ)dξ

−
∫ 0

−1

(Kuv
1 (−1, ξ)− ρ1K

vv
1 (−1, ξ))v1(t, ξ)dξ

−
∫ 1

0

Fu(−1, ξ)u2(t, ξ) + F v(−1, ξ)v2(t, ξ)dξ. (49)

I2[u2, v2] =

∫ 1

0

(q11F
u(0, ξ) + q12K

vu
2 (0, ξ))u2(t, ξ)dξ

+

∫ 1

0

(q11F
v(0, ξ) + q12K

vv
2 (0, ξ))v2(t, ξ)dξ. (50)

The target system (39)-(48) still contains some terms from
the original system (the terms u1(t, 0) in equations (40)
and (46) and the integral terms I1 and I2 in the boundary
conditions (43), (46)). This is not standard as target systems
do not usually contain functions that depend on the original



state. These terms could have been expressed in terms of the
states αi, βi, Y by using the inverse of the transformation
(16)-(20). As it will appear in the next sections, this is not
necessary for the design of a stabilizing control law, as these
terms will somehow be cancelled by the actuation. Finally, due
to the boundedness and the invertibility of the transformation
(16)-(20), the target system and the original system have
equivalent stability properties for the norm χ. Note that this
target system is different from the ones considered in [4] and
[1]. In particular, the ODE (44) now depends on α1(t, 0) and
α2(t, 1) (and not on β2(t, 0)). Moreover, unlike [6], only one
transformation is required to obtain the target system. The
advantage of the target system (39)-(48) is that we have a
clear path between the actuation and the ‘ODE-distal PDEs’
subsystem.

B. Well-posedness of the system (30)-(38)
In this section, we prove the well-posedness of the system

(30)-(38). We have the following lemma.
Lemma 1: Consider system (30)-(38). There exist a unique

solution K ··1 in L∞(T1), K ··2 in L∞(T2), Fu, F v in L∞(T )
and γu,Mu,Mv , differentiable vectors.

Proof: Due to space restrictions, we only give a sketch
of the proof. The kernels K ··2 satisfy independent equations.
Using [11], we immediately have the existence of these
kernels on their corresponding domain of definition. Consider
the kernels Fu and F v . Note that the boundary conditions
(34)-(35) are now perfectly defined. Let us consider the
rectangular domain R = {(x, ξ) ∈ [x0, 0] × [0, 1]} where
x0 = max(−1,−λ1

µ2
). Let us define the two triangular domains

Ru = {(x, ξ) ∈ R, x ≥ x0ξ} and Rl = {(x, ξ) ∈ R, x ≤
x0ξ}. Applying [14, Theorem 3.2] we can prove that (25)-(26)
admit a unique solution on Ru. This allows us to compute the
kernels Fu and F v on the line x = x0ξ ofR. We now perform
the change of variables ξ̄ = 1

x0
ξ in order to express the kernels

K ··1 on the domain Rb. Considering the extension of the ODE
kernel γu on the triangular domain Rb, we can apply [14,
Theorem 3.2] to prove the existence of the kernels Fu, F v
on the domain R and the kernels γu,K

··
1 on the domain

{(x, ξ) ∈ [x0, 0]2 | x ≤ ξ}. Iterating such an approach (on the
intervals [(k+ 1)x0, x0]) we have the existence of the kernels
γu,K

··
1 , F

u, F v on their corresponding domains of definition.
Finally, Cauchy-Lipschitz’s (aka Picard–Lindelöf’s) theorem

applied on (28)-(29) concludes the proof as it allows us to
assess the existence of the kernels Mu and Mv .

IV. DELAY FORM OF THE TARGET SYSTEM

Although the structure of the target system (39)-(48) is
simpler compared to the one of the original system (4)-
(12), there are still multiple couplings between the different
subsystems that make the analysis difficult and different from
the one done in [1] and [6]. In this section, we first rewrite the
target system (39)-(48) as a time-delay system. We then show
that, with a specific choice of structure for V , the state Y (t)
actually satisfies an autonomous delay-equation of neutral type
which is directly actuated. This simpler system will be of
specific interest for the design of a stabilizing control.

