
HAL Id: hal-02930949
https://hal.science/hal-02930949v1

Preprint submitted on 4 Sep 2020 (v1), last revised 8 Nov 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representativity and Consistency Measures for Deep
Neural Network Explanations

Thomas Fel, David Vigouroux

To cite this version:
Thomas Fel, David Vigouroux. Representativity and Consistency Measures for Deep Neural Network
Explanations. 2020. �hal-02930949v1�

https://hal.science/hal-02930949v1
https://hal.archives-ouvertes.fr


Representativity & Consistency Measures for Deep Neural Network
Explanations

Thomas FEL
IRT Saint-Exupéry
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Abstract

The adoption of machine learning in critical contexts re-
quires a reliable explanation of why the algorithm makes cer-
tain predictions. To address this issue, many methods have
been proposed to explain the predictions of these black box
models. Despite the choice of those many methods, little ef-
fort has been made to ensure that the explanations produced
are objectively relevant. While it is possible to establish a
number of desirable properties of a good explanation, it is
more difficult to evaluate them. As a result, no measures are
actually associated with the properties of consistency and
generalization of explanations. We are introducing a new
procedure to compute two new measures, Relative Consis-
tency ReCo and Mean Generalization MeGe, respectively
for consistency and generalization of explanations. Our
results on several image classification datasets using pro-
gressively degraded models allow us to validate empirically
the reliability of those measures. We compare the results
obtained with those of existing measures. Finally we demon-
strate the potential of the measures by applying them to
different families of models, revealing an interesting link be-
tween gradient-based explanations methods and 1-Lipschitz
networks.

1. Introduction

Machine learning techniques such as deep neural net-
works have become essential in multiple domains such as
image classification, language processing and speech recog-
nition. These techniques have achieved excellent predictive
capability, allowing them to match human performances in
many cases [18, 33].

However, their advantages come with major drawbacks,
especially concerning the difficulty of interpreting their deci-
sions, since they are black box models [20]. This problem
is a serious obstacle to the adoption of these systems in
safety-critical contexts such as aeronautics or medicine.

Recently, many strategies have been proposed to help

users understand the underlying logics that led those models
to a particular decision. While some methods offer expla-
nations that are satisfactory to users, they do not, however,
reflect the real behaviour of the model and some works has
shown the potential pitfalls associated with current explana-
tions methods [1, 11]. The explanation that was intended to
provide confidence, is itself questionable.

Those observations have given rise to the need for an
objective assessment of the explanations produced by these
methods, thus enabling benchmarks and baselines to be estab-
lished. To do this, one approach advocated by various works
is to ensure that the explanations satisfy a certain number of
properties (or axioms), such as Fidelity, Stability, Represen-
tativity or Consistency. Since some works [42, 22, 29, 12, 2]
propose an exhaustive list of these properties, a good expla-
nation could then be defined as quantitatively satisfactory
according to a coherent set of measurements specific to each
of these properties.

This work proposes a methodology applicable to a large
family of models, based on distance between explanations
coming from the same sample. We use this new methodology
to introduces two new global measures, Relative Consistency
(ReCo) and Mean Generalizability (MeGe). ReCo is mo-
tivated by the idea that one explanation should not be used
to justify two contradictory decisions. MeGe is intended to
measure the ability of a model to derive general rules from
its explanations.

We experiment with this procedure to evaluate the two
measures on different datasets. The results we obtain be-
tween normally trained models and degraded models allow
us to assess that the measures reflect the loss of generaliza-
tion and consistency of the explanations. We compare these
results with those of existing metrics : Fidelity and Stabil-
ity, allowing us to establish a ranking of the tested methods.
Finally, we use those measures to highlight in a quantitative
way the suggestions of different works on the generalization
and consistency of 1-Lipschitz networks.
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2. Related Works
Several works have recently proposed methods to explain

the decisions of Deep Neural Network (DNN). They can
nevertheless be classified in two categories: global and local
[8], local methods focus on the reasons for a specific deci-
sion, while global explainability consists in understanding
the general patterns that govern the model. We focus on
local methods in this work.

Concerning local explanation methods, one of the main
techniques relies on the model by using input perturbations
to highlight important characteristics [48, 50, 19, 10, 52, 26,
27] or by using the gradient and decomposition of the model
[49, 36, 32, 4, 35, 41, 37].

However, most of the research on explainability has fo-
cused on the development of new methods. Despite a wide
range of estimators, there is a lack of research on the devel-
opment of measures and approaches for assessing quality
of explainability. One of the reasons why research has not
focused on the evaluation (and therefore quality) of methods
is the difficulty of obtaining objective ground truths [30].
In order to formally apprehend the problem, several works
propose to define a system of general properties that must be
satisfied by explanations [42, 22, 29, 12, 2]. Among those
work, we can identify 5 major properties.

Definition 1 Fidelity
The ability of the explanations to reflect the behaviour of the
prediction model.

Definition 2 Stability
The degree to which similar explanations are given for simi-
lar samples of the same class.

Definition 3 Comprehensibility
The ability to describe internal elements of a system in a way
that is understandable to humans.

Definition 4 Representativity
The generalizability of the explanations, the extent to which
the explanations are representative of the model.

Definition 5 Consistency
The degree to which different models trained on the same
task give the same explanations.

