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χ 2 tests in the Riemannian manifold of negative binomial distributions: a geometrical approach.

Application to ecological data

Introduction

The statistical analysis of counts of living organisms brings information about the collective behavior of species (schooling, habitat preference, etc), possibly associated with their socio-biological characteristics (aggregation, growth rate, reproductive power, survival rate, etc). The negative binomial (NB) distribution is widely used to model such data [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF]; [START_REF] O'neill | Use of binary and truncated negative binomial modelling in the analysis of recreational catch data[END_REF]; [START_REF] Vaudor | Comparing distribution models for small samples of overdispersed counts of freshwater sh[END_REF]; Manté et al. (2016). It is especially relevant for ecologists, because 1. it arises as a Gamma-Poisson mixture, whose parameters depend on the more or less aggregative behavior of the species, and on the eciency [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF]; [START_REF] Anscombe | Sampling theory of the negative binomial and logarithmic series distributions[END_REF]; [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF] of the trap used to catch it 2. it arises as the limit distribution of the [START_REF] Kendall | On some modes of population growth leading to R. A. Fisher's logarithmic series distribution[END_REF] birth-and-death model; in this setting, its parameters depend on the demography of the species (reproductive power, mortality, immigration rate).

But while the parametric approach is quite sound from the ecological point of view (see Manté et al. (2016) and the references therein), it suers from an important nuisance: the visual distance between the parameters of several distributions is misleading, because on the one hand it depends on the chosen parametrization and, on the other hand, because these parameters are not commensurable in general (dierent ecological meaning, dierent ranges, ...).

It is possible to remedy this drawback by using the Rao's distance.

In a seminal paper, [START_REF] Rao | Information and the Accuracy Attainable in the Estimation of Statistical Parameters[END_REF] noticed that, equipped with the Fisher information metrics denoted g (•), a family of probabilities depending on p parameters can be considered as a p-dimensional Riemannian manifold.

The associated Riemannian (Rao's) distance between the distributions of parameters θ 1 and θ 2 is given by the integral

D R θ 1 , θ 2 := ¢ 1 0 γt (t) .g (γ (t)) . γ (t)dt (2)
where γ is a segment (minimal length geodesic curve) connecting θ 1 = γ (0) to θ 2 = γ (1) and γ (t) := dγ dt (t). As any Riemannian distance, D R is intrinsic (i.e. does not depend on the parametrization used). Naturally, [START_REF] Rao | Information and the Accuracy Attainable in the Estimation of Statistical Parameters[END_REF][START_REF] Rao | Comment to Kass' paper[END_REF] proposed to use (2) as a distance between populations or for Goodness-Of-Fit (GOF) testing, followed by a number of authors [START_REF] Carter | FINE: Fisher Information Nonparametric Embedding[END_REF]; [START_REF] Galanis | Wave height characteristics in the north Atlantic ocean: a new approach based on statistical and geometrical techniques[END_REF]; [START_REF] Dodson | Some illustrations of information geometry in biology and physics[END_REF]; [START_REF] Cubedo | A dissimilarity based on relevant population features[END_REF]; [START_REF] Ilea | Statistical Hypothesis Test for Maritime Pine Forest Sar Images Classication Based on the Geodesic Distance[END_REF]; Manté and Kidé (2016); [START_REF] Kass | The geometry of asymptotic inference[END_REF]; [START_REF] Menendez | Statistical Tests Based on Geodesic Distances[END_REF]; [START_REF] Cubedo | Hypothesis testing: a model selection approach[END_REF]. Generally, the Rao's distance between members of a family of distributions must be obtained by numerically solving a secondorder nonlinear dierential equation (the Euler-Lagrange equation) .

Few elements of Riemannian geometry

Consider the set X (M) of vector elds on M.

Denition 1. [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF]; Amari et al. ( 2007) A linear connection (or

covariant derivative) D on M is a bilinear map D : X (M) × X (M) → X (M) (X, Y ) → D X Y
which is linear in X and a derivation on Y.

