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Abstract

The statistical analysis of counts of living organisms brings information about

the collective behavior of species (schooling, habitat preference, etc), possibly

depending on their socio-biological characteristics (aggregation, growth rate,

reproductive power, survival rate, etc). The negative binomial (NB) distribu-

tion is widely used to model such data, but the parametric approach su�ers

from an important nuisance: the visual distance between parameters can-

not be considered as a relevant distance between distributions, because these

parameters are not commensurable in general (di�erent ecological meaning,

di�erent ranges, ...). On the contrary, considering the Riemannian manifold

NB(DR) of NB distributions equipped with the Rao metrics DR, one can

compute intrinsic distances between species which can be considered as ab-

solute. Suppose now DR (A,B) is �small�; does this means that species A

and B have similar characteristics?

We �rst tackle this point by focusing on geometrical aspects of the χ2

goodness-of-�t test for distributions in NB(DR), and question its feasibility
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in connection with the position of the distributions. We afterward focus on a

kin problem: performing two-sample χ2 tests and building con�dence regions

in the same geometrical setting. Our purpose is illustrated by processing �eld

experiment data studied by Bliss and Fisher in the �fties.

Keywords: Chi square test, Fisher-Rao distance, Riemannian manifolds,

Multidimensional scaling

Notations

Let's introduce �rst some notation. Consider a Riemannian manifold M,

and a parametric curve α : [a, b]→M; its �rst derivative will be denoted α̇.

We will also consider for any θ ∈M the local norm ‖V ‖g (θ) associated with

the metrics g on the tangent space TθM :

∀V ∈ TθM, ‖V ‖g (θ) :=
√
V t.g(θ).V . (1)

A parametric probability distribution Li will be identi�ed with its coordinates

with respect to some chosen parametrization; for instance, we will write Li ≡

(φi, µi) for some negative binomial distribution. Finally, logical propositions

will be combined by using the classical connectors ∨ (or) and ∧ (and).

1. Introduction

The statistical analysis of counts of living organisms brings information

about the collective behavior of species (schooling, habitat preference, etc),

possibly associated with their socio-biological characteristics (aggregation,

growth rate, reproductive power, survival rate, etc). The negative binomial

(NB) distribution is widely used to model such data Bliss and Fisher (1953);
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O'Neill and Faddy (2003); Vaudor et al. (2011); Manté et al. (2016). It is

especially relevant for ecologists, because

1. it arises as a Gamma-Poisson mixture, whose parameters depend on the

more or less aggregative behavior of the species, and on the e�ciency

Fisher et al. (1943); Anscombe (1950); Rao (1971) of the trap used to

catch it

2. it arises as the limit distribution of the Kendall (1948) birth-and-death

model; in this setting, its parameters depend on the demography of the

species (reproductive power, mortality, immigration rate).

But while the parametric approach is quite sound from the ecological point

of view (see Manté et al. (2016) and the references therein), it su�ers from an

important nuisance: the visual distance between the parameters of several

distributions is misleading, because on the one hand it depends on the chosen

parametrization and, on the other hand, because these parameters are not

commensurable in general (di�erent ecological meaning, di�erent ranges, ...).

It is possible to remedy this drawback by using the Rao's distance.

In a seminal paper, Rao (2015) noticed that, equipped with the Fisher

information metrics denoted g (•), a family of probabilities depending on

p parameters can be considered as a p-dimensional Riemannian manifold.

The associated Riemannian (Rao's) distance between the distributions of

parameters θ1 and θ2 is given by the integral

DR
(
θ1, θ2

)
:=

� 1

0

√
γ̇t (t) .g (γ (t)) .γ̇ (t)dt (2)

where γ is a segment (minimal length geodesic curve) connecting θ1 =

γ (0) to θ2 = γ (1) and γ̇ (t) := dγ
dt

(t). As any Riemannian distance, DR
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is intrinsic (i.e. does not depend on the parametrization used). Naturally,

Rao (2015, 1989) proposed to use (2) as a distance between populations or

for Goodness-Of-Fit (GOF) testing, followed by a number of authors Carter

et al. (2009); Galanis et al. (2012); Dodson (2012); Cubedo et al. (2013); Ilea

et al. (2015); Manté and Kidé (2016); Kass (1989); Menendez et al. (1995);

Cubedo and Oller (2002). Generally, the Rao's distance between members of

a family of distributions must be obtained by numerically solving a second-

order nonlinear di�erential equation (the Euler-Lagrange equation) .