There are two approaches in recent work to evaluate ex-
planations. The first subjective approach consists in putting
the human at the heart of the process, either by explicitly
asking for human feedback, or by indirectly measuring the
performance of the human/model duo [17, 6, 23] such as
the ITR transfer information rate [31]. Nevertheless, human
intervention sometimes brings undesirable effects. The work
of [1] illustrated an example of possible confirmation bias.

In the context of computer vision, a second approach has
emerged and consists of using the model, allowing for objec-
tive quantitative measures. These measures essentially aim
to measure two properties: Fidelity and Stability. Regard-
ing Fidelity, [30] were the first to propose a measure based
on the change of pixels, by comparing the drop in score
when the pixels of interest are inverted. Several variants
exist. ROAR [15] allowing to ensure that the drop in score
does not come from a change in distribution by re-training
the model. IROF [28] which requires low resources to be
calculated. This correlation between the attributions for each
pixel and the difference in the prediction score when they
are modified can be measured according to Equation 1 from
[5].

µF = corr
S

(∑
i∈S

g(f, x)i, f(x)− f(x[xi=x̄i,i∈S])

)
(1)

Where f is a predictor, g an explanation function, x a point of
interest, S a subset of indices of x and x̄ a baseline reference.
The choice of a proper baseline is still an active area of
research [40].

For Stability, there are two measures which consist in
calculating the sensibility of the explanation around a point
of interest [47, 3, 5]. In particular, we find Savg the average
sensitivity of the explanation. Formally, in a neighborhood
of points of radius r around x, giving a distance between
samples ρ, and D a distance between explanations:

Savg =

∫
z: ρ(x,z)6r

D(g(f, x), g(f, z))P(z)dz (2)

Up to our knowledge, several necessary properties do
not have an associated measure, notably Consistency and
Representativity. Indeed, a model that overfitted can give a
faithful and stable explanation, but specific to a given input,
and therefore not general. In the same way, an explanation,
can be faithful, stable and inconsistent.

We propose an approach involving cross-validation on
explanations to evaluate these properties through two new
global measures : the Relative Consistency ReCo and the
Mean Generalization MeGe.

3. Method
In the first instance, we give a simple motivation behind

our measures. In a second step, we propose a training proce-
dure applicable on a large family of models, which will allow
the application of both measures. Finally, the measures are
introduced.

3.1. Notations

Restricting the scope of this work to supervised clas-
sification settings, where X ⊆ Rd and Y ⊆ Rc desig-
nate the input and label spaces, respectively. We denote

2



D = {(xn, yn)}Nn=0 a dataset, Di a subset of D, and
fDi : X → Y a black box predictor from a family of model
F trained on the dataset Di. Let g an explanation function,
that, given a black box predictor f ∈ F , and an input of in-
terest x ∈ X provide relevance scores of each input features
of the predicted class such as g(fDi

, x) = φDi
x ∈ Rd. We

assume d : Rd × Rd → R+ a measure of similarity over
explanations. Finally, The following Boolean connectives
are used: ¬ denotes negation, ∧ denotes conjunction, and ⊕
denotes exclusive or (XOR).

3.2. Motivation

From the definitions previously given for Representativ-
ity (Definition 4) and Consistency (Definition 5), we can
give the motivations for their associated measures.

Consistency. The same explanation associated with two
predictions y and ¬ y is said to be inconsistent. An expla-
nation can then be defined as inconsistent if two models
fDi , fDj , trained on the same task, give the same explana-
tion but different predictions.

fDi(x) 6= fDj (x) =⇒ φDi
x 6= φDj

x (3)

Representativity. If a sample of interest is removed from
the training dataset, the explanation of the model for this
sample should remain similar. One wishes to avoid that the
explanations of a model depend too much on a single sample.
Following this definition, for two models fDi , fDj , and x a
training sample from one of the two models : x ∈ Di, x /∈
Dj . The explanations should remain similar conditioned by
whether or not this sample belongs to the training dataset.

fDi(x) = fDj (x) =⇒ φDi
x = φDj

x (4)

3.3. k-Fold Cross-Training

The goal of this training procedure illustrated in the Fig-
ure 1 is to set up a context allowing to measure the previ-
ously explained motivations. We will build two multisets :
S= grouping the distances between explanations associated
with the same prediction and S 6= the distances between
explanations associated with different predictions.

We start by partitioning the original dataset into k inde-
pendant blocks of equal size D = {Bi}ki=0. Several models
fD1 , . . . , fDk of the same architecture are trained on differ-
ent coalitions of k − 1 blocks such as Di = D \ {Bi}. We
assume that the models have comparable performances. In
our experiments we ensure a similar accuracy on the test set
of each model.

We will now measure the distances between two expla-
nations coming from different models. More specifically,
measuring the distance between explanations coming from
two models that have been trained on x doesn’t have much
interest (both models may have overfit and thus give the
same explanation). We are only interested in the distances

between two explanations φDi
x , φ

Dj
x coming from two mod-

els fDi , fDj , with only one that has been trained on the
point of interest x ∈ Di, x /∈ Dj .

In the case where both models gave a good prediction,
a small distance beetween two explanations means that the
model build its explanations from several samples. Hence,
the fact of having or removing a particular sample does not
make these explanations vary, which is a sign of good Rep-
resentativity. In the case where one of the two models give
contrary predictions, we want to avoid that they give the
same explanation. Indeed the Consistency of the explana-
tions means that we cannot justify with the same explanation
two different outcomes.