A. A neutral system
Since (41)-(42) are transport equations, using the method of

characteristics, we immediately have for any t ≥ τ2:

α2(t, 1) = ρ22q22α2(t− τ2, 0) + q21α1(t− 1

λ2
, 0). (51)

Similarly, we obtain for t ≥ 1
µ1

:

β1(t,−1) = q11α1(t− 1

µ1
, 0) + q12β2(t− 1

µ1
, 0)

+ I3[u1, v1, u2, v2, X], (52)

where

I3[u1, v1, u2, v2, X] = (C1 − q11γu(0))X(t− 1

µ1
)

+ I2(u2(t− 1

µ1
, ·), v2(t− 1

µ1
, ·))dξ

+

∫ 1
µ1

0

λ1K
vu
1 (νµ1 − 1, 0)u1(t− ν, 0)dν. (53)

Inserting (52) into (43) we get α1(t,−1) =

ρ1

(
q11α1(t− 1

µ1
, 0) + q12β2(t− 1

µ1
, 0)
)

+ V (t) +

I1[u1, v1, u2, v2, X] + ρ1I3[u1, v1, u2, v2, X]. Using the
actuation to cancel the strictly proper terms

V (t) = Ṽ (t)− I1[u1, v1, u2, v2, X]

− ρ1I3[u1, v1, u2, v2, X], (54)

and using the transport structure of the system, we get the
following (neutral) time-delay system

α1(t, 0) =Ṽ (t− 1

λ1
) + ρ1ρ2q12α2(t− τ1 −

1

µ2
, 1)

+ ρ1q11α1(t− τ1, 0), (55)

α2(t, 1) =ρ2q22α2(t− τ2, 1) + q21α1(t− 1

λ2
, 0), (56)

Ẏ (t) =ĀY (t) +B1α1(t, 0) + B̄2α2(t, 1), (57)

where the last equation is just a copy of (44). The proposed
actuation design does not cancel the pointwise delay terms
in (55) (or equivalently ρ1β1(t,−1)). Although this would
simplify equation (55), such a cancellation can be the origin
of potential robustness issues (see [3] for details).

B. A time-delay equation satisfied by Y
The state Y (t) can be expressed as the solution of a time-

delay equation of neutral type that does not depend on α1(t, 0)
nor α2(t, 1). To do so, we will use (55)-(56) and Assumption
2. Taking the Laplace transform of (55)-(56), we obtain

(Id− F (s))(α1(s, 0), α2(s, 1)) =

(
1
0

)
e−

1
λ1
sṼ (s), (58)

where F (s) is the holomorphic function defined by

F (s) =

(
ρ1q11e−τ1s ρ1ρ2q12e−(τ1+ 1

µ2
)s

q21e−
1
λ2
s ρ2q22e−τ2s

)
. (59)

Let us define F1(s) =

(
ρ1q11e−τ1s ρ1q12e−τ1s

ρ2q21e−τ2s ρ2q22e−τ2s

)
. Due to

Assumption 2, the system (13)-(14) is exponentially stable.
Thus, the determinant of Id − F1(s) cannot vanish on the
complex closed right half-plane [15]. Since the matrices Id−
F (s) and Id− F1(s) have the same determinants, we obtain
that Id − F (s) is invertible on the right-half plane. We can
consequently invert equation (58) to obtain

D(s)α1(s, 0) = (1− ρ2q22e−τ2s)e−
1
λ1
sṼ (s), (60)



D(s)α2(s, 1) = q21e−( 1
λ1

+ 1
λ2

)sṼ (s), (61)

where D(s) = (1 − ρ2q22e−τ2s)(1 − ρ1q11e−τ1s) −
ρ1ρ2q12q21e−(τ1+τ2)s 6= 0. Thus, taking the Laplace transform
of (57) and multiplying it by D(s), we obtain

D(s)sY (s) = ĀD(s)Y (s) +B1(1− ρ2q22e−τ2s)e−
1
λ1
sṼ (s)

+ B̄2q21e−( 1
λ1

+ 1
λ2

)sṼ (s). (62)

Note that we have omitted the effect of the initial condition
of Y when taking the Laplace transform of (57) since it
does not modify the stability analysis (it only impacts the
transient) [15]. Due to the fact that the operator D(s) does
not vanish on the right-half plane, we can define Z(s) =
D(s)Y (s). We then have the detectability of Y from the new
variable Z (i.e. if Z goes to zero, so does Y ), [15]. This yields

Ż(t) = ĀZ(t) +B1Ṽ (t− 1

λ1
) + B̄2q21Ṽ (t− 1

λ1
− 1

λ2
)

− ρ2q22B1Ṽ (t− 1

λ1
− τ2). (63)

We can now design a feedback law Ṽ to stabilize (63).