More concretely [START_REF] S.-I. Amari | Methods of information geometry[END_REF], a connection on M determines, for neighboring points p and p , a correspondence (linear one-to-one mapping)

Ξ p,p between the tangent spaces T p (M) and T p (M), possessing the properties above. According to the fundamental theorem of Riemannian geometry [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF], there is a unique symmetric connection ∇ compatible with a given metrics g (the Levi-Civita or Riemann connection), giving in our case the Rao's distance. It is noteworthy that, while we will work in (M, ∇, g), other statistically sound (but not Riemannian) connections can be fruitfully considered (see [START_REF] S.-I. Amari | Methods of information geometry[END_REF]).

Denition 2. [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF]; [START_REF] Gray | Modern dierential geometry of curves and surfaces with Mathematica[END_REF] Let γ : I → M be a curve traced on M; γ is a geodesic with respect to ∇ if its acceleration ∇ γ(t) γ (t) is null ∀t ∈ I.

2.1. The Riemannian measure on some statistical manifold

The Riemannian measure on (M, ∇, g) associated with g is dV M (θ 0 ) := det (g i j (θ 0 )) dθ 1 • • • dθ p ; it has been considered from dierent viewpoints in the literature. [START_REF] Kass | The geometry of asymptotic inference[END_REF] argued that dV M can be considered as the uniform measure on M, since uniform distributions on surfaces are special cases of measures that apply equal mass to sets of equal volume, that is, of measures that are determined by Riemannian metrics. Alternatively, according to [START_REF] Cubedo | A dissimilarity based on relevant population features[END_REF], g (θ 0 ) is a local measure of the maximum mean value change of standardized random variables, in a neighborhood of

L θ 0
. Consequently, dV M (θ 0 ) measures the generalized variance [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF] that is encountered in some neighborhood U (θ 0

) of L θ 0 . If dV M (θ 0 )
is large, we should expect an important heterogeneity in U (θ 0 ) or, in other words, a high sensibility to small variations of the parameters. Computing the Rao's distance between randomly drawn distributions in U (θ 0 ), we will obtain a larger proportion of big distances than when dV M (θ 0 ) is small, as [START_REF] Lebanon | Metric learning for text documents[END_REF] pointed.

2.2. Tangent plane approximation: the χ 2 GOF test Denition 3. [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF] Let M be a Riemann manifold and x ∈ M.

The exponential map of M at x is exp x : W x → M, dened on some neighborhood W x of the origin of T x M by:

exp x (V ) := α B(V ) ( V ) (3) 
where B (V ) is the projection of V onto the unit ball and α B(V ) is the unique unit-speed geodesic in M such that α B(V ) (0) = x and αB(V ) (0) = B (V ).

D R has been constructively dened by Formula 2; the following proposi-

tion shows incidentally that D R (θ 1 , θ 2 ) = 0 ⇒ θ 1 = θ 2 Berger (2003).
Proposition 4. For small enough, the exponential map at θ 0 is a local dieomorphism such that exp θ 0 (B (0, )) = B R (θ 0 , ) , where B (0, ) (resp. B R (θ 0 , )) is a ball of radius of T θ 0 M (resp. M).

The maximum of these values (named injectivity radius of M at θ 0 ) is denoted ¯ (θ 0 ). We can always write, if θ is close to θ 0 :

D R L θ 0 , L θ ≡ D R θ 0 , θ ≈ t (θ 0 -θ) .g (θ 0 ) . (θ 0 -θ) ≡ θ 0 -θ g θ 0 (4)
but this result can be rened, thanks to the following proposition.

Corollary 5. If is small enough (for instance: ≤ ¯ (θ 0 )), the metric sphere S R (θ 0 , ) := {θ ∈ M : D R (θ 0 , θ) = } can be isometrically identied with the centered ellipse E θ 0 ( ) of radius := θ 0 -θ g (θ 0 ) drawn on

T θ 0 M.
As an illustration, we displayed on Figure 1 the exponential spray exp θ (E θ ( )) = S R (θ, ) for two NB distributions (in the Chua and Ong (2013) parametrization) : θ 1 = {0.7767, 11.2078} (left point, a rather aggregative distribution) and θ 2 = {10., 9.12624} (right point, a bell-shaped distribution). We can see on this gure that for = 0.3 and = 1.5, the geodesics emanating from θ 2 draw circles, while the situation is very dierent for θ 1 : for = 1.5, the ball is dramatically anisotropic, very far from an ellipse, while for = 0.3 it is nearly spherical.