Hence, the distances are separated into two multisets,
S= when the models have made good predictions where we
want a small distance between the explanations, S 6= when
one of the models gives a wrong prediction where we want a
high distance between the two explanations. The case where
both models give a bad prediction is ignored (for details, see
the Algorithm 1 in the appendix).

∀(x, y) ∈ D, ∀Di : x ∈ Di, ∀Dj : x /∈ Dj

S= = {d(φDi
x , φDj

x ) | fDi(x) = y ∧ fDj (x) = y} (5)

S 6= = {d(φDi
x , φDj

x ) | fDi(x) = y ⊕ fDj (x) = y} (6)

3.4. Relative Consistency : ReCo

From the Definition 5, and the Equation 3, explanations
coming from differents models are said to be consistent if
they are closer for the same prediction than for opposite pre-
dictions. As a reminder, the distances between explanations
of the same predictions are represented by S=, and the one
associated to opposite predictions by S 6=. Visually, we seek
to maximize the shift between the histograms of the sets
S= and S 6=. Formally, we are looking for a distance value
that separates S= and S 6=, e.g. such that all the lower dis-
tances belong to S= and the higher ones to S 6=. The clearer
the separation, the more consistent the explanations. In or-
der to find this separation, we introduce ReCo, a statistical
measure based on maximizing balanced accuracy.

Where S = S=∪S 6= and γ ∈ S a fixed threshold value,
we can define the true positive rate (TPR), the true negative
rate (TNR) and ReCo as follows:

TPR(γ) =
|{d ∈ S= | d < γ}|
|{d ∈ S | d < γ}|

TNR(γ) =
|{d ∈ S 6= | d > γ}|
|{d ∈ S | d > γ}|

ReCo = max
γ

TPR(γ) + TNR(γ)− 1 (7)

The score 1 indicating consistency of the models explana-
tions, 0 indicating a total inconsistency.
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Figure 1: Example of application of the proposed procedure, with D a dataset and the number of splits k = 3, each of the
models is trained on two of the three splits. For a given sample x such that x /∈ D3, the explanations for each model are
calculated (φD1

x , φD2
x , φD3

x ). The distances between the explanation of the model not trained on x : φD3
x and the two others :

φD1
x , φD2

x are computed. For each distance, if the predictions of both models are correct, the distances is added to S=, if one
of the two models makes a false prediction, the distance is added to S 6=.

3.5. Mean Generalizability : MeGe

From the Definition 4, and the Equation 4, the explana-
tions for samples are representative if they remain similar
conditioned by whether or not those samples belongs to the
training dataset. As a results, the distances between expla-
nations coming from models where one has been trained on
the point of interest and the other has not should be small.
As those distances are contained in S=, one way to measure
the Representativity property is to compute the average of
S=. We want a high generalization score when distances
are small, so we define the MeGe measure as similarity.

MeGe =
1

1 +
∑

d∈S=

d
|S=|

(8)

Models with good Representativity capacity will there-
fore have high similarity between explanations and a score
close to 1.

4. Experiments
In order to assess the measures, we have compared the

ReCo and MeGe scores between a set of correctly trained
models and degraded models. We compare the results ob-
tained on Cifar-10 with those of Fidelity and Stability mea-
sures. Then we extended the experiments by conducting an
application of the measures on 1-Lipsichtz networks.

For all experiments, we used 5 splits (k = 5), i.e. 5 models,
with comparable accuracy (±3%). The models are based
on a ResNet-18 architecture [13], adapted according to each
dataset, see appendix A.3 for details on each model.

4.1. Explanation methods

In order to produce the necessary explanations for the
experiment, we used several methods of explanation that we

will briefly describe. However, as the aim of this experiment
was not to exhaustively test all the available explanatory
methods, we have limited the list to five regularly mentioned
methods. This list was extended for the Cifar10 dataset by
adding SHAP [21] (which requires significant computational
power).

• Saliency Map (SM) [36] is a visualization techniques
based on the gradient of a class score relative to the input,
indicating in an infinitesimal neighborhood, which pixels
must be modified to most affect the score of the class of
interest.

• Gradient � Input (GI) [3] is based on the gradient of
a class score relative to the input, element-wise with the
input, it was introduced to improve the sharpness of the
attribution maps.

• Integrated Gradients (IG) [41] consists of summing the
gradient values along the path from a baseline state to the
current value. The baseline is defined by the user and of-
ten chosen to be zero. This integral can be approximated
with a set of m points at regular intervals between the
baseline and the point of interest. In order to approximate
from a finite number of steps, the implementation here
use the Trapezoidal rule and not a left-Riemann summa-
tion, which allows for more accurate results and improved
performance (see [38] for a comparison). The final result
depends on both the choice of the baseline and the number
of points to estimate the integral. In the context of these
experiments, we use zero as the baseline and m = 60.

• SmoothGrad (SG) [37] is also a gradient-based explana-
tion method, which, as the name suggests, averages the
gradient at several points corresponding to small perturba-
tions (drawn i.i.d from a normal distribution of standard
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deviation σ) around the point of interest. The smooth-
ing effect induced by the average help reducing the vi-
sual noise, and hence improve the explanations. In prac-
tice, Smoothgrad is obtained by averaging after sampling
m points. In the context of these experiments, we took
m = 60 and σ = 0.2 as suggested in the original paper.

