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Abstract 
 

Whole brain segmentation of fine-grained structures using deep learning (DL) is a very 
challenging task since the number of anatomical labels is very high compared to the 
number of available training images. To address this problem, previous DL methods 
proposed to use a single convolution neural network (CNN) or few independent CNNs. 
In this paper, we present a novel ensemble method based on a large number of CNNs 
processing different overlapping brain areas. Inspired by parliamentary decision-making 
systems, we propose a framework called AssemblyNet, made of two “assemblies" of U-
Nets. Such a parliamentary system is capable of dealing with complex decisions, 
unseen problem and reaching a relevant consensus. AssemblyNet introduces sharing 
of knowledge among neighboring U-Nets, an “amendment” procedure made by the 
second assembly at higher-resolution to refine the decision taken by the first one, and 
a final decision obtained by majority voting. During our validation, AssemblyNet showed 
competitive performance compared to state-of-the-art methods such as U-Net, Joint 
label fusion and SLANT. Moreover, we investigated the scan-rescan consistency and 
the robustness to disease effects of our method. These experiences demonstrated the 
reliability of AssemblyNet. Finally, we showed the interest of using semi-supervised 
learning to improve the performance of our method.   

1 Introduction 
Quantitative brain analysis is crucial to better understand the human brain and to 
analyze different brain pathologies. However, whole brain segmentation is still a very 
challenging problem, mostly due to the high number of anatomical labels compared to 
the limited number of available training data, especially when considering fine-grained 
segmentation. Manual segmentation of the whole brain is indeed a very tedious and 
difficult task, preventing the production of large annotated datasets.  
 
To address this question, several methods have been proposed in the past years. By 
extending the single-atlas method paradigm, the multi-atlas framework has been 
successfully applied to whole brain segmentation [1], [2]. In such approaches, labeled 
templates are first nonlinearly registered to the target image. Afterwards, the estimated 
deformations are applied to the manual segmentations before fusing them. This type 
of methods efficiently deals with limited training data; however, the required multiple 
nonlinear registrations can result in a huge computational time. Moreover, 
regularization involved in registration may prevent to accurately capture complex local 
anatomical patterns.    
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To reduce the computational time of multi-atlas methods and to better capture local 
anatomy, patch-based methods have been introduced [3]. In such approaches, the 
label fusion step is based on the nonlocal patch-based estimator. These methods 
demonstrated state-of-the-art performance for whole brain segmentation [4]–[6][7]. 
One of the main references in the domain is the patch-based joint label fusion (JLF) 
which won the MICCAI challenge in 2012 [4] and which is still considered as the state 
of the art for fine-grained whole brain segmentation. In patch-based methods, usual 
machine learning such as sparse coding [8] or neural networks [9] has been used in 
place of the nonlocal estimator. Recently, a fast framework has been proposed [10] to 
further reduce the computational time required by patch-based methods. 
 
More recently, deep leaning (DL) methods have also been proposed for 3D brain 
segmentation. Most of these methods were dedicated to coarse segmentation 
considering only few structures (e.g., <35 structures). For instance QuickNat [11] 
works on 27 structures, Bayesian QuickNat works on 33 structures [12], 3DQ works 
on 28 structures [13], DeepNat works on 25 structures [14], the method proposed in 
[15] works on 27 structures and the approach in [16] works on 32 structures. The 
problem of whole brain segmentation considering fine-grained structures (i.e. >100 
structures) is much more complex. Consequently, less works have been dedicated to 
this problem [17]–[20]. Moreover, most of the proposed methods were based on 2D 
frameworks. In fact, due to limited GPU memory, first attempts were based on patch-
wise strategies [14], [18], [21]  or 2D segmentation (slice by slice) [11], [17], [22]. Only 
recently, 3D fully convolutional network methods were proposed using reduced input 
data size (i.e., 128×128×128 voxels) [23] or using an Spatially Localized Atlas Network 
Tiles (SLANT) strategy [20]. This latter framework divides the whole volume into 
overlapping sub-volumes, each one being processed by a different U-Net [24] (e.g., 8 
or 27). The ensemble SLANT strategy addresses the problem of limited GPU memory 
and simplifies the complex problem of fine-grained whole brain segmentation into 
simpler problems, better suited to limited training data.  
 
In this paper, we present a new method able to deal with fine-grained whole brain 
segmentation at full resolution and based on 3D convolution neural networks (CNNs). 
To this end, we propose to extend the SLANT framework by using a much larger 
number of more compact 3D U-Nets (i.e., from 27 to 250) while keeping processing 
time similar. The main question to address is the optimal organization of this large 
ensemble of CNNs. To this end, we propose a new framework we call AssemblyNet. 
Inspired by the decision-making process developed by human societies to deal with 
complex problems, we decided to model a parliamentary system based on two 
separate assemblies. Such bicameral – meaning two chambers – parliament has been 
adopted by many countries around the world. A bicameral system is usually composed 
of an upper and a lower chamber, both having their own independency to ensure the 
balance of power. However, an assembly may communicate its vote to the other for 
amendment. Such parliamentary system is capable of dealing with complex decisions, 
unseen problem and reaching a relevant consensus. This study extends our 
conference paper [25] with more complete experiments investigating i) the impact of 
semi-supervised learning ii) the scan-rescan reliability of our method and iii) the 
robustness to disease effects of the proposed AssemblyNet. Moreover, we added 
additional ablation study and a new quality metric. Compared to [20], our contributions 
are: i) the use of prior knowledge based on fast atlas registration, ii) a knowledge 
sharing between CNNs using nearest neighbor transfer learning, iii) iterative 
refinement process based on a multiscale cascade of assemblies and iv) the use of 
student-teacher semi-supervised learning based on a well-designed auxiliary dataset. 
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2 Materials and Methods 
2.1 Method overview 
In AssemblyNet, both assemblies are composed of 3D U-Nets considered as 
“assembly members” (see Figure 1). Each member represents one territory (i.e., brain 
area) in the final vote. To this end, we used spatially localized networks where each 
U-Net only processes a sub-volume of the global volume, as done in [20]. Sub-volumes 
overlap each other, so the final segmentation results from an overcomplete 
aggregation of local votes. A majority vote is used to obtain the global segmentation. 
Moreover, each member can share knowledge with their nearest neighbor in the 
assembly. In particular, we propose a novel nearest neighbor transfer learning 
strategy, where weights of the spatially nearest U-Net are used to initialize the next U-
Net.  
 