Consider now the application T : Θ → M associating to θ the probability L θ . Suppose rst that the Fréchet-Darmois-Cramer-Rao assumptions Rao (2015,1966) are fullled by the family L θ : θ ∈ Θ and, second, that θ N is an unbiased rst-order ecient estimator of θ, based on some N -sample ≤ ¯ (θ 0 ), because of Corollary 5, the image T (E θ 0 ( )) can be identied with the metric sphere of radius

centered on L θ 0 . But ¯ (θ 0 ) is unknown in general; so, what if θ 0 -θ N g (θ 0 ) is too large ( ¯ (θ 0
))? This is an important issue, in connection with the χ 2 GOF test (see for instance [START_REF] Rao | Information and the Accuracy Attainable in the Estimation of Statistical Parameters[END_REF]; [START_REF] Menendez | Statistical Tests Based on Geodesic Distances[END_REF]; [START_REF] Cubedo | Hypothesis testing: a model selection approach[END_REF]; Ilea et al.

(

)) associated with Formula 4: if a N -sample of counts stems from L θ 0 , N D 2 R θ 0 , θ N should asymptotically obey χ 2 (p) . 2015 

The special case of N B(D R )

There is a large number of parametrizations for the NB distribution, and the most classical one is probably

P (X = j; (φ, p)) =   φ + j -1 φ -1   p j (1 -p) φ j ≥ 0 (5)
with (φ, p) ∈ R + ×]0, 1[. Fisher used the following one [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF]; [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF]:

P (X = j) = P n (1 + P) j+K   φ + j -1 φ -1   (6)
with (φ, P) ∈ R + × R + . In this formulation, specially relevant in Ecology, the so-called index parameter" φ (denoted K by Fisher and many other authors) is an intrinsic parameter of the species, while P depends on the eciency of the trap for the species [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF]. This fact was mentioned by [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF] and [START_REF] Anscombe | Sampling theory of the negative binomial and logarithmic series distributions[END_REF], who underscored that the eciency of the trap must include time of exposure.

Nevertheless, because of its orthogonality, we chose instead the parametrization used by [START_REF] Chua | Test of misspecication with application to negative binomial distribution[END_REF]:

P (X = j; (φ, µ)) =   φ + j -1 j   µ µ + φ j 1 - µ µ + φ φ , j ≥ 0 (7) (φ, µ) ∈ R + × R + ; here, µ denotes the mean of the distribution. 3.1. χ 2 GOF testing in N B(D R )
We will now investigate the feasibility of the GOF tests: L θ ?

= L θ 0 from a geometrical point of view. Consider as in Section 2.2 some θ 0 = (φ 0 , µ 0 ) ∈

Θ := R + × R + and, for α < 1, the ellipse E θ 0 (α, N ) := E θ 0 χ 2
(2) (α) /N , where N is the sample size and χ 2

(2) (α) denotes the quantile of order α of χ 2

(2) (see Figures 4 and8). Is its image T (E θ 0 (α, N )) a metric sphere for usual values of α (0.1, 0.5, 0.95,...) and any L θ 0

? If the answer is negative for some α ∈]0, 1[, the critical locus of the GOF test (the ellipse E θ 0 (α, N ) whose interior is the acceptance region) will be anisotropic, i.e. there will be at least a pair of probabilities L θ , L θ with identical probability of rejection

1 -α such that D R L θ 0 , L θ < D R L θ 0 , L θ .
In such cases the GOF test of level 1 -α is invalid, and one should choose a greater level (Proposition 4 guaranties the existence of some maximal valid α, depending on θ 0 ).

The test distributions used

We put in limelight ve test distributions: BSh (for bell-shaped), which is N B (10, 144.3) .193, 87.268) is the mean of a bivariate distribution tting the parameters of non-aggregative species found in some habitat Manté et al. (2016) Figure 2:

Moy = N B (1
The natural logarithm of the Riemannian measure of N B(D R ) displayed in the parametrization (7) on a neighborhood of the origin.

MED=N B (0.7767, 11.2078) is the spatial median [START_REF] Sering | Nonparametric multivariate descriptive measures based on spatial quantiles[END_REF] of the same sample of parameters (the left point on Figure 1) Agreg=N B (0.01, 0.1443) corresponds to a theoretical aggregative species (rst borderline case: φ ≈ 0 + ) Boundary=N B (6, 0.05), designed for investigating the case µ ≈ 0 + (second borderline case).