• Grad-CAM (GC) [32] can be used on Convolutional
Neural Network (CNN), it uses the gradient and the fea-
ture maps of the last convolution layer. More precisely,
the gradient is used to calculate a specific weight for each
feature map, and by taking the positive part after averaging
the ponderated feature maps.

4.2. Datasets

We applied the procedure and evaluated the measures
for each of the degradations on four image classification
datasets:

Fashion MNIST [45]: a dataset containing 70,000 low-
resolution (28x28) grayscale images labeled in 10 categories.

EuroSAT [14]: a labeled dataset with 10 classes consist-
ing of 27,000 colour images (64x64) from the Sentinel-2
satellite.

Cifar10 & Cifar100 [16] : two low-resolution labeled
datasets with 10 and 100 classes respectively, consisting of
60,000 (32x32) colour images.

4.3. Distance over Explanations

The procedure introduced in 3.3 requires to define a dis-
tance between two explanations from the same sample. Since
the proper interpretation method is to rank the features most
sensitive to the model’s decision, it seems natural to con-
sider the Spearman rank correlation [39] to compare the
similarity between explanations. Several works provide the-
oretical and experimental arguments in line with this choice
[11, 1, 43]. However, it is important to note that the visual
similarity problem is still on open problem. We conduct
two sanity check on several candidates distances to ensure
they could respond to the problem. The distances tested are :
1-Wasserstein distance (the Earth mover distance from [9]) ,
Sørensen–Dice [7] coefficient, Spearman rank correlation,
SSIM [51], `1 and `2 norms.

4.3.1 Spatial correlation

The first test concerns the spatial distance between two areas
of interest for an explanation. It is desired that the spatial
distance between areas of interest be expressed by the dis-
tance used. As a results, two different but spatially close
explanations should have a low distance. The test consists
in generating several masks representing a point of interest,
starting from a left corner of an image of size (32 x 32) and

moving towards the right corner by interpolating 100 differ-
ent masks. The distance between the first image and each
interpolation is then measured (see Figure 2).
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Figure 2: Distances with moving interest point. The first line
shows the successive interpolations between the baseline
image (left), and the target image (right). The second line
shows the evolution of the distance between each interpola-
tion and the baseline image.

The different distances evaluated pass this sanity check,
i.e. a monotonous growth of the distance, image of the
spatial distance of the two points of interest.

4.3.2 Noise test

The second test concerns the progressive addition of noise. It
is desired that the progressive addition of noise to an original
image will affect the distance between the original noise-free
image and the noisy image. Formally, with x the original
image, and ε ∼ N (0, σ2I) an isotropic Gaussian noise, we
wish the distance d to show a monotonic positive correlation
corr(dist(x, x+ ε), ε).

In order to validate this prerogative, a Gaussian noise
with a progressive intensity σ is added to an original image,
and the distance between each of the noisy images and the
original image is measured. For each value of σ the operation
is repeated 50 times.
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Figure 3: Distances with noisy images. The firs The first line
shows original noise-free image (left) and noisy copies com-
puted by increasing σ. The second line shows the distances
between each noisy image and the baseline image.

Over the different distances tested, they all pass the sanity
test : there is a monotonous positive correlation (as seen in
Figure 3). Although SSIM and `2 have a higher variance.

One will nevertheless note the instability of the Dice score
in cases where the areas of interest have a low surface area,
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as well as a significant computation cost for the Wasserstein
distance. For all these reasons, we chose to stay in line with
previous work using the absolute value of Spearman rank
correlation.

4.4. Validation Setup

For measures assessments, for each datasets, we applied
three different types of degradations on the models : ran-
domization of weights, label inversion, and training data
limitation, with several degrees for each of them.

• Randomizing the weights, inspired by [1]. We gradually
randomize 5%, 10% and 30% of the model layers by
adding a Gaussian noise. By destroying the weights
learned by the network, we expect to find degradation
of explanations.

• Inversion of labels, inspired by [24, 1] the models are
trained on a dataset with 5%, 10% and 30% of bad
labels. By artificially breaking the relationship between
the labels, we expect the explanations to lose their con-
sistency.

• Limited data, where the models are trained on 75%,
50% and 25% of the available dataset. By decreasing
the training data, we expect the model to over-fit at
certain points, and lose generalization.

4.5. Application Setup

For measures application, we extend the experience on
the Cifar10 dataset by adding a family of 1-Lipschitz models.
Indeed different works mention the Lipschitz constrained
networks as particularly robust [44, 25] and have good gener-
alizability. As a reminder, a f function is called k-Lipschitz,
with k ∈ R+ if

‖f(x1)− f(x2)‖ ≤ k‖x1 − x2‖ ∀x1, x2 ∈ Rn

The smallest of these k is called the Lipschitz constant of
f . This constant certifies that the gradients of the function
represented by the deep neural network are bounded (given
a norm) and that this bound is known. This robustness cer-
tificate proves to be a good way to avoid gradient explosion,
which is a problem with gradient-based explicability meth-
ods. The models were trained using the Deel-Lip library
[34]. To our knowledge, no previous work has made the link
between Lipschitz networks and the chosen interpretability
methods.

5. Results
The purpose of this section is to report and synthesize the

main results (for a complete detail, refer to the appendices
A.4). They are essentially three observations, the first con-
cerns the variation in theMeGe andReCo scores according

to the different explanation methods used. The second obser-
vation concerns the differences in scores obtained between
the normally trained and degraded models. Finally the im-
portance of the model-method couple, where we observe
that certain methods are better suited to families of models,
with a tendency emerging for the Grad-CAM method.