In addition, we also propose to use prior knowledge on the expected final decision 
which can be viewed as the bill (i.e., draft law) submitted to an assembly for 
consideration. As prior knowledge, we decided to use nonlinearly registered Atlas 
prior.  
 
Finally, we also propose modeling communication between both assemblies using an 
innovative multiscale strategy. In AssemblyNet, we use a multiscale cascade of 
assemblies where the first assembly produces a coarse decision at 2×2×2 mm3. This 
coarse decision is then transmitted to the second assembly for analysis at 1×1×1 mm3. 
This amendment procedure is similar to an error correction or a refinement step. After 
consideration by both assemblies, the bill under consideration becomes a law which 
represents the final segmentation in our system.  
 

 
Figure 1: Illustration of the proposed AssemblyNet framework. Our method is based on two assemblies 
of 125 3D U-Nets integrated into a multiscale framework. The first assembly (in yellow) provides a coarse 
segmentation at 2×2×2 mm3. The second assembly (in purple) refines this coarse segmentation to 
produce the final segmentation at 1×1×1 mm3. Each 3D U-Net processes a different but overlapping area 
of the brain. The U-Nets in red in both Assemblies process the area indicated by red rectangles in the 
input images. The U-Nets in green process the area indicated by green rectangles. During training, the 
U-Nets in green and orange are initialized using the weights of the U-Nets in red by transfer learning. The 
output segmentations for each assembly are obtained by majority voting of the 125 3D U-Nets.     
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2.2 Datasets 
Training dataset: 45 T1w MRI from the OASIS dataset [26] manually labeled 
according to the BrainCOLOR protocol were used for training. The selected images 
were the same than the ones used in [20] . The age range was 18-96y for this dataset. 
This dataset, as provided by Neuromorphometrics, included several pre-processing 
steps. First, all the MRI scans were corrected for bias field inhomogeneity using [27]. 
Second, all the scans were registered along the anterior commissure (AC) and the 
posterior commissure (PC) using anatomical landmarks. Therefore, the original space 
of images was not the native space. The OASIS scan resolution was 1×1×1 mm3. 
 

Testing dataset: 19 T1w MRI manually labeled according to the BrainCOLOR protocol 
were used for testing. These MRI came from three different datasets: 5 from the OASIS 
dataset, the Colin27 atlas [28] and 13 from the CANDI database [29]. This testing 
dataset is the same one used in [20]. The age range was 20-89y for OASIS, 5-15y for 
CANDI and the age was 27y for Colin27. The OASIS and CANDI scans as provided 
by Neuromorphometrics included pre-processing (inhomogeneity correction; AC/PC 
registration). The resolution of CANDI scans was 0.94×1.5×0.94mm3. The Colin27 
atlas was in the MNI space at 0.5×0.5×0.5 mm3 (its original space) and included 
inhomogeneity correction, intensity normalization and averaging of multiple 
acquisitions. 
 

Scan-Rescan dataset: 8 T1w MRI (from 4 subjects) manually labeled according to 
the BrainCOLOR protocol were used for scan-rescan experiment. The same expert 
segmented both the scan and the rescan image. These MRI came from 2 different 
datasets: 3 from the OASIS dataset (not included in the training) and one from a patient 
with Alzheimer’s disease from the ADNI dataset [30]. The OASIS included pre-
processing and were in the AC/PC space while ADNI scans were in the native space 
at 1.2×0.94×0.94 mm3.  
 

Pathological dataset: 29 T1w MRI manually labeled according to the BrainCOLOR 
protocol were included in the pathological dataset. We did not use the rescan image 
of the AD patient described in the scan-rescan dataset. These MRI came from the 
ADNI dataset. There were 15 cognitively control subjects and 14 patients with 
Alzheimer’s disease in this dataset. The age of the subjects varied from 62y to 88y. 
The ADNI scans did not include pre-processing and thus were in their native space. 
 
During our experiments, we used the 132 anatomical labels consistent across subjects 
(see Tab 1 in supplementary material for the list). In addition to Neuromorphometrics 
datasets, we used external MRIs from several open access datasets for semi-
supervised learning.  
 

Lifespan dataset: 360 unlabeled T1w MRI were randomly selected under constraints 
from the dataset used in our previous BigData studies [31], [32] to build the lifespan 
dataset. This dataset was based on 9 datasets publicly available (C-MIND1, NDAR2, 
ABIDE3, ICBM4, IXI5, OASIS6, AIBL7, ADNI1 and ADNI28). From 1y to 90y, we selected 
2 females and 2 males for each age (i.e., 2F and 2M of 1 year old, 2F and 2M of 2 
years old and so on). Therefore, we obtained a balanced group with 50% of each 
gender uniformly distributed from 1y to 90y. We made sure that none of the training or 
testing subjects were selected in this auxiliary dataset. 

 
1 https://research.cchmc.org/c-mind/  
2 https://ndar.nih.gov  
3 http://fcon_1000.projects.nitrc.org/indi/abide/  
4 http://www.loni.usc.edu/ICBM/  
5 http://brain-development.org/ixi-dataset/ 
6 http://www.oasis-brains.org  
7 http://adni.loni.ucla.edu/research/protocols/mri-protocols  
8 www.loni.usc.edu  
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2.3 AssemblyNet framework 
Preprocessing: To homogenize input orientations and intensities, all the images were 
first preprocessed using the volBrain pipeline9 [33] with the following steps: i) denoising 
[34], ii) inhomogeneity correction [35], iii) affine registration into the MNI space 
(181×217×181 voxels at 1×1×1 mm3) [2], iv) tissue-based intensity normalization [36] 
and v) brain extraction [37]. Finally, image intensities were centralized and normalized 
within the brain mask and the background was set to zero. 
 