V. STABILIZATION

A. Stabilization of the state Z(t)

Equation (63) is a linear system with delayed controls. It has
been broadly studied in the literature [2], [24]. Let us consider
the following change of variables:

Z̄ = Z +

∫ t

t− 1
λ1

e(t−ν− 1
λ1

)ĀB1Ṽ (ν)dν

+ q21

∫ t

t− 1
λ1
− 1
λ2

e(t−ν− 1
λ1
− 1
λ2

)ĀB̄2Ṽ (ν)dν,

− ρ2q22

∫ t

t− 1
λ1
−τ2

e(t−ν− 1
λ1
−τ2)ĀB1Ṽ (ν)dν, (64)

with which we immediately obtain
˙̄Z(t) = ĀZ̄(t) + (e−

1
λ1
ĀB1 + q21e−( 1

λ1
+ 1
λ2

)ĀB̄2

− ρ2q22e−(τ2+ 1
λ1

)ĀB1)Ṽ (t). (65)

A necessary and sufficient [24] condition for the stabilization
of equation (65) is given by the following assumption

Assumption 3: Let us define

B̄ = e−
1
λ1
ĀB1 − ρ2q22e−(τ2+ 1

λ1
)ĀB1 + q21e−( 1

λ1
+ 1
λ2

)ĀB̄2,

where we recall that Ā = A− 1
q21
B1C2 and B̄2 = λ2Mu(1)−

µ2ρ2Mv(1) (Mu and Mv being defined by (28)-(29)). We
assume that the pair (Ā, B̄) is stabilizable, i.e. there exists
K such that Ā+ B̄K is Hurwitz.

Then, choosing

Ṽ (t) = KZ̄(t) = KZ(t) +K

∫ t

t− 1
λ1

e(t−ν− 1
λ1

)ĀB1Ṽ (ν)dν

+ q21K

∫ t

t− 1
λ1
− 1
λ2

e(t−ν− 1
λ1
− 1
λ2

)ĀB̄2Ṽ (ν)dν.

− ρ2q22K

∫ t

t− 1
λ1
−τ2

e(t−ν− 1
λ1
−τ2)ĀB1Ṽ (ν)dν, (66)

where K is defined in Assumption 3, exponentially stabi-
lizes Z(t) in (65).

B. Stabilization of (4)-(12)
This analysis enables us to state the main result of the paper.
Theorem 1: Consider system (4)-(12) and let Assump-

tions 1, 2 and 3 be satisfied. Let us choose the control law
V (t) as,

V (t) = Ṽ (t)− I1[u1, v1, u2, v2, X]

− ρ1I3[u1, v1, u2, v2, X], (67)

where I1, I3 and Ṽ are defined by (49), (53) and (66),
respectively. Then, the zero equilibrium of the system is
exponentially stable in the sense of the || · ||χ norm.

Proof: We have already shown that the state Z exponen-
tially converges to zero. Using the detectability of Y from
Z, so does the state Y (and Ṽ ). Thus, using the variations
of constants formula on (55)-(56) (see [15, Section 9.5]), the
state (α1(t, 0), α2(t, 1)) exponentially converges to zero. The
rest of the proof is a consequence of the transport structure
of (39)-(42) and of the invertibility of the transformation (16)-
(20). We first show the convergence of (α2, β2) which implies
the stabilization of (u2, v2, X) and u1(t, 0). Then, we consider
the remaining states (u1, v1).

Remark that the control law V (t) defined by (67) has
been chosen as strictly proper (we do not cancel the PDEs
reflection) which means that it is robust to small delays in the
input and uncertainties on the parameters. The proof follows
the same ideas as that in [3].