2. Few elements of Riemannian geometry

Consider the set X (M) of vector �elds on M.

De�nition 1. Berger (2003); Amari et al. (2007) A linear connection (or
covariant derivative) D on M is a bilinear map{

D : X (M)×X (M)→ X (M)

(X, Y ) 7→DXY

which is linear in X and a derivation on Y.

More concretely Amari et al. (2007), a connection on M determines, for

neighboring points p and p′, a correspondence (linear one-to-one mapping)

Ξp,p′ between the tangent spaces Tp (M) and Tp′ (M), possessing the proper-

ties above. According to the fundamental theorem of Riemannian geometry

(Berger, 2003), there is a unique symmetric connection ∇ compatible with a

given metrics g (the Levi-Civita or Riemann connection), giving in our case

the Rao's distance. It is noteworthy that, while we will work in (M,∇, g),

other statistically sound (but not Riemannian) connections can be fruitfully

considered (see Amari et al. (2007)).
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De�nition 2. Berger (2003); Gray (1998) Let γ : I →M be a curve traced
on M; γ is a geodesic with respect to ∇ if its acceleration ∇γ̇(t)γ̇ (t) is null
∀t ∈ I.

2.1. The Riemannian measure on some statistical manifold

The Riemannian measure on (M,∇, g) associated with g is dVM (θ0) :=√
det (gi j (θ0)) dθ1 · · · dθp; it has been considered from di�erent viewpoints

in the literature. Kass (1989) argued that dVM can be considered as the

uniform measure onM, since �uniform distributions on surfaces are special

cases of measures that apply equal mass to sets of equal volume, that is,

of measures that are determined by Riemannian metrics�. Alternatively,

according to Cubedo et al. (2013), g (θ0) �is a local measure of the maximum

mean value change of standardized random variables, in a neighborhood of

Lθ
0
�. Consequently, dVM (θ0) measures the generalized variance Anderson

(1984) that is encountered in some neighborhood U (θ0) of Lθ
0
. If dVM (θ0)

is large, we should expect an important heterogeneity in U (θ0) or, in other

words, a high sensibility to small variations of the parameters. Computing

the Rao's distance between randomly drawn distributions in U (θ0), we will

obtain a larger proportion of big distances than when dVM (θ0) is small, as

Lebanon (2006) pointed.

2.2. Tangent plane approximation: the χ2 GOF test

De�nition 3. Berger (2003) Let M be a Riemann manifold and x ∈ M.
The exponential map of M at x is expx : Wx → M, de�ned on some
neighborhood Wx of the origin of TxM by:

expx (V ) := αB(V ) (‖V ‖) (3)

where B (V ) is the projection of V onto the unit ball and αB(V ) is the unique
unit-speed geodesic in M such that αB(V ) (0) = x and α̇B(V ) (0) = B (V ).
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DR has been constructively de�ned by Formula 2; the following proposi-

tion shows incidentally that DR (θ1, θ2) = 0⇒ θ1 = θ2 Berger (2003).

Proposition 4. For % small enough, the exponential map at θ0 is a local
di�eomorphism such that expθ0 (B (0, %)) = BR (θ0, %) , where B (0, %) (resp.
BR (θ0, %)) is a ball of radius % of Tθ0M (resp. M).

The maximum of these values (named injectivity radius of M at θ0) is

denoted %̄ (θ0). We can always write, if θ is close to θ0:

DR

(
Lθ

0

,Lθ
)
≡ DR

(
θ0, θ

)
≈
√

t (θ0 − θ) .g (θ0) . (θ0 − θ) ≡
∥∥θ0 − θ

∥∥
g

(
θ0
)
(4)

but this result can be re�ned, thanks to the following proposition.

Corollary 5. If % is small enough (for instance: % ≤ %̄ (θ0)), the metric
sphere SR (θ0, %) := {θ ∈M : DR (θ0, θ) = %} can be isometrically identi-

�ed with the centered ellipse Eθ0 (%) of radius % := ‖θ0 − θ‖g (θ0) drawn on
Tθ0M.