Atlas priors: To obtain priors knowledge on the expected results, we performed a 
nonlinear registration of an Atlas (based on the 45 training images) to the subject under 
consideration. To construct this atlas, we non-linearly registered the training cases to 
a reference – the MNI152 T1 template – using ANTS software [2]. The estimated non-
linear deformations were then applied to the manual segmentations. Finally, the 
warped manual segmentations were fused to construct the atlas labels by using a 
majority vote. The non-linear registration of the Atlas prior to the subject under study 
was done with an unsupervised deep learning framework similar to VoxelMorph trained 
on the lifespan dataset [38]. There are three main differences between VoxelMorph 
and our non-linear registration network. First, our network works on deformation fields 
at 2 mm resolution, which are internally interpolated to 1 mm resolution by the network. 
This step assumes that the deformation field is spatially smooth. This approach has 
two 2 benefits, the interpolation process imposes an intrinsic regularization and the 
smaller size of the volume enables to increase the number of filters at each 
convolutional layer level giving us almost ten times more learnable parameters 
(2,165,955 compared to the 259,675 for VoxelMorph). Second, our network is trained 
using non-skull-striped images contrary to VoxelMorph that requires this pre-
processing step. Finally, the used loss function is based on the mean absolute error of 
both image intensities and labels (last version of VoxelMorph can use also intensities 
and labels simultaneously, but this last version has been never released as far as we 
know).      
 

Assembly description: Each assembly was composed of 125 3D U-Nets equally 
distributed in the MNI space along each axis (i.e., 5 along x, y and z). In the following, 
we use U(x, y, z) " x, y, z Î [1..5] as the position of the U-Net in the assembly. We 
experimentally found that 5×5×5 U-Nets produced the best compromise between 
segmentation accuracy and computational time (see Results section). Each 3D U-Net 
processed a sub-volume large enough to ensure at least 50% of overlap between sub-
spaces. At the end, a majority vote was used to aggregate the local votes.  
 

Nearest neighbor transfer learning: To enable knowledge sharing between U-Nets 
within an assembly, we propose a new transfer learning where the weights of a trained 
U-Net are used to initialize nearest U-Nets in the assembly (i.e., U-Nets processing 
overlapping sub-volumes and thus dealing with similar anatomy). At the beginning, we 
trained a first U-Net from scratch in an image corner (e.g., the red U-Net at position 
U(1,1,1) in Figure 1). The weights of this first trained U-Net were copied to the next U-
Net on the same line (e.g., the green U-Net at position U(2,1,1) in Figure 1). This 
second U-Net was then used to initialize the next network on the same line and so on. 
Once the first line was trained, each U-Net of the second line U(x,2,1) was initialized 
with the U-Net at the same position on the previous line U(x,1,1) and so on (e.g., the 
orange U-Net was initialized with weights of the red U-Net). Finally, Finally, once all 
the U-Nets on the same plan U(x,y,1) were trained, each U-Net of the next plan 
U(x,y,2) was initialized with the U-Net at the same position on the previous plan 
U(x,y,1) and so on. During the transfer learning, we copied only the weights of the 
descending/contraction path of the U-Net architecture.  
 

 
9 https://www.volbrain.upv.es  
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Multiscale cascade of assemblies: To make our decision-making system faster and 
more robust, we decided to use a multiscale framework. Consequently, the first 
assembly at 2×2×2mm3 produced a coarse segmentation. Afterwards, an up-sampling 
to 1×1×1mm3 of this segmentation was performed using nearest neighbor 
interpolation. The up-sampled segmentation at 1×1×1mm3 of the first assembly was 
then used as an additional input in the second assembly. Consequently, the second 
assembly had three 3D sub-volumes as input (i.e., T1w, Atlas priors and up-sampled 
coarse segmentation all at 1×1×1mm3). 

2.4 Ensemble framework 
Ensemble is a well-known paradigm in machine learning that is used to improve the 
global performance of a method. This improvement is obtained by training several 
models before fusing them. Over the past decades, ensemble learning has been 
extensively studied, specially to deal with small sample size and complex problems 
[39]. In brain segmentation, most of the recent DL methods are based on multi-view 
ensemble [11], [17], [19]. In such framework, 2D models along axial, coronal and 
sagittal view are trained before fusing their outputs to enforce 3D consistency. A 
variant consists in fusing 2D models and 3D models [19], [40]. It is also possible to 
fuse predictions of models working at different scales [41]. Moreover, there exist 
frameworks based on aggregation of predictions from multiple models with different 
architectures [42] or trained with different subset of the training dataset [43]. In 
addition, dropout has been proposed to generate several instances of a model at test 
time to reduce over-fitting [39]. However, all these methods are based on few models 
(typically <10 networks). The investigation of using a larger number of networks is 
recent in DL for brain segmentation. In [20], SLANT strategy proposes to train more 
models (>10) on different areas of the brain that enforces model diversity before fusing 
them. The use of a large ensemble of CNNs has yielded state-of-the-art results for 
fine-grained whole brain segmentation.  
 

In this paper, the proposed AssemblyNet includes almost all these strategies in a 
single framework. First, AssemblyNet includes a multiscale cascade of assemblies that 
allows to take advantage of models trained at different resolutions. Second, each U-
Net is trained with a different set for training and validation to take advantage of all the 
available training data. Third, each U-Net is trained on a different but overlapping brain 
area that ensures models diversity as in SLANT. In addition, we use dropout at test 
time to simulate several instances of each U-Net that reduces over-fitting. We also 
performed temporal averaging of model weights based on snapshot ensembles [44]. 
Finally, compared to [20], we propose to use a much larger number (from 27 to 250) 
of more compact U-Nets to better deal with limited training data. 

2.5 Semi-supervised learning framework 
In this study, we also investigated the use of semi-supervised learning (SSL) to further 
improve segmentation accuracy. SSL aims at using a small amount of labeled data in 
combination with a large number of unlabeled images to achieve higher performance. 
In medical image analysis, these techniques are particularly interesting to overcome 
the limited amount of training data and the complexity of the labeling process. 
 

Over the past years, several strategies have been proposed to make SSL efficient 
within DL framework mainly based on the teacher-student paradigm. Within this 
paradigm, SSL methods can integrate a consistency term on the predictions of 
unlabeled samples to force the student network not to diverge [44], [45]. This idea is 
usually based on a “Mean teacher” by using exponential moving averages over the 
predictions or the model parameters at different steps during training [46]. Another 
teacher-student strategy consists in using the available labeled data to generate weak 
labels (also called pseudo labels) for unlabeled examples using a teacher model. This 
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weak labels are in turn used as training dataset to improve the robustness of the 
student network [47]. Afterwards, the student network is fine-tuned on the original 
labeled data to avoid error propagation.  
 