Remark 1: The reader should be aware that due to the pro-
posed design, the convergence rate of the closed-loop system
will be bounded by the natural dissipative rate of (13)-(14)
(since the system (4)-(12) is equivalent to (55)-(57)). Thus,
even by choosing a large convergence rate for Z̄, the proposed
design does not allow an arbitrarily large convergence rate.
It is worth mentioning that such a convergence rate can be
increased by canceling a part of the reflection terms in (43).
However, as mentioned in [3], this may raise robustness issues.

Remark 2: In the absence of the ODE (i.e. p = 0), the
proposed control law is identical to the one developed in [6].

Remark 3: Under Assumptions 1 and 2, Assumption 3 is
a necessary condition for the existence of a feedback law
stabilizing system (4)–(12). We only give here a sketch of the
proof because of space constraints. System (4)–(12) and (55)–
(57) have equivalent stabilizability properties since they are
related by an invertible change of state and control coordinates.
The latter rewrites

A(s) (α1(s, 0) α2(s, 1) Y (s))
>

= B(s)Ṽ (s) (68)

in the Laplace domain, for some A, B. Straighforward com-
putation shows that if Assumption 3 is not satisfied, then
M(s) = (A(s) B(s)) is rank deficient in the Right-Half
Plane, i.e. ∃s∗ ∈ C−, v∗,∈ Rp+2 s.t. v∗>M(s∗) = 0 This, in
turn1, implies that there is no controller stabilizing (55)–(57).
This means that under Assumptions 1 and 2, Assumption 3 is
necessary and sufficient for the stabilization of (4)–(12) with
non-zero delay robustness.

VI. SIMULATION RESULTS

The proposed control law has been tested in simulations
using Matlab. The PDE system is simulated using a classical
finite volume method based on a Godunov scheme [17]. We

1one can, e.g., construct an unstable output unaffected by the control input
using v∗ and s∗
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Fig. 2. Evolution of the χ-norm of the closed-loop system without delay and
with an input delay of 0.25.
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Fig. 3. Evolution of the control input V in closed-loop.

used 101 spatial discretization points (and a CFL number of
1). The algorithm we use to compute the different kernels is
adapted from the one proposed in [5]. Using the method of
characteristics, we write the integral equations associated to
the kernel PDE-systems. These integral equations are solved
using a fixed-point algorithm. The numerical values used are:
λ1 = µ1 = 1, λ2 = 2, µ2 = 0.7, σ+

1 = 1, σ−1 = 0.8, σ+
2 =

0.8, σ−2 = 0.6, q11 = 0.2, q12 = 0.7, q21 = 0.4, q22 =
0.6, ρ1 = 0.5, ρ2 = 0.3, C1 = (1 0) , C2 = (0.5 1)

A =

(
0.1 0
0 0.2

)
, B1 =

(
0

0.3

)
, B2 =

(
0.2
0.2

)
.

These coefficients are chosen such that the ODE system and
the PDEs system are independently unstable in open-loop (and
remain so when interconnected). However, it can be shown
after some numerical computations that Assumptions 1, 2
and 3 are satisfied. Also, an input delay of 0.25 was introduced
in the control action to show the robustness of the design to
small delays in the loop. We have pictured in Figure 2 the
evolution of the χ-norm of the closed-loop system without
any delay and with an input delay of 0.25. As expected, it
exponentially converges to zero and is robust to delays. We
have not plotted the open-loop behavior since it was diverging
extremely fast. Note that there is a transient phase which is
due to the control design we have chosen, that require to have
old values of the ODE state available to obtain the control law.
The control effort has been plotted in Figure 3.

VII. CONCLUDING REMARKS

In this paper we have designed a full-state feedback control
law for the stabilization of an interconnected hyperbolic PDE-
ODE-PDE system. The proposed approach is based on an orig-
inal backstepping transformation that allows us to reformulate
the stabilization problem in terms of a time-delay system of
neutral type. We have given a necessary and sufficient robust
stabilizability condition for the considered interconnection.
Future works will attempt to generalize the proposed results
to arbitrary cascade networks.
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