As an illustration, we displayed on Figure 1 the exponential spray expθ (Eθ (%)) =

SR (θ, %) for two NB distributions (in the Chua and Ong (2013) parametriza-

tion) : θ1 = {0.7767, 11.2078} (left point, a rather aggregative distribution)

and θ2 = {10., 9.12624} (right point, a bell-shaped distribution). We can see

on this �gure that for % = 0.3 and % = 1.5, the geodesics emanating from θ2

draw circles, while the situation is very di�erent for θ1 : for % = 1.5, the ball

is dramatically anisotropic, very far from an ellipse, while for % = 0.3 it is

nearly spherical.

Consider now the application T : Θ→M associating to θ the probability

Lθ. Suppose �rst that the Fréchet- Darmois- Cramer- Rao assumptions Rao

(2015, 1966) are ful�lled by the family
{
Lθ : θ ∈ Θ

}
and, second, that θ̂N

is an unbiased �rst-order e�cient estimator of θ, based on some N -sample
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Figure 1: Sampled metric balls (50 geodesics) of radius 1.5 (curves) and 0.35 (white
contours) for two distributions of NB(DR); see comments in the text.
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obeying Lθ
0
. Then, g (θ0) ≈ V

(
θ̂N

)−1

(inverse of the variance matrix). If

in addition % ≤ %̄ (θ0), because of Corollary 5, the image T (Eθ0 (%)) can be

identi�ed with the metric sphere of radius % centered on Lθ
0
. But %̄ (θ0) is

unknown in general; so, what if
∥∥∥θ0 − θ̂N

∥∥∥
g

(θ0) is too large (� %̄ (θ0))? This

is an important issue, in connection with the χ2 GOF test (see for instance

Rao (2015); Menendez et al. (1995); Cubedo and Oller (2002); Ilea et al.

(2015)) associated with Formula 4: if a N -sample of counts stems from Lθ
0
,

N D2
R

(
θ0, θ̂N

)
should asymptotically obey χ2

(p).

3. The special case of NB(DR)

There is a large number of parametrizations for the NB distribution, and

the most classical one is probably

P (X = j; (φ, p)) =

 φ+ j − 1

φ− 1

 p
j

(1− p)φ j ≥ 0 (5)

with (φ, p) ∈ R+×]0, 1[. Fisher used the following one Fisher et al. (1943);

Bliss and Fisher (1953):

P (X = j) =
Pn

(1 + P)j+K

 φ+ j − 1

φ− 1

 (6)

with (φ,P) ∈ R+ × R+. In this formulation, specially relevant in Ecology,

the so-called �index parameter" φ (denoted K by Fisher and many other

authors) is an intrinsic parameter of the species, while P �depends on the

e�ciency of the trap� for the species (Rao, 1971). This fact was mentioned

by Fisher et al. (1943) and Anscombe (1950), who underscored that the

�e�ciency of the trap� must include time of exposure.
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Nevertheless, because of its orthogonality, we chose instead the parametriza-

tion used by Chua and Ong (2013):

P (X = j; (φ, µ)) =

 φ+ j − 1

j

 (
µ

µ+ φ

)j (
1− µ

µ+ φ

)φ
, j ≥ 0 (7)

(φ, µ) ∈ R+ × R+; here, µ denotes the mean of the distribution.

3.1. χ2 GOF testing in NB(DR)

We will now investigate the feasibility of the GOF tests: Lθ̂
?
= Lθ

0
from

a geometrical point of view. Consider as in Section 2.2 some θ0 = (φ0, µ0) ∈

Θ := R+ × R+ and, for α < 1, the ellipse Eθ0 (α,N) := Eθ0
(
χ2

(2) (α) /N
)
,

where N is the sample size and χ2
(2) (α) denotes the quantile of order α of

χ2
(2) (see Figures 4 and 8). Is its image T (Eθ0 (α,N)) a metric sphere for

usual values of α (0.1, 0.5, 0.95,...) and any Lθ
0
? If the answer is negative

for some α ∈]0, 1[, the critical locus of the GOF test (the ellipse Eθ0 (α,N)

whose interior is the acceptance region) will be anisotropic, i.e. there will be

at least a pair of probabilities
(
Lθ,Lθ

)
with identical probability of rejection

1 − α such that DR

(
Lθ

0
,Lθ
)
< DR

(
Lθ

0
,Lθ
)
. In such cases the GOF test

of level 1−α is invalid, and one should choose a greater level (Proposition 4

guaranties the existence of some maximal valid α, depending on θ0).