SSL strategies have been successfully applied to improve segmentation results in 
different medical applications [48]–[50]. In our context of whole brain segmentation, 
the authors of  [20], [22] proposed to use auxiliary datasets segmented with traditional 
tools such as Freesurfer [51] or non-local spatial staple label fusion (NLSS) [6] to 
improve their segmentation framework based on deep learning. However, such 
methods can require impractical computational burden (e.g., 21 CPU years in [20]) and 
classical tools may provide suboptimal auxiliary segmentations.  
 
Here, we take inspiration of the teacher-student paradigm from [47] to leverage the 
fast processing capabilities and high segmentation accuracy of the proposed 
AssemblyNet. In our SSL framework, an AssemblyNet teacher – trained on the 45 
training images – was first used to segment unlabeled images (i.e., the 360 images of 
the lifespan dataset). Then, these 360 pseudo-labeled images were used to train from 
scratch an AssemblyNet student. At the end, the AssemblyNet student was fine-tuned 
on the 45 manual segmentations of the training dataset. As shown in [47], this fine-
tuning step is able to limit error propagation within SSL framework. During our 
experiments, we investigated the iteration of this procedure considering that the 
obtained AssemblyNet student could be a good teacher for a second student 
generation. In our SSL framework, we took care to build the unlabeled images dataset 
balanced in age and gender in order to limit bias introduction in the pseudo-labeled 
population. 

2.6 Implementation details 
Data augmentation: First, the images of the training and lifespan datasets were 
flipped along mid sagittal plane in the MNI space. Then, we used MixUp data 
augmentation during training to minimize overfitting problems [52]. This method 
performs a linear interpolation of a random pair of training examples and their 
corresponding labels. 
 

Training framework: For all the networks, we used the 3D U-Net architecture 
proposed in [20], but with a lower number of filters. Instead of using a basis of 32 filters 
of 3×3×3 – 32 for the first layer, 64 for the second and so on – we selected a basis of 
24 filters of 3×3×3 to reduce by 25% the network size. We experimentally found that 
this setting reduced memory consumption without impacting performance. The used 
architecture is presented in Figure 2. Each block was composed of batch 
normalization, convolution and ReLU activation. The skip connections between 
encoder and decoder were based on concatenation. In addition, dropout was done 
between each level of the encoder. Moreover, upsampling in the decoder was based 
on trilinear interpolation. Finally, a SoftMax was done before performing argmax to 
obtain the final label for each voxel.  
 

For all the U-Nets, we used the same parameters: batch size = 1, optimizer = Adam, 
epoch = 100, loss = Dice and dropout = 0.5 after each block of the descending path. 
For the U-Nets of the first assembly at 2×2×2 mm3, we used input resolution = 
32×48×32 voxels and input channel = 2 (i.e., T1w and Atlas priors). For the U-Nets of 
the second assembly at 1×1×1 mm3, we used input resolution = 64×72×64 voxels and 
input channel = 3 (i.e., T1w, Atlas priors and up-sampled coarse segmentation). In 
addition, to compensate for the small batch size, we performed temporal averaging of 
model weights based on snapshot ensembles [44]. At the end of the 100 epochs, we 
performed additional 20 epochs where the model estimated at each epoch is averaged 
with previous ones using a moving average. Such average of model weights along the 
optimization trajectory leads to better generalization than usual training [53]. For the 
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SSL step, we used only 20 epochs for normal optimization and 10 epochs for moving 
average. Finally, we also performed dropout at test time [54]. For each U-Net, we 
generated 3 different outputs before averaging them (with dropout layer active). Such 
method helps reducing variance of the networks. As in [20], the experiments were done 
with an NVIDIA Titan Xp with 12 GB memory and thus processing times are 
comparable. 
 

Computational time: The preprocessing steps take around 90 seconds. The non-
linear registration of the atlas takes less than 5 seconds. The first assembly at 2×2×2 
mm3 requires 3 minutes to segment an image while the second assembly at 1×1×1 
mm3 requires 5 minutes. At the end, the final segmentation is registered back to the 
original space using the inverse affine transform estimated during preprocessing. This 
interpolation takes around 30 seconds. Therefore, the full AssemblyNet process takes 
around 10 minutes including preprocessing, segmentation, and inverse registration 
back to the original space. 
 

 
Figure 2: Illustration of the used U-Net architecture. The number of input channels (NC) depends on the 
considered assembly (i.e., NC=2 at 2×2×2 mm3 and NC=3 at 1×1×1 mm3). Each block is composed of 
batch normalization (BN), convolution and ReLU activation. The number of 3x3x3 filters is indicated on 
the top of each block. The final output size depends on the number of structures (NS) in the considered 
sub-volume. 

2.7 Validation framework 
First, for each testing subject, we estimated the average Dice coefficient on the 132 
considered anatomical labels (without background) in the original space. Afterwards, 
we estimated the global mean Dice in % over the 19 images of the testing dataset. In 
this experiment, we compared AssemblyNet with several state-of-the-art methods. 
First, the patch-based joint label fusion (JLF) [4] was used as reference. In addition, 
we included U-Net [24], SLANT-8 and SLANT-27 methods as proposed in [20]. 
SLANT-8 is based on 8 U-Nets processing non-overlapping sub-volumes of 
86×110×78 voxels while SLANT-27 is based on 27 U-Nets processing overlapping 
sub-volumes 96×128×88 voxels. All these methods were trained on the same 45 
training images described in the section datasets. Moreover, all these methods used 
the following pre-processing steps: i) affine registration to MNI space using NiftyReg 
[55], ii) bias filed correction using N4 [35] and iii) intensity harmonization using 
regression-based normalization. In addition, we included SLANT-27 FT trained on 
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5111 auxiliary images segmented using NLSS [7] and fined tuned on the 45 training 
images. These are the best published results for fine-grained whole brain 
segmentation to our knowledge. Afterwards, to show the impact of affine registration 
to MNI space, we also presented the results of “naïve U-Net” working directly in their 
original space. For all these methods, we report the results published in [20]. We also 
used the docker implementation of SLANT-2710 to produce segmentations of all the 
considered datasets. Finally, we also compared mean surface distance between 
AssemblyNet, AssemblyNet SSL (with semi-supervised learning) and SLANT-27 FT. 
 