5.1. Methods ranking

5.1.1 Consistency and Representativity

Table 1 reports the ReCo scores obtained for the ResNet-18
models trained without degradations on the different stud-
ied datasets. We can observe a clear difference between the
methods. Grad-CAM appears robust to the datasets tested ob-
taining the best consistency score on each of them, followed
by SmoothGrad on the Cifar datasets, and by Integrated Gra-
dients on EuroSAT and FashionMNIST. This corroborates
the observations of previous work [28, 32].

Dataset IG SG SA GI GC

Cifar10 0.107 0.154 0.151 0.088 0.637
Cifar100 0.018 0.132 0.131 0.004 0.800
EuroSAT 0.309 0.182 0.177 0.241 0.591
FashionMNIST 0.369 0.125 0.1 0.369 0.517

Table 1: ReCo score for ResNet-18 models normally trained.
Higher is better.

Table 2 reports the MeGe score results obtained for nor-
mally trained ResNet-18 models. Grad-CAM obtains the
best Representativity score, except on Fashion-MNIST. In-
deed, two methods tested here involve the element-wise
multiplication of the explanation with the input: Integrated
Gradients (IG) and Gradient Input (GI). On samples from
Fashion-MNIST, multiplication of the explanation with the
input eliminates the attribution score on a part of the image,
thus reducing the distance between the two explanations.

Dataset IG SG SA GI GC

Cifar10 0.584 0.457 0.449 0.552 0.723
Cifar100 0.595 0.499 0.495 0.571 0.777
EuroSAT 0.404 0.415 0.41 0.412 0.667
FashionMNIST 0.904 0.362 0.304 0.906 0.765

Table 2: MeGe score for ResNet-18 models normally
trained. Higher is better.

5.1.2 Comparisons with Fidelity and Stability

Tables 3 report the scores for the Fidelity (µF , Equation
1) and Stability (Savg Equation 2) measures. The score
obtained is averaged over 10, 000 test samples, with 0 for
baseline. For µF , the size of the |S| subset is 15% of the
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image. For Savg , the radius r is 0.1 according to the distance
`1 and the Spearman rank correlation is used as the distance
between explanations D.

This empirical results reveal that methods based only
on the gradient appear to be unfaithful. Grad-CAM is the
method with the highest Fidelity score, hence the one that
best reflects the evidences for the predictions. This results are
in lign with the two metrics introduced, and confirm from
previous quantitative results [32, 28, 46]. As one would
expect, the local sampling used by SmoothGrad allow the
method to have a good Stability.

Metrics IG SG SA GI GC

µF 0.107 0.305 0.229 0.101 0.907
Savg 2.112 0.024 2.389 2.579 0.012
ReCo 0.107 0.154 0.151 0.088 0.637
MeGe 0.584 0.457 0.449 0.552 0.723

Table 3: Fidelity, Stability, Consistency and Representa-
tivity score for ResNet-18 models on Cifar10. Higher µF ,
MeGe and ReCo is better, lower Savg is better.

5.2. Models ranking

By using the MeGe measure, we can compare for the
same dataset the family of models giving the most general
explanations. We notice Figure 4 a correlation between
the MeGe score and the degradation applied to the models,
which supports the results of several works, notably [24].
This tends to show the link between the degradations of the
models and their generalization capacity. Unsurprisingly,
regardless of the method, the models normally formed on
the Cifar10 dataset obtain the best results. Nevertheless,
we notice that the variation of the score depends on the
methods used, and that some of them seem more sensitive to
model modifications, such as Grad-CAM, in agreement with
previous works [1].
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Figure 4: Cifar10 MeGe scores for normally trained mod-
els (first point from the left), as well as for progressively
degraded models. On the left chart the weights are progres-
sively randomized, on the right chart the models are trained
with inverted labels. Higher is better.

5.3. Right Method for the Right Model

Table 4 show the ReCo score obtained for ResNet-18
models and 1-Lipschitz models on Cifar10. All the models
have comparable accuracy (78 ± 4%). We observe a large
difference in theReCo scores, which is due to the difference
in the S= and S 6= histograms obtained, as can be seen in
Figure 5. On the left column, the results come from ResNet-

IG SG SA GI GC Shap

ResNet-18 0.107 0.154 0.151 0.088 0.637 0.387
1-Lipschitz 0.598 0.898 0.81 0.5 0.668 0.38

Table 4: ReCo score obtained by 1-Lipschitz models and
ResNet-18 models on Cifar10. Higher is better.

18 models normally trained on Cifar10. We observe that
Grad-CAM is the method that best allows to distinguish the
two histograms (sign of Consistency), as well as the one
with the lowest expectation of S= (sign of Representativ-
ity), thus obtaining the best ReCoand MeGe score among
the different methods tested on the ResNet-18 models. On
the right column, the results come from a Lipschitz model.
We observe a clear improvement of the separation between
the histograms, especially for the methods based exclusively
on gradients. Indeed, SmoothGrad is the method obtaining
the most consistent explanations as reported in Table 4, in
front of Saliency and Grad-CAM. In addition to obtaining
more consistent explanations, we observe that the explana-
tions obtained are much less saturated than with the ResNet
models, see Figure 6.