3.1.1. The test distributions used

We put in limelight �ve test distributions:

� �BSh� (for �bell-shaped�), which is NB (10, 144.3)

� �Moy� = NB (1.193, 87.268) is the mean of a bivariate distribution

�tting the parameters of non-aggregative species found in some habitat

Manté et al. (2016)
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Figure 2: The natural logarithm of the Riemannian measure of NB(DR) displayed in
the parametrization (7) on a neighborhood of the origin.
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� �MED�=NB (0.7767, 11.2078) is the spatial median Ser�ing (2004) of

the same sample of parameters (the left point on Figure 1)

� �Agreg�=NB (0.01, 0.1443) corresponds to a theoretical aggregative species

(�rst borderline case: φ ≈ 0+ )

� �Boundary�=NB (6, 0.05), designed for investigating the case µ ≈ 0+

(second borderline case).

These distributions are depicted from two di�erent manners: as members of

NB(DR) on Figure 2, and as probability densities on Figure 3.

Remark 1. The �rst four distributions were exempli�ed in (Manté et al., 2016,
Appendix 2), but the parametrization used was (6). One can guess half from
Figure 2 that the value at the origin of the Riemannian measure, Rm (0, 0)
cannot be consistently de�ned, as it is proven in Appendix 5.1. Note in
addition that both the borderline cases (φ ≈ 0+ and µ ≈ 0+) correspond
to situations where huge samples would be necessary to observe organisms
(very small mean count or very large number of zeroes).

3.1.2. Regularly sampled con�dence ellipses

Following Critchley and Marriott (2016), we �xed as a theoretical sample

size N = 100.

For each one of the test distributions above, we determined a set SEθ0 (α,N ;K)

ofK = 20 regularly-sampled points upon Eθ0 (α,N) ⊂ Θ, for α ∈ {0.1, 0.99}.

By �regularly-sampled�, we mean that the arc length between two neighbor

points should be approximately Length (Eθ0 (α,N)) /K, where Length (Eθ0 (α, 100))

is approximated by the Gauss-Kummer formula. Regularly-sampled ellipses

associated with BSh and α ∈ {0.1, 0.99} are represented on Figure 4.
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Figure 3: Five typical distributions (see also Figure 2). The index ∆ measures the
gap between each distribution and the closest Poisson one (see Manté (tted)), which is
superposed to the NB distribution when ∆ < 0.05; vertical bars are associated with NB
probabilities. In the case of the unique Poisson-like distribution Manté (tted),�Boundary�,
an orange curve is associated with the Poisson distribution.
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Figure 4: The unit ellipse (gray), SEθ0 (0.99, 100; 20) (black) and SEθ0 (0.1, 100; 20) in
yellow (color �gure online), for θ0 = BSh.
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Figure 5: The �BSh� distribution (processed table: ∆Exp). Left (resp. right) panel:
representation through MDS of T (SEBSh (0.1, 100; 20)) (resp. T (SEBSh (0.99, 100; 20))).
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3.1.3. Plotting χ2 spheres around reference probabilities

For each pair on points {θi, θj} : j 6= i of each SEθ0 (α,N ;K), DR (θi, θj)

was computed according to the methods detailed by Manté (tted); in addi-

tion each DR (θi, θ0) was computed too. This gave rise to a 21 × 21 table

∆ (θ0, α,N ;K) submitted to MDS. But there is no guarantee that some

∆ (θ0, α,N ;K) could be exactly represented in an Euclidean space by clas-

sical MDS (and besides by a sphere) excepted if α is small enough (Corol-

lary 5). It is thus advisable to pre-process each table before performing
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Figure 6: The �Boundary� distribution (processed table: ∆Exp). Left (resp. right) panel:
representation of T (SEBoundary (0.1, 100; 20)) (resp. T (SEBoundary (0.99, 100; 20))).
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MDS.

There are several methods for making a distance matrix like ∆ Euclidean

(i.e. �nd a close distance matrix which can be exactly represented in an

Euclidean space) - see for instance Benasseni et al. (2007). The simpler

one is the Additive Constant (AC) one Caillez (1983), consisting in adding

an optimal positive perturbation c∗ to all the extra-diagonal terms of ∆2.