For the scan-rescan reliability experiment, we rigidly registered the re-scan image into 
the original space of the scan images [2]. We then interpolated the re-scan 
segmentations into the original space of the scan images using the estimated 
transformation matrix. By this way, we estimated the Dice coefficients between both 
manual segmentations (i.e., intra-rater consistency) and both automatic 
segmentations (i.e., intra-method consistency). Moreover, we estimated the method-
expert consistency as the Dice coefficients between the automatic segmentation of the 
rescan images and the manual segmentation of the scan image.  
 

For the experiment on the robustness to disease effects, we first computed the Dice 
on the 29 ADNI subjects. We then compared the Dice coefficients obtained for 
cognitively normal (CN) subjects and patients with Alzheimer’s Disease (AD) to study 
the impact of pathology on segmentation accuracy.  
 

For all these experiments, we used one-sided non-parametric Wilcoxon signed-rank 
test at 95% of confidence to assess the significance of Dice improvement as in [20]. 
Moreover, we used one-sided Mann-Whitney rank test at 95% of confidence to assess 
the significance of Dice decrease between the AD group compared to the CN group. 

3 Results 
3.1 AssemblyNet performance 
First, we evaluated the proposed contributions (see Table 1). Compared to baseline 
results at 2×2×2 mm3 (Dice=67.4%), the use of Atlas prior provided a gain of 0.3 
percentage point (pp) in terms of mean Dice. Moreover, the combination of Atlas prior 
and transfer learning improved by 0.5 pp the baseline mean Dice. In addition, 
multiscale cascade of assemblies increased by 1.1 pp the mean Dice obtained with 
Assembly at 1×1×1 mm3 without multiscale cascade (Dice=72.2%). Finally, 
AssemblyNet outperformed by 5.9 pp the mean Dice obtained with baseline Assembly 
at 2×2×2 mm3. The Dice coefficients produced by AssemblyNet were significantly 
better than the Dice coefficients produced by all the considered alternatives. Note 
these results were obtained using only 45 training cases. 
Table 1: Evaluation of the proposed contributions. The mean Dice (std) is evaluated on the 19 images of 
the test dataset in the original space for the 132 considered labels (without background). Testing time 
includes image preprocessing and registration back to the original space. * indicates a significant lower 
Dice compared to AssemblyNet using a Wilcoxon test. 

Methods Atlas 
prior 

Transfer 
learning 

Multi-
scale 

Dice in % 
(std) 

Training 
time 

Testing 
time 

Assembly at 2×2×2 mm3 No No - 67.4 (3.4)* 29h 5min 
Assembly at 2×2×2 mm3 Yes No - 67.7 (3.3)* 29h 5min 
Assembly at 2×2×2 mm3 Yes Yes - 67.9 (3.3)* 29h 5min 
Assembly at 1×1×1 mm3 Yes Yes No 72.2 (3.8)* 6 days 7min 
AssemblyNet Yes Yes Yes 73.3 (4.2) 7 days 10min 

 
10 https://github.com/MASILab/SLANTbrainSeg  
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Afterwards, we studied the impact of the number of U-nets on the performance of the 
Assembly at 2×2×2 mm3 with atlas prior and transfer learning (see Table 2). During 
this experience, the accuracy reached a plateau from 125 U-Nets. Using more 
networks did not provide additional improvements while increasing computational time. 
Therefore, in the following, 125 was used as the default number of networks in each 
assembly.  

Table 2: Impact of the number of U-nets on the Assembly at 2×2×2 mm3 with atlas prior and transfer 
learning. The mean Dice (std) is evaluated on the 19 images of the test dataset in the original space for 
the 132 considered labels (without background). Testing time includes image preprocessing and 
registration back to the original space. * indicates a significant lower Dice compared to AssemblyNet 
based on 343 U-Nets using a Wilcoxon test. 

Methods Number of U-Nets Dice in % (std) Training 
time 

Testing 
time 

Assembly at 2×2×2 mm3 27 (3×3×3) 66.1 (3.4)* 6h 3min 
Assembly at 2×2×2 mm3 64 (4×4×4) 67.6 (3.4)* 15h 3min 
Assembly at 2×2×2 mm3 125 (5×5×5) 67.9 (3.3) 29h 5min 
Assembly at 2×2×2 mm3 216 (6×6×6) 67.9 (3.3) 2 days 7min 
Assembly at 2×2×2 mm3 343 (7×7×7) 67.9 (3.3) 3 days 10min 

 

3.2 Impact of semi-supervised learning  
Second, we evaluated the impact of the proposed teacher-student semi-supervised 
learning (SSL) framework (see Table 3). The used of the lifespan dataset – labeled 
with teacher – in the training of the student lead to an improvement of 0.6pp of mean 
Dice compared to the mean Dice of the teacher (Dice=73.3%). The fine-tuning (FT) 
step further increased the mean Dice by 0.3 pp. These results are in line with previous 
literature  [20], [47] on the role of the FT step to limit error propagation within semi-
supervised learning framework. Finally, the second iteration after FT produced 
marginal improvement and lead to a mean Dice of 74.0%. This improvement was not 
significant. Therefore, in the following, we used the first student generation since the 
time required for the second iteration is not justified by the performance improvement. 
Table 3: Impact of the proposed semi-supervised learning framework on the 19 images of the testing 
dataset. The mean Dice (std) is evaluated on the 132 considered labels (without background) in the 
original space. * indicates a significant lower Dice compared to second generation of AssemblyNet SSL 
using a Wilcoxon test. 