Concerning MeGe, the results reported in Table 5 show
an improvement in the generalizability of the 1-Lipschitz
models. Indeed, the Representativity score has increased
compared to the ResNet models for all tested methods.

IG SG SA GI GC Shap

ResNet-18 0.584 0.457 0.449 0.552 0.723 0.459
1-Lipschitz 0.719 0.606 0.575 0.67 0.749 0.621

Table 5: MeGe score obtained by 1-Lipschitz models and
ResNet-18 models on Cifar10. Higher is better.

We note the importance of the association model-method,
although some methods such as Grad-CAM seem robust to
model changes and perform well on the different datasets.
Lipschitz constrained networks seem to be tailored to be ex-
plained by methods based on gradients. These encouraging
results show that there is a close link between the methods
used and model architectures, as well as the usefulness of
Lipschitz networks for explainability.

7



0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5
ResNet-18 Integrated gradients

S 6=

S=

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Lipschitz Integrated gradients
S 6=

S=

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
ResNet-18 SmoothGrad

S 6=

S=

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
Lipschitz SmoothGrad

S 6=

S=

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5
ResNet-18 Saliency

S 6=

S=

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Lipschitz Saliency
S 6=

S=

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
ResNet-18 Gradient x Input

S 6=

S=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Lipschitz Gradient x Input

S 6=

S=

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4
ResNet-18 GradCAM

S 6=

S=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Lipschitz GradCAM

S 6=

S=

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
ResNet-18 Shap

S 6=

S=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Lipschitz Shap

S 6=

S=

Figure 5: S= and S 6= for ResNet (left column) and 1-
Lipschitz models (right column) on Cifar10. As explained
in this paper, a clear separation between the S= and S 6=

histograms is a sign of consistent explanations.

6. Conclusion

Research in the field of interpretable AI has been tradi-
tionally focused on the creation of explainability method,
aimed at highlighting the major elements of decision-making.
They are however only a first step towards adopting neural
networks in safety-critical context. The second step, of cru-
cial importance, is to objectively measure the explanations
in order to validate the quality of the model.

This paper introduces two new measures measuring the
Consistency (ReCo) and Representativity (MeGe) of ex-
planations for a family of models. We used MeGe to il-
lustrate the link between the degradation of a model and
the loss of generalizability, confirming previous works. We
highlighted differences between explanations methods, and
offer a new way of ordering them. Finally, the important
consistency potential of 1-Lipschitz networks was quantified
using ReCo, and we showed the usefulness of gradient-
based methods coupled with 1-Lipschitz networks.

Although this work focuses on convolutional neural net-
works and explanability methods specific to their architec-
ture, the procedure introduced here is voluntarily general and
can be applied to large classes of models (such as Decision

Figure 6: Example of results obtained using the Smoothgrad
method, both models had a correct prediction, the middle
column represents the heatmaps obtained after application of
SmoothGrad on one of the 1-Lipschitz models, with the same
parameters (σ = 0.1, n = 200) as for one of the ResNet-18
models (right column).

Tree, Rule-based, GAN...) in that it only requires to define a
notion of distances between explanations.

We hope that this work will guide efforts in the search
for measures of explainability towards crucial properties
still understudied, in order to build better and more reliable
models.
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bastian Bach, and Klaus-Robert Müller. Evaluating the vi-
sualization of what a deep neural network has learned. In
IEEE Transactions on Neural Networks and Learning Systems
(TNNLS), 2015.

[31] Philipp Schmidt and Felix Biessmann. Quantifying inter-
pretability and trust in machine learning systems. In Work-
shop on Network Interpretability for Deep Learning, Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI),
2019.

[32] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017.

[33] Thomas Serre. Deep learning: The good, the bad, and the
ugly. Annual review of vision science, 2019.

[34] Mathieu Serrurier, Franck Mamalet, Alberto González-Sanz,
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A. Appendix

A.1. Method Details

Algorithm 1 Training procedure to compute S= and S 6=

Require: k ∈ N>2 , D = {Bi}ki=0

S= ← {}, S 6= ← {}
for all i ∈ {1, . . . , k} do
Di = D \ {Bi}
Train fDi

on Di
for all (x, y) ∈ D do

// generate explanations on all dataset
φDi
x ← g(fDi

, x)
end for

end for
for all (x, y) ∈ D do

for all i ∈ {1, . . . , k | x ∈ Di} do
for all j ∈ {1, . . . , k | x /∈ Dj} do

// fDi
was trained on x fDj

was not
∆ij
x ← d(φDi

x , φ
Dj
x )

if fDi
(x) = y and fDj

(x) = y then
// both model are correct
S= ← S= ∪ {∆ij

x }
else if fDi(x) = y or fDj (x) = y then

// only one model is correct
S 6= ← S 6= ∪ {∆ij

x }
else

// pass
end if

end for
end for

end for
return S=,S 6=

A.2. Considered measures for ReCo

As mentioned in when introducing ReCo, one would be
tempted to use directly a distance between distributions, we
briefly explain why we did not make this choice. In addition,
we detail an alternative measure, also based on balanced
accuracy, which gives consistent results.