But other pre-processing methods are worth considering Benasseni et al.

(2007): one can search for the smallest positive γ0 such that the power ∆γ

is Euclidean for γ ≤ γ0 Joly and Le Calvé (1986), or the smallest positive

γ∗ such that 1 − e−γ∆ is Euclidean (Exp method). It is noteworthy that

both these transformations belong to the class of Schoenberg transformations

introduced in Data Analysis by Bavaud (2011). We chose the last one, the

Exp method .

Notice now that the representation of ∆ (θ0, α,N ;K) should theoretically
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consist in a regularly K-sampled circle SC (ρ,K). What is the radius of this

circle?

Proposition 6. The representation through MDS of the sampled circle

SC (ρ,K) is SC
(

ρ√
K
, K
)
.

Proof. see Appendix 5.2

As a consequence, the representation of each ∆ (θ0, α,N ;K) had to be

compared to the circle of radius
√

χ2
(2)

(α)/N K. We gathered in Tables 1 and 2

several quality criteria for representation of con�dence ellipses through MDS.

In the cases investigated here, we found that the solution associated with the

Exp method, ∆Exp was by far the best one. In the last column of each table,

we added a visual appreciation about the sphericity of the representation

of T (SEθ0 (α,N ;K)) in the �rst principal plane of MDS: Good, Deformed

or Bad; the reader can examine such sampled metric spheres on Figures 5

and 6, or in Manté (2017). On these plots, points sampled on each ellipse

were labeled {1, · · · , 20}, while the 21st point corresponded to the reference

distribution Lθ
0
, which should theoretically occupy the center of the circle.

Clearly, for α = 0.1 (see Table 1), the representation was always rather

good (even in the case of Agreg; see also Figure 3 of Manté (2017)) and the

distortions associated with ∆Exp were much smaller than those associated

with the traditional Additive Constant method, ∆AC .

With a much lower level (α = 0.99), there were smaller discrepancies in

distortion between ∆Exp and ∆AC (see Table 2). The spheres were more or

less deformed (see the right panel of Figure 5 or Figure 2 of Manté (2017)) ,

or squarely destroyed in the case of borderline distributions like �Agreg� or

�Boundary� (see the right panel of Figure 6, or Figure 3 of Manté (2017)).
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Table 1: Quality criteria of the representation for N = 100 and α = 0.1; MedDist() denotes
the median distortion.

Distribution c∗/∆2 (%) MedDist(∆AC) MedDist(∆Exp) Spherical?

BSh 0.00615466 0.0000254661 8.18752*10^-6 G
Moy 0.00697764 0.0000249921 7.72381*10^-6 G
MED 0.00303372 0.0000106903 7.65055*10^-6 G
Agreg 0.315966 0.00133039 8.72335*10^-6 D

Boundary 0.0855695 0.000387506 8.64581*10^-6 G

Table 2: Quality criteria of the representation for N = 100 and α = 0.99; MedDist()
denotes the median distortion.

Distribution c∗/∆2 (%) MedDist(∆AC) MedDist(∆Exp) Spherical?

BSh 0.246803 0.000989106 0.000360119 D
Moy 0.371856 0.00160617 0.00198782 D
MED 0.168661 0.000723894 0.000788534 D
Agreg 0.0719816 0.000582904 0.000280619 B

Boundary 2.6131 0.0152534 0.00688024 B

Remark 2. Comparing Tables 1 and 2, one can see that both median distor-
tions and c∗/∆2 were generally smaller for α = 0.1, which is quite natural:
the more α is small, the more the geometry is Euclidean in the neighborhood
of the reference probability.

Let's now examine further the �Boundary� case. On Figure 7, we plot-

ted the Riemannian measure Rm (θ) for values sampled on the closed el-

lipse EBoundary (0.99, 100), cut by the axis µ = 0. The points far from the

frontier are {3, · · · , 7, 12, 18, · · · , 20}, while points close to the φ = 0 bor-

derline are {9, 10, 11} and points on the µ = 0 borderline (or very close to

it) are {1, 2, 8, 11, 13, · · · , 17}. Most points close to the µ = 0 borderline,

{2, 8, 11, 13, · · · , 17} are missing on the right panel of Figure 6: this is due to

time limits encountered in the computations, causing the incompleteness of

the table ∆ (θ0, α,N ;K). On the contrary, on this �gure, most of the points
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Figure 7: Plot of the Riemannian measure inside SEBoundary (0.99, 100) (truncated el-
lipse); the reference distribution θBoundary is represented by the black point.

far from boundaries are inside the circle, and only 19 and 20 are on the

circle. In addition, even the reference distribution (point 21) is ill-placed.