Methods Training 
images 

Dice in % 
(std) 

Training 
time 

Library 
extension time 

AssemblyNet 
Teacher 45 73.3 (4.2)* 7 days 0s 

AssemblyNet SSL 
First student generation 360 73.6 (4.1)* 12 days 2.5 days 

AssemblyNet SSL 
First student generation 360 + FT 45 73.9 (4.0) 14 days 2.5 days 

AssemblyNet SSL 
Second student generation 360 73.9 (4.0) 26 days 5 days 

AssemblyNet SSL 
Second student generation 360 + FT 45 74.0 (3.9) 28 days 5 days 

3.3 Comparison with state-of-the-art methods 
We compared AssemblyNet with state-of-the-art methods (see Table 4). When 
considering only methods trained with 45 images, AssemblyNet improved mean Dice 
obtained with U-Net and SLANT-8 by 16.3 pp, JLF by 9.9 pp and SLANT-27 by 7.2 pp. 
AssemblyNet was also efficient in terms of training and testing times compared to 
SLANT-based methods. It has to be noted that the Assembly at 2×2×2 mm 
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outperformed all the methods using 45 training images (except AssemblyNet) while 
working at low resolution.  
Table 4: Comparison with state-of-the-art methods on the 19 images of the testing dataset. The mean 
Dice is evaluated on the 132 considered labels (without background) in the original space. * indicates a 
significant lower Dice compared to AssemblyNet SSL using a Wilcoxon test when compared to SLANT-
27 FT (docker) AssemblyNet and the Assembly at 2×2×2 mm3. 

Methods Training 
images 

Dice in % 
(std) 

Training 
time 

Testing 
time 

Library 
extension time 

Naïve U-Net [24] 45 41.0 33h 1min 0s 
U-Net [20] 45 57.0 33h 8min 0s 
SLANT-8 [20] 45 57.0 11 days 10min 0s 
JLF [4] 45 63.4 0s 34h 0s 
SLANT-27 [20] 45 66.1 42 days 15min 0s 

SLANT-27 FT  [20] 5111 + FT 
45 72.9 27 days 15min 21 years a 

Assembly at 2×2×2 mm3 45 67.9 (3.3)* 29h 5min 0s 

SLANT-27 FT (docker) 5111 + FT 
45 72.6 (2.8)* 27 days 15min 21 years a 

AssemblyNet 45 73.3 (4.2)* 7 days 10min 0s 
AssemblyNet SSL 360 + FT 45 73.9 (4.0) 14 days 10min 2.5 days 

a Library extension time represents the CPU time required to segment 5111 MRI using NLSS (i.e., 
34h×5111). This number of 21 CPU years is reported in  [20].  
 

In addition, compared to SLANT-27 FT, AssemblyNet provided better results without 
library extension while being faster to train and to execute. Using our SSL framework 
based on 360+45 images, AssemblyNet SSL obtained a gain of 1pp compared to 
SLANT-27 FT trained over 5111+45 images. According to [20], their library extension 
required 21 CPU years to be completed. Consequently, such an approach is 
impractical or very costly using a cloud-based solution. The proposed SSL framework 
is more practical in term of time and resources. Finally, our AssemblyNet SSL was 
significantly better than AssemblyNet and SLANT-27 FT (docker). In our framework, 
SLANT-27 FT (docker) obtained slightly lower results than the ones published in the 
original paper [20]. This may come from hardware and environment differences. 
 

In addition, we analyzed the performance of the methods according to the dataset. 
Mean Dice coefficients obtained on each testing dataset (i.e., OASIS, CANDI and 
Colin27) are provided in Table 5 (see Fig 1-4 in supplementary material for boxplots 
of Dice distributions).  
Table 5: Comparison with state-of-the-art methods using Dice on the different testing datasets (5 adult 
scans from OASIS, 13 child scans from CANDI child and the high-resolution Colin27 image based on 
scans average). Using Wilcoxon tests * indicates a significant lower Dice compared to AssemblyNet SSL 
when compared to SLANT-27 FT (docker) and AssemblyNet.  

Methods Training 
images 

OASIS 
Dice in % 

(std) 

CANDI  
Dice in % 

(std) 

Colin27  
Dice in % 

Naïve U-Net [24] 45 60.6 (0.6) 37.5 (4.3) 0.0 
U-Net [20] 45 70.6 (0.9) 51.4 (8.1) 62.1 
SLANT-8  [20] 45 69.9 (1.4) 51.9 (7.0) 59.7 
JLF [4] 45 74.6 (0.9) 59.0 (3.3) 64.6 
SLANT-27  [20] 45 76.6 (0.8) 62.1 (6.2) 66.5 
SLANT-27 FT  [20] 5111 + FT 45 77.6 (1.2) 71.1 (2.3) 73.2 

SLANT-27 FT (docker) 5111 + FT 45 75.9 (1.7)* 71.3 (2.2)* 73.5 
AssemblyNet 45 78.8 (1.7) 71.1 (2.9)*  74.2 
AssemblyNet SSL 360 + FT 45 79.0 (2.0) 71.9 (2.9) 75.0 
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As expected, all the methods performed better on adult scans from the OASIS dataset 
since the training dataset comes from the same cohort. Moreover, all the images were 
acquired with the same protocol on the same scanner and provided in the same space. 
First, we can note the good performance of JLF compared to U-Net and SLANT-8. 
Moreover, when considering methods trained with 45 training, AssemblyNet 
outperformed U-Net by 8.2 pp, JLF by 4.4 pp and SLANT-27 by 1.2 pp of mean Dice. 
When considering all the methods, AssemblyNet SSL obtained significantly better Dice 
than SLANT-27 FT (docker). It has to be noted that in [20], the authors have shown 
that the SLANT-27 FT significantly outperformed U-Net, JLF and SLANT-8. Finally, on 
the OASIS images, using SSL did not significantly improve the AssemblyNet results. 
 

On child scans from the CANDI dataset acquired with a different protocol, we can first 
note a dramatic drop in performance for all the methods except for AssemblyNet, 
AssemblyNet SSL and SLANT-27 FT. Moreover, when considering methods trained 
with 45 training, AssemblyNet outperformed U-Net by 19.7 pp, JLF by 19.2 pp and 
SLANT-27 by 9 pp of mean Dice. When considering all the methods, AssemblyNet 
SSL obtained significantly better Dice than AssemblyNet and SLANT-27 FT (docker).  
 