These distributions are depicted from two dierent manners: as members of N B(D R ) on Figure 2, and as probability densities on Figure 3.

Remark 1. The rst four distributions were exemplied in (Manté et al., 2016, Appendix 2), but the parametrization used was (6). One can guess half from Figure 2 that the value at the origin of the Riemannian measure, Rm (0, 0) cannot be consistently dened, as it is proven in Appendix 5.1. Note in addition that both the borderline cases (φ ≈ 0 + and µ ≈ 0 + ) correspond to situations where huge samples would be necessary to observe organisms (very small mean count or very large number of zeroes).

Regularly sampled condence ellipses

Following [START_REF] Critchley | Computing with Fisher geodesics and extended exponential families[END_REF], we xed as a theoretical sample size N = 100.

For each one of the test distributions above, we determined a set SE θ 0 (α, N ; K)

of K = 20 regularly-sampled points upon E θ 0 (α, N ) ⊂ Θ, for α ∈ {0.1, 0.99}.
By regularly-sampled, we mean that the arc length between two neighbor points should be approximately Length (E θ 0 (α, N )) /K, where Length (E θ 0 (α, 100)) is approximated by the Gauss-Kummer formula. Regularly-sampled ellipses associated with BSh and α ∈ {0.1, 0.99} are represented on Figure 4. The unit ellipse (gray), SE θ 0 (0.99, 100; 20) (black) and SE θ 0 (0.1, 100; 20) in yellow (color gure online), for θ 0 = BSh. For each pair on points {θ i , θ j } :

j = i of each SE θ 0 (α, N ; K), D R (θ i , θ j )
was computed according to the methods detailed by Manté (tted); in addition each D R (θ i , θ 0 ) was computed too. This gave rise to a 21 × 21 table ∆ (θ 0 , α, N ; K) submitted to MDS. But there is no guarantee that some ∆ (θ 0 , α, N ; K) could be exactly represented in an Euclidean space by classical MDS (and besides by a sphere) excepted if α is small enough (Corollary 5). It is thus advisable to pre-process each table before performing 

MDS.

There are several methods for making a distance matrix like ∆ Euclidean (i.e. nd a close distance matrix which can be exactly represented in an Euclidean space) -see for instance [START_REF] Benasseni | On a General Transformation Making a Dissimilarity Matrix Euclidean[END_REF]. The simpler one is the Additive Constant (AC) one [START_REF] Caillez | The analytic solution of the Additive Constant problem[END_REF], consisting in adding an optimal positive perturbation c * to all the extra-diagonal terms of ∆ 2 .

But other pre-processing methods are worth considering Benasseni et al.

(2007): one can search for the smallest positive γ 0 such that the power ∆ γ is Euclidean for γ ≤ γ 0 Joly and Le Calvé (1986), or the smallest positive γ * such that 1 -e -γ ∆ is Euclidean (Exp method). It is noteworthy that both these transformations belong to the class of Schoenberg transformations introduced in Data Analysis by [START_REF] Bavaud | On the Schoenberg transformations in data analysis: Theory and illustrations[END_REF]. We chose the last one, the Exp method .

Notice now that the representation of ∆ (θ 0 , α, N ; K) should theoretically consist in a regularly K-sampled circle SC (ρ, K). What is the radius of this circle?

Proposition 6. The representation through MDS of the sampled circle

SC (ρ, K) is SC ρ √ K , K . Proof. see Appendix 5.2
As a consequence, the representation of each ∆ (θ 0 , α, N ; K) had to be compared to the circle of radius χ 2

(2) (α) /N K. We gathered in Tables 1 and2 several quality criteria for representation of condence ellipses through MDS.

In the cases investigated here, we found that the solution associated with the Exp method, ∆ Exp was by far the best one. In the last column of each table ,   we added a visual appreciation about the sphericity of the representation of T (SE θ 0 (α, N ; K)) in the rst principal plane of MDS: Good, Deformed or Bad; the reader can examine such sampled metric spheres on Figures 5 and6, or in [START_REF] Manté | The Rao's distance between negative binomial distributions for Exploratory Analyses and Goodness-Of-Fit Testing[END_REF]. On these plots, points sampled on each ellipse were labeled {1, • • • , 20}, while the 21 st point corresponded to the reference distribution L θ 0 , which should theoretically occupy the center of the circle.