Indeed, as Critchley and Marriott (2016); Marriott et al. (2016) noticed,

one should always expect such problems near the frontier
(

Θ− Θ̊
)
, because

usual statistical methods �break down� in such regions. Incidentally, a simi-

lar phenomenon happens in large neighborhoods of the �MED� distribution

(see Figure 1).

3.2. The χ2 two-sample test: processing some data of Bliss and Fisher (1953)

Remember now that the Kullback-Leibler divergence between two close

distributions veri�es Kass (1989): K (Di,Dj) ≈ 1
2
D2
R (Di,Dj); as a conse-

quence N
2
D2
R (Di,Dj) should asymptotically obey χ2

(2) when Di ≈ Dj Ilea

et al. (2015). The application of this result to the two-sample test: Lθ̂i
?
= Lθ̂j
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is straightforward; we will now exemplify this fact on data from the literature.

Bliss and Fisher (1953) �tted by NB probabilities four distributions of

insect pest (the corn borer Pyrausta nubilalis, for the connoisseurs) obtained

from �eld experiment. In this experiment, 15 plots were determined and 8

hills of corn were randomly selected into each plot and di�erently treated.

Afterward, the number of hills with k = 0, · · · , 5, · · · borers was determined,

for each treatment - it is noteworthy that �Treatment 1� was the untreated

case (control) and that the number of counts was N = 15 ∗ 8 = 120 for each

treatment. As Bliss and Fisher (1953) noticed, the composite distribution

from the 15 plots could likely be NB (as Gamma-Poisson mixtures), because

the level of infestation varied signi�cantly from plot to plot. In their paper,

they showed that the NB model �ts very well these four distributions (high P

Values of the χ2 test), unlike the Neyman type A �contagious� distribution.

We denoted Di the parameters (or the probability itself) of the NB distri-

bution associated with �Treatment i �. Using the above χ2 test in NB(DR),

we found that D1 and D2 are signi�cantly di�erent from D3 and D4 (P Values

< 10−6), while D2 is slightly di�erent from D1 (P Values ≈ 0.08) and D3 and

D4 are quite similar (P Values ≈ 0.77). We can thus conclude (with a slight

delay) from these tests that treatments 3 and 4 were equally and strongly

e�cient, while treatment 2 had only a slight e�ciency (remember D1 was a

control). Clearly, treatments 3 and 4 diminished the mean number of bor-

ers, while treatment 2 did not (but the distribution of borers was probably

altered by this treatment).

In addition, we plotted on Figure 8 the corresponding regularly sampled

con�dence ellipses of level 0.95 centered on the four distributions. We rep-
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Figure 8: The four con�dence ellipses SEDi
(0.95, 120; 20); Di corresponds to the parame-

ters of the ith data set (treatment).
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resented on Figure 9 the �rst principal plane (more than 98% of the total

variance) issued from MDS of the image of these data transformed under T

. Notice that the clouds centered on D2 and D1 are slightly deformed. With

a much smaller con�dence level (0.1), we got the smaller spheres displayed

on Figure 10; the percentage of variance was higher (about 99.93) and the

clouds are perfectly spherical (illustration of Corollary 5).

Remark 3. Consider any pair of distributions, (Di,Dj), and the straight line
λi,j (t) := tDi + (1− t) Dj linking them. We have necessarily that

DR (Di,Dj) ≤ DΛ (Di,Dj) :=

� 1

0

√
˙λi,j
t
(t) .g (λi,j (t)) . ˙λi,j (t)dt.

It is noteworthy that we had for any pair of distributions: DΛ (Di,Dj) ≤
1.004 DR (Di,Dj). Thus, the curvature is very close to zero in this region!
That is likely why we obtained excellent Euclidean approximations on Fig-
ures 9 and 10.

4. Conclusion

Notice �rst that while this work focuses on the Riemannian manifold

NB(DR) of negative binomial distributions, it could be extended to other
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Figure 9: Metric spheres and images of the ellipses transformed under T (chosen table:
∆Exp).
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Figure 10: Image
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families of probability distributions.