On the high-resolution Colin27 image, we also observed an important decrease of 
performance for all the methods except for AssemblyNet, AssemblyNet SSL and 
SLANT-27 FT. As for CANDI dataset, AssemblyNet obtained the best segmentation 
accuracy with or without SSL on this dataset.  
 

The comparison between Naïve U-Net (working in the original space) and U-Net 
(working in the MNI space) showed that performing an affine registration to MNI 
produced a gain of 16 pp (see Table 4). On the OASIS dataset (in the AC/PC space), 
the training and testing spaces were similar and thus the naïve U-Net obtained descent 
results (see Table 5). However, on the Colin27 atlas in the MNI space at 
0.5×0.5×0.5mm3, the Naïve U-Net obtained a Dice=0 since this Atlas is not in the 
training space. While slower, using an additional affine registration to MNI space 
allowed to improve performance and to be robust to image space and resolution.  
 

Finally, we compared mean surface distance (MSD) from manual segmentations to 
automatic segmentations on AssemblyNet, AssemblyNet SSL and SLANT-27 FT (see 
Table 6 and Fig 5-8 in supplementary material). Average mean surface distance 
showed similar trends than Dice scores. AssemblyNet SSL produced significant lower 
MSD in all the considered cases except for OASIS dataset compared to AssemblyNet.   
Table 6: Comparison with state-of-the-art methods using mean surface distance (MSD) on the different 
testing datasets (5 adult scans from OASIS, 13 child scans from CANDI child and the high-resolution 
Colin27 image based on scans average). Using Wilcoxon tests * indicates a significant greater MSD 
compared to AssemblyNet SSL. 

Methods OASIS 
MSD in mm 

CANDI 
MSD in mm  

Colin27 
MSD in mm 

Global 
MSD in mm 

SLANT-27 FT (docker) 0.699 (0.076)* 1.062 (0.098)* 0.242 0.923 (0.243)* 

AssemblyNet 0.550 (0.058) 1.028 (0.153)* 0.212 0.859 (0.289)* 

AssemblyNet SSL 0.553 (0.067) 0.996 (0.134) 0.206 0.838 (0.270) 

 
As an illustration, Figure 3 shows the segmentations of the central slides in the original 
space obtained by SLANT-27 FT (docker) and AssemblyNet SSL on the first subject 
of the testing dataset (ID=1120_3). Both methods provided good segmentations 
although AssemblyNet SSL segmentation was less smooth especially around sulci 
(e.g., cerebellum – see red ellipses). Moreover, we can observe an over segmentation 
of cortical gray matter in SLANT-27 FT segmentation as visible in the error map where 
structures appeared (see green ellipses). Finally, this figure shows the staircasing 
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artifacts present in the human segmentation (e.g., pallidum – see the pink ellipses) 
while automatic methods were more regular and consistent.   
 

 
Figure 3: Example of segmentations in the original space for the first testing subject (ID=1120_3). First 
rows: sagittal; axial and coronal views for the T1w MRI.  Second row: manual segmentation produced by 
the expert. Third row: segmentation obtained by our AssemblyNet SSL. Fourth row: segmentation 
obtained by SLANT-27 FT (docker). Fifth row: binary difference between manual and AssemblyNet SSL 
segmentations. Last row: binary difference between manual and SLANT-27 FT (docker) segmentations. 
Colored ellipses indicate areas of interest 
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3.4 Scan-rescan consistency 
The study of segmentation reproducibility produced by a segmentation method is also 
highly important especially in medical imaging. Therefore, we carried out a scan-
rescan experiment to investigate the consistency and reliability of the proposed 
method. The results on the 4 images of the scan-rescan dataset are provided in Table 
7. It has to be highlighted that there are variations between both acquisitions due to 
patient’s motion, distortion, inhomogeneity and noise. Therefore, agreement between 
both acquisitions is not expected to be perfect but higher Dice indicates better method 
stability, consistency and reliability. 
 

Table 7: Reliability study on the scan-rescan datasets (3 adult scans from OASIS and one scan of a 
patient with AD from ADNI).  The intra-method consistency is the mean Dice between the automatic 
segmentations obtained on the scan and rescan images. The Expert-Method consistency is the mean 
Dice between the automatic segmentation on the rescan image and the manual segmentation of the scan 
image. The Dice coefficients obtained on the scan and the rescan images are averaged. The intra-rater 
consistency is the mean Dice between the manual segmentations obtained on the scan and rescan 
images. Using Wilcoxon tests * indicates a significant lower Dice compared to AssemblyNet SSL. 

Methods Training 
images 

Intra-method 
consistency  

Dice in % (std) 

Intra-rater 
consistency 

Dice in % 
(std) 

Expert-Method 
consistency 

Dice in % (std) 

SLANT-27 FT (docker) 5111 + FT 45 91.7 (1.5)* 

76.8 (4.1) 

72.9 (1.7)* 

AssemblyNet 45 92.0 (1.8)* 75.6 (1.7) 

AssemblyNet SSL 360 + FT 45 92.8 (1.8) 75.8 (1.9) 

 
First, we estimated the consistency of the segmentations provided by SLANT-27 FT 
(docker), AssemblyNet, AssemblyNet SSL and the expert on the scan and the rescan 
images. As expected, we can note that automatic methods were much more consistent 
(>90% of Dice) than the expert who obtained a scan-rescan segmentation consistency 
of 76.8% of Dice. Moreover, we can see that AssemblyNet was more consistent than 
SLANT-27 FT especially when using the proposed teacher-student SSL framework. 
The method consistency of AssemblyNet SSL was significantly higher than the 
SLANT-27 FT (docker) and AssemblyNet. 
 
In addition, we estimated the Expert-Method consistency as the mean Dice coefficients 
between the automatic segmentation on the rescan image and the manual 
segmentation of the scan image. The Expert-Method consistency of AssemblyNet SSL 
was significantly higher than the consistency of SLANT-27 FT (docker) but not than 
the consistency of AssemblyNet. Finally, the Expert-Method consistencies obtained by 
automatic methods were not significantly lower than the intra-expert consistency 
although this difference was almost significant for SLANT-27 FT docker (p=0.36 for 
AssemblyNet SSL, p=0.23 for AssemblyNet and p=0.07 for SLANT-27 FT).  