Clearly, for α = 0.1 (see Table 1), the representation was always rather good (even in the case of Agreg; see also Figure 3 of [START_REF] Manté | The Rao's distance between negative binomial distributions for Exploratory Analyses and Goodness-Of-Fit Testing[END_REF]) and the distortions associated with ∆ Exp were much smaller than those associated with the traditional Additive Constant method, ∆ AC .

With a much lower level (α = 0.99), there were smaller discrepancies in distortion between ∆ Exp and ∆ AC (see Table 2). The spheres were more or less deformed (see the right panel of Figure 5 or 1 and2, one can see that both median distortions and c * /∆ 2 were generally smaller for α = 0.1, which is quite natural: the more α is small, the more the geometry is Euclidean in the neighborhood of the reference probability.

Let's now examine further the Boundary case. On Figure 7 3.2. The χ 2 two-sample test: processing some data of [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF] Remember now that the Kullback-Leibler divergence between two close distributions veries [START_REF] Kass | The geometry of asymptotic inference[END_REF] et al. (2015). The application of this result to the two-sample test: L θi ? = L θj is straightforward; we will now exemplify this fact on data from the literature. [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF] tted by NB probabilities four distributions of insect pest (the corn borer Pyrausta nubilalis, for the connoisseurs) obtained from eld experiment. In this experiment, 15 plots were determined and 8 hills of corn were randomly selected into each plot and dierently treated.

: K (D i , D j ) ≈ 1 2 D 2 R (D i , D j ); as a conse- quence N 2 D 2 R (D i , D j ) should asymptotically obey χ 2 (2) when D i ≈ D j Ilea
Afterward, the number of hills with k = 0,

• • • , 5, • • • borers was determined,
for each treatment -it is noteworthy that Treatment 1 was the untreated case (control) and that the number of counts was N = 15 * 8 = 120 for each treatment. As [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF] noticed, the composite distribution from the 15 plots could likely be NB (as Gamma-Poisson mixtures), because the level of infestation varied signicantly from plot to plot. In their paper, they showed that the NB model ts very well these four distributions (high P Values of the χ 2 test), unlike the Neyman type A contagious distribution.

We denoted D i the parameters (or the probability itself ) of the NB distribution associated with Treatment i. Using the above χ 2 test in N B(D R ),

we found that D 1 and D 2 are signicantly dierent from D 3 and D 4 (P Values < 10 -6 ), while D 2 is slightly dierent from D 1 (P Values ≈ 0.08) and D 3 and D 4 are quite similar (P Values ≈ 0.77). We can thus conclude (with a slight delay) from these tests that treatments 3 and 4 were equally and strongly ecient, while treatment 2 had only a slight eciency (remember D 1 was a control). Clearly, treatments 3 and 4 diminished the mean number of borers, while treatment 2 did not (but the distribution of borers was probably altered by this treatment).

In addition, we plotted on Figure 8 the corresponding regularly sampled condence ellipses of level 0.95 centered on the four distributions. We rep- Remark 3. Consider any pair of distributions, (D i , D j ), and the straight line λ i,j (t) := t D i + (1 -t) D j linking them. We have necessarily that

D R (D i , D j ) ≤ D Λ (D i , D j ) := ¢ 1 0 λ i,j t (t) .g (λ i,j (t)) . λ i,j (t)dt.
It is noteworthy that we had for any pair of distributions: 

D Λ (D i , D j ) ≤ 1.004 D R (D i , D j ).

Conclusion

Notice rst that while this work focuses on the Riemannian manifold N B(D R ) of negative binomial distributions, it could be extended to other ∆ Exp ). = L θ 0 is an ellipse E θ 0 (α) which depends (center, eccentricity) on θ 0 the image of E θ 0 (α) under T : Θ → N B(D R ) associating to θ the probability L θ is (theoretically) a metric sphere

T (E θ 0 (α)) is (approximately) spherical only when E θ 0 (α) is far enough from the frontier of Θ -in other words, if E θ 0 (α) ∩ Θ -Θ = ∅.
When θ 0 is too close from a frontier of Θ, the GOF test L θ ?

= L θ 0 is not feasible for large values of α. Notice (see Figures 2 and7) that in such cases, the values of dV N B(D R ) in some neighborhood U (θ 0 ) of θ 0 is very large (high local heterogeneity/generalized variance).