In the setting of NB(DR), with regard to the χ2 GOF test, we have

shown that:

� in the parameters space Θ, the critical locus of level 1 − α associated

with the GOF test Lθ̂
?
= Lθ

0
is an ellipse Eθ0 (α) which depends (center,

eccentricity) on θ0

� the image of Eθ0 (α) under T : Θ → NB(DR) associating to θ the

probability Lθ is (theoretically) a metric sphere

� T (Eθ0 (α)) is (approximately) spherical only when Eθ0 (α) is far enough

from the frontier of Θ - in other words, if Eθ0 (α) ∩
(

Θ− Θ̊
)

= ∅.

When θ0 is too close from a frontier of Θ, the GOF test Lθ̂
?
= Lθ

0
is not

feasible for large values of α. Notice (see Figures 2 and 7) that in such cases,

the values of dVNB(DR) in some neighborhood U (θ0) of θ0 is very large (high

local heterogeneity/generalized variance).

With regard to the χ2 two-sample test: Lθ̂i
?
= Lθ̂j , we have shown on

an example from the literature that its implementation is straightforward .

Since the NB distributions studied were far from the frontier of the param-

eters space, we found that the images under T of con�dence ellipses were

metric spheres (possibly slightly deformed, depending on the chosen con�-

dence level).
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5. Appendices

5.1. Behavior at the origin of the Riemannian measure

It can be shown after some computation that in the case of NB(DR), the

Riemannian measure expressed in the parametrization (7) is given by:

Rm (φ, µ) =

√√√√√
−
φ(µ+ φ)

((
φ

µ+φ

)φ
− 1

)
ψ(1)(φ) + µ

µ(µ+ φ)2
(8)

where ψ(1)(φ) denotes the derivative of the Trigamma function Abramowicz

and Stegun (2002).

Notice �rst that φ and µ are linked by the relation: µ = P φ, where the

hidden Fisher's parameter P depends on the e�ciency of the trap for the

species. There are four routes (free of indeterminate) towards (0, 0):

1. φ = µ
P
↘ 0+, which implies either (µ↘ 0+) ∧ (+∞ > P > 0) (a) or

(µ = O (1)) ∧ (P↗ +∞) (b)

2. µ = P φ ↘ 0+, which implies either (φ↘ 0+) ∧ (P = O (1)) (a) or

(P↘ 0+) ∧ (φ = O (1)) (b).

Since φ ↘ 0+ ⇐⇒ µ ↘ 0+ when P > 0, the cases 1 (a) and 2 (a) are

equivalent.

5.1.1. Case 2 (a)

The �rst terms of the Taylor series near 0 of Rm (φ,Pφ) with respect to

φ is:

√√√√−P + P
(
− log

(
1

P+1

))
− log

(
1

P+1

)
P(P + 1)2φ2
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and the function (−P−Log[1/(1+P)]−PLog[1/(1+P)])/(P((1+P)2))

is strictly positive for any ∞ > P > 0; thus we have generally that

lim
φ→0+

(Rm (φ,P φ)) = +∞

excepted if P = 0 or Pis in�nite (indeterminate cases).

5.1.2. Case 1 (b)

Suppose now that φ ↘ 0+ and P ↗ +∞ in such a way that Pφ = µ is

O (1). Then, Rm
(
µ
P
, µ
)

=

√
−

P2+µ(P+1)

(
( 1
P+1)

µ
P−1

)
ψ(1)( µP)

µ2(P+1)2
, and

lim
P→+∞

Rm
(
µ
P
, µ
)

= +∞.

5.1.3. Case 2 (b): µ = P φ↘ 0+, P↘ 0+ , 0 < φ = O (1)

Since 0 < φ = O (1), µ = P φ ↘ 0+ ⇐⇒ P ↘ 0+ and we can merely

consider lim
µ→0+

Rm (φ, µ). Inserting the Taylor series with respect to µ

φ(µ+ φ)

((
φ

µ+ φ

)φ
− 1

)
= −µφ2 +

1

2
(φ− 1)µ2φ+O[µ]3

(valid for (φ > 0)∧ (µ ≈ 0)) into equation (8), we obtain after simpli�cations

that

lim
µ→0+

Rm (φ, µ) =

√
φ2ψ(1)(φ)− 1

φ
. (9)

Then, because the Trigamma function veri�es (Abramowicz and Stegun,

2002, p. 260) ψ(1)(φ) = 1
φ2

+
∑

k≥1
1

(φ+k)2
: φ /∈ {0,−1, · · · − n, · · · }, we

have that for φ ∈ ]0, 1[, Rm (φ, 0) =
√∑

k≥1
1

(φ+k)2
, and (Abramowicz and

Stegun, 2002, p. 807)

lim
φ→0+

(
lim
µ→0+

Rm (φ, µ)

)
=
√
ζ (2) = π/

√
6.