A first intuition to measure the shift between the S= and
S 6= histograms would be to consider the usual measures,
such as Kullback-Leibler (KL) divergence :

KL(S= ‖ S 6=) =
∑
x∈S
S=(x) log

(
S=(x)

S 6=(x)

)
or the 1-Wasserstein measure (W1) :

W1(S=,S 6=) = inf
γ∈Γ(S=,S 6=)

E(x,y)∼γ
[
d(x, y)

]

However, these distances are problematic in that the order
of the distributions actually matters more than the distance
between them, and these two measures can give a good
score even when the explanations are inconsistent : where
E[S=] > E[S 6=].

To expose this problem, let us consider the case where the
explanations given by the family of models are consistent,
that is (µ1, µ2) ∈ [0, 1]2 , µ1 < µ2, S=

1 ∼ N (µ1, σ1),
S 6=1 ∼ N (µ2, σ2) we measure the following KL distance:

KL(S=
1 ‖ S 6=

1 ) = log
σ2

σ1
+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2

We can then construct an inconsistent example (E[S=] >
E[S 6=]) with the same KL score: with S=

2 ∼ N (1−µ1, σ1)

and S 6=1 ∼ N (1− µ2, σ2) then we get:

KL(S=
2 ‖ S 6=

2 ) = log
σ2

σ1
+
σ2
1 + (1− µ1 − (1− µ2))

2

2σ2
2

− 1

2

= log
σ2

σ1
+
σ2
1 + (−µ1 + µ2)

2

2σ2
2

− 1

2

= KL(S=
1 ,S 6=

1 )
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Figure 7: Toy example with on the left, a model family
giving consistent explanations, and on the right a model
family with inconsistent explanations and yet the same KL
distance.

Similarly, considering the 1-Wasserstein measure, with δ
the Dirac delta function, we begin in the case of consistent
explanations, let S=

1 , S 6=1 , two degenerate distributions S=
1 =

δ(µ1) and S 6=1 = δ(µ2) with µ1 < µ2, we then have :

W1(S=
1 ,S

6=
1 ) = ‖µ1 − µ2‖

we can then construct an inconsistent case by exploiting the
invariance to the direction of transport, with S=

2 = δ(µ2)

and S 6=2 = δ(µ1).

W1(S=
2 ,S

6=
2 ) = ‖µ2 − µ1‖

W1(S=
2 ,S

6=
2 ) = W1(S=

1 ,S
6=
1 )

For these reasons, we have therefore chosen a classifi-
cation measure, based on maximizing balanced accuracy.
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Figure 8: Toy example with on the left, a model family
giving consistent explanations, and on the right a model
family with inconsistent explanations and yet the same W1

distance.

Nevertheless, one could also (observing similar results) use
the area under the curve (AUC) of the balanced accuracy,
such as :

ReCoAUC =

∫
γ∈O

TPR(γ) + TNR(γ)− 1 dγ

A.3. Models

As mentioned in the paper, the models used are all (with
the exception of 1-Lipschitz networks) ResNet-18, with vari-
ations in size and number of filters used. Preserving the
increase of filters at each depth by the original factor (x2),
we took care to define for each dataset, a base filters value, as
the number of filters for the first convolution layer. Another
difference concerns the dropout rates used, indeed we have
adapted the dropout to improve the performance of the tested
models. Moreover, it should be remembered that there is
no difference in architecture between the normally trained
models and the degraded models.

We report here the architecture of the models for each of
the datasets:

• Fashion-MNIST base filters 26, Dropout 0.4

• EuroSAT base filters 46, Dropout 0.25

• Cifar100 base filters 32, Dropout 0.25

• Cifar100 base filters 32, Dropout 0.25

A.3.1 Lipschitz models

The 1-Lipschitz models use spectral regularization on the
Dense and Convolutions layers. The architecture is as de-
scribed in Table 6.

A.4. Additional results

Table 6: 1-Lipschitz model architecture for Cifar10.

Conv2D(48)
PReLU
AvgPooling2D((2, 2))
Dropout(0.2)
Conv2D(96)
PReLU
AvgPooling2D((2, 2))
Dropout(0.2)
Conv2D(96)
AvgPooling2D((2, 2))
Flatten
Dense(10)
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Table 7: ReCo score for ResNet-18 models on Fashion-MNIST.

Integrated gradients SmoothGrad Saliency Gradient x Input GradCAM

Normal 0.369 0.125 0.1 0.369 0.517

Limited 75% 0.258 0.006 0.001 0.253 0.508
Limited 50% 0.259 0.006 0.003 0.257 0.454
Limited 25% 0.084 0.0 0.0 0.078 0.435

Randomized 5% 0.26 0.019 0.001 0.259 0.365
Randomized 10% 0.245 0.0 0.0 0.244 0.212
Randomized 30% 0.029 0.0 0.0 0.028 0.0

Switched 5% 0.203 0.031 0.02 0.202 0.226
Switched 10% 0.199 0.056 0.031 0.197 0.144
Switched 30% 0.17 0.08 0.063 0.17 0.003

Table 8: MeGe score for ResNet-18 models on Fashion-MNIST.

Integrated gradients SmoothGrad Saliency Gradient x Input GradCAM

Normal 0.904 0.362 0.304 0.906 0.765

Limited 75% 0.891 0.354 0.285 0.893 0.752
Limited 50% 0.89 0.304 0.247 0.892 0.739
Limited 25% 0.871 0.292 0.221 0.872 0.727

Randomized 5% 0.889 0.331 0.271 0.89 0.647
Randomized 10% 0.88 0.296 0.234 0.879 0.507
Randomized 30% 0.887 0.289 0.218 0.887 0.32

Switched 5% 0.888 0.301 0.247 0.89 0.548
Switched 10% 0.888 0.294 0.226 0.889 0.485
Switched 30% 0.89 0.347 0.278 0.892 0.258

Table 9: ReCo score for ResNet-18 models on Cifar10.