With regard to the χ 2 two-sample test: L θi ? = L θj , we have shown on an example from the literature that its implementation is straightforward .

Since the NB distributions studied were far from the frontier of the parameters space, we found that the images under T of condence ellipses were metric spheres (possibly slightly deformed, depending on the chosen condence level).

5. Appendices 5.1. Behavior at the origin of the Riemannian measure

It can be shown after some computation that in the case of N B(D R ), the Riemannian measure expressed in the parametrization ( 7) is given by:

Rm (φ, µ) = - φ(µ + φ) φ µ+φ φ -1 ψ (1) (φ) + µ µ(µ + φ) 2 (8)
where ψ (1) (φ) denotes the derivative of the Trigamma function [START_REF] Abramowicz | Handbook of mathematical functions with formulas, graphs and mathematical tables[END_REF].

Notice rst that φ and µ are linked by the relation: µ = P φ, where the hidden Fisher's parameter P depends on the eciency of the trap for the species. There are four routes (free of indeterminate) towards (0, 0): Since φ 0 + ⇐⇒ µ 0 + when P > 0, the cases 1 (a) and 2 (a) are equivalent.

Case 2 (a)

The rst terms of the Taylor series near 0 of Rm (φ, P φ) with respect to φ is:

-P + P -log 1

P+1

-log Consequently Rm (0, 0) cannot be consistently dened C (x) = 2 ρ 2 -ρ 2 (exp (-2 i x) + exp (2 i x))). As a consequence -1 2 F d (C) is null, at the exception of two frequencies whose coecient are γ := K ρ 2 /2. Now, classical MDS indeed consists [START_REF] Caillez | The analytic solution of the Additive Constant problem[END_REF] in computing the spectral decomposition of the operator W K .D P , where P is the vector of weights attributed to the K individuals and D P is the associated diagonal matrix. Of course, when P = 1/K, the eigenvector are the same as those of W K , while the vector of eigenvalues is λ := γ/K. Finally, the representation SC (ρ, K) is obtained by combining two columns of Ψ (K points on the circle of radius 1/ρ) with the square root of the double eigenvalue λ = ρ 2 /2. Thus we get a circle of radius

√ 2 λ 1 √ K = ρ √ K
Remark 5. It is mandatory for this proof that the circle has been regularlysampled; otherwise, D K wouldn't be circulant.
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 3 Figure 3: Five typical distributions (see also Figure 2). The index ∆ measures the gap between each distribution and the closest Poisson one (see Manté (tted)), which is superposed to the NB distribution when ∆ < 0.05; vertical bars are associated with NB probabilities. In the case of the unique Poisson-like distribution Manté (tted),Boundary, an orange curve is associated with the Poisson distribution.
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 6 Figure 6: The Boundary distribution (processed table: ∆ Exp ). Left (resp. right) panel: representation of T (SE Boundary (0.1, 100; 20)) (resp. T (SE Boundary (0.99, 100; 20))).
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  , we plotted the Riemannian measure Rm (θ) for values sampled on the closed ellipse E Boundary (0.99, 100), cut by the axis µ = 0. The points far from the frontier are {3, • • • , 7, 12, 18, • • • , 20}, while points close to the φ = 0 borderline are {9, 10, 11} and points on the µ = 0 borderline (or very close to it) are {1, 2, 8, 11, 13, • • • , 17}. Most points close to the µ = 0 borderline, {2, 8, 11, 13, • • • , 17} are missing on the right panel of Figure 6: this is due to time limits encountered in the computations, causing the incompleteness of the table ∆ (θ 0 , α, N ; K). On the contrary, on this gure, most of the points
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 7 Figure 7: Plot of the Riemannian measure inside SE Boundary (0.99, 100) (truncated ellipse); the reference distribution θ Boundary is represented by the black point.
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 8 Figure 8: The four condence ellipses SE Di (0.95, 120; 20); D i corresponds to the parameters of the i th data set (treatment).

  9 the rst principal plane (more than 98% of the total variance) issued from MDS of the image of these data transformed under T . Notice that the clouds centered on D 2 and D 1 are slightly deformed. With a much smaller condence level (0.1), we got the smaller spheres displayed on Figure10; the percentage of variance was higher (about 99.93) and the clouds are perfectly spherical (illustration of Corollary 5).
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 9 Figure 9: Metric spheres and images of the ellipses transformed under T (chosen table:∆ Exp ).