Consequently Rm (0, 0) cannot be consistently de�ned �
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Remark 4. Both the conditions µ ≈ 0+ or φ ≈ 0+ correspond to situations
where huge samples would be necessary to observe something (very small
mean count, or very large number of zeroes. Finally, notice the �rst limit
case, µ = 0, corresponds to the null distribution, while the second one,
φ ≈ 0+, is associated with situations where the data should be probably
better �tted by the log-series distribution of Fisher et al. (1943).

5.2. Multidimensional Scaling of SC (ρ,K)

Consider the squared distance matrix DK obtained by traveling along

some �regularly-K-sampled� circle SC (ρ,K) of �xed radius ρ. Clearly, DK
is a circulant matrix, completely determined by its �rst column D(1)

K = C :=

(C1, · · · , CK−1, 0), where K is the sample size, C1 is the square of the chord

distance between the (arbitrary) �rst point and its nearest neighbor, etc.

Each column of DK is obtained by cyclic permutation of C, with the column

index as an o�set. Let's compute the spectrum of the operator

WK := −1

2
AK .DK .AK

where AK := IK − 1
K

1K ⊗ 1K . Since DK and AK are circulant, WK has

the same property; consequently (Brillinger, 1981, Section 3.7) its eigenval-

ues only depend on the discrete Fourier transform (we adopted the same

convention as Brillinger (1981))

Fd
(
W

(1)
K

)
[p] :=

K∑
k=1

W 1
k exp (−2 i π (p− 1) (k − 1) /K) ; 1 ≤ p ≤ K

of the �st columnW
(1)
K ofWK , and its eigenvectors are columns of the matrix

Ψ of general term

ψj,k :=
1√
K

exp

(
−2iπ j k

K

)
: 0 ≤ j ≤ K − 1, 0 ≤ k ≤ K − 1.

After some algebra, it can be shown that in our case
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W
(1)
K = −1

2

(
D(1)
K − 1

K

∑K
k=1 Ck

)
. Thus, the unique di�erence between

Fd
(
W

(1)
K

)
and −1

2
Fd
(
D(1)
K

)
is that the �rst one is centered, and the eigen-

values of WK are given by the non-null coordinates of −1
2
Fd (C). Observe

now that since

Cm =
(
2 ρ sin

(
mπ
K

))2
, they are indeed given by the discrete Fourier

transform of the function C (x) := (2 ρ sin (π x))2, which is strictly equiv-

alent to the Fourier series Ĉ (m) := ρ2

2π

� π
−π C (x) e−imxdx of C (x) because

Ĉ is supported by [−2, 2] (Shannon-Kotelnikov theorem). Actually, Ĉ (m)

is null excepted for three indices: Ĉ (0) = 2 ρ2 and Ĉ (±2) = −ρ2 (thus,

C (x) = 2 ρ2 − ρ2 (exp (−2 i x) + exp (2 i x))). As a consequence −1
2
Fd (C) is

null, at the exception of two frequencies whose coe�cient are γ := K ρ2/2.

Now, classical MDS indeed consists Caillez (1983) in computing the spectral

decomposition of the operator WK .DP , where P is the vector of weights at-

tributed to the K �individuals� and DP is the associated diagonal matrix. Of

course, when P = 1/K, the eigenvector are the same as those of WK , while

the vector of eigenvalues is λ := γ/K. Finally, the representation SC (ρ,K)

is obtained by combining two columns of Ψ (K points on the circle of radius

1/ρ) with the square root of the double eigenvalue λ = ρ2/2. Thus we get a

circle of radius
√

2λ 1√
K

= ρ√
K
�

Remark 5. It ismandatory for this proof that the circle has been regularly-
sampled; otherwise, DK wouldn't be circulant.
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