3.5 Robustness to disease effects 
The last part of our validation is dedicated to robustness to disease effects. To this 
end, we compared SLANT-27 FT (docker), AssemblyNet and AssemblyNet SSL on 
the pathological dataset composed of CN subjects and AD patients.  
 
First, we estimated the mean Dice for both groups (see Table 8). For the CN group, 
AssemblyNet SSL obtained a significantly better Dice than both other methods. For 
the AD group, we obtained similar results although the improvement obtained by 
AssemblyNet SSL was higher for AD group (2.2 pp) than for the CN group (1.7 pp) 
compared to SLANT-27 FT (docker).  
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In addition, we compared the accuracy between CN and AD groups for the three 
methods. We found no significant differences between groups for all the methods 
although this difference was almost significant for SLANT-27 FT docker (p=0.31 for 
AssemblyNet SSL, p=0.18 for AssemblyNet and p=0.06 for SLANT-27 FT). 
 

Finally, AssemblyNet obtained a global Dice 73.1% without SSL and 73.6% with SSL, 
while SLANT-27 FT obtained 71.6%. The results of AssemblyNet SSL were 
significantly better than the results obtained with both other methods. 
 

Table 8: Methods comparison on the pathological dataset (29 scans from the ADNI dataset including 15 
CN and 14 patients with AD). * indicates a significant lower Dice compared to AssemblyNet SSL using 
Wilcoxon tests. 

Methods Training 
images 

CN 
Dice in % 

(std) 

AD 
Dice in % 

(std) 

ADNI 
Dice in % 

(std) 
SLANT-27 FT 
(docker) 5111 + FT 45 72.3 (1.6)* 71.0 (2.6)* 71.6 (2.2)* 

AssemblyNet 45 73.6 (1.6)* 72.6 (2.6)* 73.1 (2.2)* 

AssemblyNet SSL 360 + FT 45 74.0 (1.5) 73.2 (2.5) 73.6 (2.1) 

4 Discussion 
In this work, we presented a novel whole brain segmentation framework based on a 
large number of 3D CNN (i.e., 250 U-Nets) called AssemblyNet. First, we showed that 
the use of Atlas prior, nearest neighbor transfer learning and multiscale cascade of 
Assemblies enable to improve global segmentation accuracy. In further work 
alternative options could be investigated. First, atlas prior could be replaced by fast 
multi-atlas prior. Thanks to nonlinear registration methods based on deep learning, 
such prior is no more too expensive. Moreover, more advanced communication 
between assembly members should be investigated. Recent advances in multi-agent 
reinforcement learning seem a promising way [56]. Finally, in this paper, we focused 
only on the optimal organization of a large group of CNNs without studying the optimal 
assembly composition. Additional works should investigate this point, for instance by 
introducing model diversity in the assembly.   
 
Second, we studied the impact of the proposed SSL based on a teacher-student 
paradigm. We showed that using few hundreds of well-balanced unlabeled data could 
significantly improve the results of AssemblyNet in all the cases (i.e., unseen 
acquisition protocol, age period and pathology). Compared to previous methods using 
larger auxiliary datasets labelled with classical tools [20], [22], the proposed SSL 
framework is more practical in terms of computational time and resources. However, 
SSL is currently receiving special attention in deep learning community. Consequently 
new paradigms should be considered [57], [58].   
 
Afterwards, we compared our AssemblyNet with state-of-the-art methods. We 
demonstrated the high performance of our method in terms of segmentation accuracy 
and computational time. First, these experiments demonstrated the advantage of using 
several CNNs to segment the whole brain since SLANT-27 and AssemblyNet clearly 
outperformed the use of a single U-Net. Moreover, these results showed that using a 
larger number of simpler CNNs within a multiscale framework is an efficient strategy. 
While for OASIS we obtained Dice higher than intra-expert consistency, the accuracy 
on the CANDI dataset is still limited. This can come from several factors such as the 
lower image quality (e.g., more motion artifacts in child images) or the larger distance 
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between adult training dataset and this child dataset. These points should be deeper 
investigated in future whole brain segmentation methods. In terms of computational 
time, our method could be further improved by using several GPUs. At training time, 
once the first U-Net is trained, several following U-Nets can be trained in parallel 
despite our transfer learning strategy. At testing time, AssemblyNet can be fully 
parallelized and thus the processing time could be drastically reduced using multiple 
GPUs.  
 
In addition, we investigated the scan-rescan consistency of the proposed method. We 
showed that the intra-method consistency of our method reached 92.8% while intra-
rater consistency was limited to 76.8%. This result clearly demonstrates that our 
automatic method segments the whole brain in a more consistent manner than a 
human expert. Moreover, we show that the expert-method consistency obtained with 
our method is not significantly lower than the intra-rater consistency, which is an 
encouraging result. However, these results were obtained using only 4 scan-rescan 
subjects. In addition, the Neuromorphometrics dataset does not contain material to 
evaluate method reproducibility (same image segmented twice by the same expert). 
Such data would have been useful to evaluate if automatic methods had reached 
human variability. Finally, these results raise the question of using human 
segmentation as “gold standard” with a consistency lower than 80%. Semi-manual 
segmentations could be considered in order to reduce intra-rater variability. 
 
Finally, we studied the robustness of AssemblyNet to pathology. To this end, we 
compared its accuracy on CN and AD groups. We observed a small but non-significant 
decrease of Dice for the AD group compared to CN group. Moreover, compared to 
SLANT-27, AssemblyNet was less impacted by the presence of the pathology. This is 
a first step towards a more extensive validation with other pathologies.   

5 Conclusion 
In this paper, we proposed to use a large number of CNNs to perform whole brain 
segmentation. We investigated how to organize this large ensemble of CNNs to 
accurately segment the brain. To this end, we designed a novel deep decision-making 
process called AssemblyNet based on two assemblies of 125 3D U-Nets. Our 
validation showed the very competitive results of AssemblyNet compared to state-of-
the-art methods. We also demonstrated that AssemblyNet is very efficient to deal with 
limited training data and to accurately achieve segmentation in a practical training and 
testing times. Finally, we demonstrated the interest of semi-supervised learning to 
improve the performance of our method on unseen acquisition protocol, age period 
and pathology. 
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