  Figure 10: Image

  1. φ = µ P 0 + , which implies either (µ 0 + ) ∧ (+∞ > P > 0) (a) or (µ = O (1)) ∧ (P +∞) (b) 2. µ = P φ 0 + , which implies either (φ 0 + ) ∧ (P = O (1)) (a) or (P 0 + ) ∧ (φ = O (1)) (b).

5. 1

 1 .3. Case 2 (b): µ = P φ 0 + , P 0 + , 0 < φ = O (1) Since 0 < φ = O (1), µ = P φ 0 + ⇐⇒ P 0 + and we can merely consider lim µ→0 + Rm (φ, µ). Inserting the Taylor series with respect to µ 1) µ 2 φ + O[µ] 3 (valid for (φ > 0) ∧ (µ ≈ 0)) into equation (8), we obtain after simplications that lim µ→0 + Rm (φ, µ) = φ 2 ψ (1) (φ) -1 φ .

  rst one is centered, and the eigenvalues of W K are given by the non-null coordinates of -1 2 F d (C). Observe now that since C m = 2 ρ sin m π K 2 , they are indeed given by the discrete Fourier transform of the function C (x) := (2 ρ sin (π x)) 2 , which is strictly equivalent to the Fourier series C (m) := ρ 2 2 π ¡ π -π C (x) e -i m x dx of C (x) because C is supported by [-2, 2] (Shannon-Kotelnikov theorem). Actually, C (m)is null excepted for three indices: C (0) = 2 ρ 2 and C (±2) = -ρ 2 (thus,

  

Table 1 :

 1 Quality criteria of the representation for N = 100 and α = 0.1; MedDist() denotes

	the median distortion.			
	Distribution	c * /∆ 2 (%) M edDist(∆ AC ) M edDist(∆ Exp ) Spherical?
	BSh	0.00615466	0.0000254661	8.18752*10^-6	G
	Moy	0.00697764	0.0000249921	7.72381*10^-6	G
	MED	0.00303372	0.0000106903	7.65055*10^-6	G
	Agreg	0.315966	0.00133039	8.72335*10^-6	D
	Boundary	0.0855695	0.000387506	8.64581*10^-6	G

Table 2 :

 2 Quality criteria of the representation for N = 100 and α = 0.99; MedDist() denotes the median distortion.

	BSh	0.246803	0.000989106	0.000360119	D
	Moy	0.371856	0.00160617	0.00198782	D
	MED	0.168661	0.000723894	0.000788534	D
	Agreg	0.0719816	0.000582904	0.000280619	B
	Boundary	2.6131	0.0152534	0.00688024	B
	Remark 2. Comparing Tables			

Distribution c * /∆ 2 (%) M edDist(∆ AC ) M edDist(∆ Exp ) Spherical?

  Thus, the curvature is very close to zero in this region!

	That is likely why we obtained excellent Euclidean approximations on Fig-
	ures 9 and 10.

Remark 4. Both the conditions µ ≈ 0 + or φ ≈ 0 + correspond to situations where huge samples would be necessary to observe something (very small mean count, or very large number of zeroes. Finally, notice the rst limit case, µ = 0, corresponds to the null distribution, while the second one, φ ≈ 0 + , is associated with situations where the data should be probably better tted by the log-series distribution of [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF].

Multidimensional Scaling of SC (ρ, K)

Consider the squared distance matrix D K obtained by traveling along some regularly-K-sampled circle SC (ρ, K) of xed radius ρ. Clearly, D K is a circulant matrix, completely determined by its rst column D

(1)

, where K is the sample size, C 1 is the square of the chord distance between the (arbitrary) rst point and its nearest neighbor, etc.

Each column of D K is obtained by cyclic permutation of C, with the column index as an oset. Let's compute the spectrum of the operator

the same property; consequently [START_REF] Brillinger | Time Series: data analysis and theory[END_REF], Section 3.7) its eigenvalues only depend on the discrete Fourier transform (we adopted the same convention as [START_REF] Brillinger | Time Series: data analysis and theory[END_REF])

K of W K , and its eigenvectors are columns of the matrix Ψ of general term

After some algebra, it can be shown that in our case