Integrated gradients SmoothGrad Saliency Gradient x Input GradCAM Shapley

Normal 0.107 0.154 0.151 0.088 0.637 0.387

Limited 75% 0.073 0.12 0.117 0.052 0.588 0.338
Limited 50% 0.063 0.117 0.115 0.056 0.57 0.301
Limited 25% 0.056 0.106 0.106 0.048 0.482 0.266

Randomized 5% 0.075 0.115 0.11 0.056 0.568 0.322
Randomized 10% 0.086 0.109 0.106 0.067 0.548 0.309
Randomized 30% 0.038 0.04 0.037 0.016 0.422 0.208

Switched 5% 0.03 0.071 0.068 0.024 0.538 0.234
Switched 10% 0.024 0.051 0.049 0.018 0.531 0.182
Switched 30% 0.0 0.004 0.003 0.0 0.369 0.072
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Table 10: MeGe score for ResNet-18 models on Cifar10.

Integrated gradients SmoothGrad Saliency Gradient x Input GradCAM Shap

Normal 0.584 0.457 0.449 0.552 0.723 0.459

Limited 75% 0.574 0.445 0.435 0.548 0.698 0.437
Limited 50% 0.576 0.461 0.451 0.555 0.697 0.449
Limited 25% 0.556 0.445 0.435 0.542 0.641 0.423

Randomized 5% 0.575 0.455 0.447 0.545 0.686 0.451
Randomized 10% 0.571 0.449 0.441 0.537 0.667 0.443
Randomized 30% 0.544 0.41 0.401 0.507 0.588 0.397

Switched 5% 0.571 0.424 0.414 0.54 0.642 0.394
Switched 10% 0.556 0.413 0.404 0.528 0.627 0.378
Switched 30% 0.542 0.393 0.381 0.511 0.531 0.343

Table 11: ReCo score for ResNet-18 models on Cifar100.

Integrated gradients SmoothGrad Saliency Gradient x Input GradCAM

Normal 0.018 0.132 0.131 0.004 0.8

Limited 75% 0.0 0.126 0.124 0.0 0.799
Limited 50% 0.0 0.111 0.108 0.0 0.773
Limited 25% 0.0 0.112 0.11 0.0 0.722

Randomized 5% 0.002 0.111 0.107 0.002 0.694
Randomized 10% 0.004 0.133 0.128 0.005 0.672
Randomized 30% 0.015 0.038 0.043 0.033 0.33

Switched 5% 0.0 0.103 0.1 0.0 0.762
Switched 10% 0.0 0.095 0.093 0.0 0.744
Switched 30% 0.0 0.114 0.114 0.0 0.744

Table 12: MeGe score for ResNet-18 models on Cifar100.

Integrated gradients SmoothGrad Saliency Gradient x Input GradCAM

Normal 0.595 0.499 0.495 0.571 0.777

Limited 75% 0.597 0.509 0.505 0.577 0.762
Limited 50% 0.599 0.513 0.508 0.58 0.737
Limited 25% 0.58 0.504 0.497 0.569 0.706

Randomized 5% 0.573 0.483 0.478 0.552 0.688
Randomized 10% 0.56 0.466 0.461 0.539 0.472
Randomized 30% 0.499 0.347 0.342 0.493 0.039

Switched 5% 0.564 0.464 0.459 0.545 0.715
Switched 10% 0.558 0.455 0.45 0.536 0.685
Switched 30% 0.54 0.437 0.433 0.521 0.58
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Table 13: ReCo score for ResNet-18 models on EuroSAT.

Integrated gradients SmoothGrad Saliency Gradient x Input GradCAM

Normal 0.309 0.182 0.177 0.241 0.591

Limited 75% 0.25 0.1 0.097 0.142 0.56
Limited 50% 0.192 0.105 0.11 0.111 0.538
Limited 25% 0.133 0.077 0.075 0.075 0.535

Randomized 5% 0.284 0.213 0.216 0.273 0.497
Randomized 10% 0.242 0.209 0.21 0.255 0.294
Randomized 30% 0.21 0.07 0.07 0.216 0.207

Switched 5% 0.058 0.048 0.049 0.058 0.238
Switched 10% 0.042 0.011 0.01 0.013 0.218
Switched 30% 0.008 0.002 0.002 0.0 0.141

Table 14: MeGe score for ResNet-18 models on EuroSAT.

Integrated gradients SmoothGrad Saliency Gradient x Input GradCAM

Normal 0.404 0.415 0.41 0.412 0.667

Limited 75% 0.411 0.415 0.411 0.411 0.65
Limited 50% 0.438 0.433 0.427 0.431 0.648
Limited 25% 0.419 0.412 0.41 0.413 0.64

Randomized 5% 0.396 0.385 0.381 0.385 0.587
Randomized 10% 0.366 0.36 0.356 0.356 0.457
Randomized 30% 0.351 0.295 0.293 0.319 0.357

Switched 5% 0.326 0.347 0.345 0.344 0.382
Switched 10% 0.323 0.333 0.331 0.332 0.356
Switched 30% 0.315 0.31 0.307 0.31 0.3
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