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Abstract

Purpose - This paper aims to propose a method to evaluate the information
obtained on harmonics calculations and to estimate the precision of results using
finite element method for an innovative motor topology in which some well-known
meshing rules are difficult to apply.

Design/Methodology/Approach - The same magnetostatic problem is solved
with several mesh sizes using both scalar and vector potentials magnetics formu-
lations on a complex topology, an axial claw pole motor (ACPM). The proposed
method lies in a comparison between the two weak formulations to determine what
information is obtained on harmonics calculations and to estimate its precision.
Moreover, an original mesh method is applied in the air gap to improve the numer-
ical results.

Finding - The precision on harmonics calculations using finite element method
on an ACPM is estimated. For the proposed motor and mesh, only the mean
value (even with large mesh) and the first harmonic (with fine mesh) of torque
are calculated with a good accuracy. This results confirm that the non-respect of
the meshing rules have a strong impact on the results and that scalar and vector
potentials magnetics formulations do not give exactly the same results. Before using
torque harmonics values in vibration calculations, a finite element model has to be
validated by using both fomulations.

Research limitations implications - This method is time-consuming and
only applied on an ACPM in this work.

Originality/Value - The axial claw pole motor, for which the classic meshing
rules cannot be applied, is a complex topology very under-studied. To improve the
calculation of space harmonics, the authors proposed to split the airgap into four
parts. Then in the two central parts, the meshing step of the structured mesh is
equal to the rotating step.
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1 Introduction

Nowadays there is a huge need of precise information about vibrations and acoustics in
many fields as in automotive traction. That is why harmonic calculations of physical
values, as torque harmonics is widely spreaded (Wu et al. 2019). In fact, several studies,
both experimental (Zhu & Leong 2012)(Lee & Ha 2018)(Beccue et al. 2005)(Nam et al.
2017) and using finite element method (Zhao et al. 2015) (Chaieb et al. 2008), deal with
torsional vibration in electric motor because of torque harmonics. Nevertheless, the results
about high-order harmonics using finite element method depend on many parameters and
are strongly linked to mesh quality at the air-gap interface.
In this paper, a procedure is presented to deal with the influence of the mesh on the results
for an axial claw pole motor (ACPM) (Labbe & Savinois 2017). Indeed, some meshing
rules (Davat et al. 1985) are well known for harmonics calculation but unfortunately, are
difficult to apply for this topology. In these case, there is a lack of tools to analyse the
confidence about simulation results on high-order harmonics. The authors propose to
solve magnetostatic problem for several meshing with both scalar and vector potentials
magnetics formulations. Then, output data will be treated to determine what information
is obtained on harmonics calculations and to estimate its precision with a comparison
between the two weak formulations. Moreover, an original mesh method is applied in
the airgap to improve the numerical results. The method is tested on a model using the
open-source Onelab interface, linking Gmsh (Geuzaine & Remacle 2009). and GetDP
(Dular & Geuzaine 2019) for torque harmonics calculation.

2 Problem

2.1 Meshing rules

In Finite Element Method (FEM)-based simulations, some meshing rules are well known
to calculate torque harmonics for radial rotating machines (Davat et al. 1985). Stator
and rotor must have the same number of elements at airgap interface with a meshing step
equals to the rotating step as it can be seen in Figure 1. To apply this rules, the least
common multiple is generally used to define the number of mesh element.
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Figure 1: Application of meshing rules on 2D FEM example.

2.2 Axial claw pole motor

Unfortunately, axial flux machines induce an additional difficulty compared to radial flux
machines. In the case of the ACPM, the meshing rules have to be respected on each
radius from the internal to external radius as seen in Figure 2. The rotating step can be
equal to the meshing step at each radius on stator and rotor only if the geometric lines
are through radial axis. For the synchronous axial motor represented in Figure 2 with
claw pole inductor and straight slots armature, this rules can not be applied.

Calculations are made with a periodic model meshed with really fine element (Fig-
ure 3). The magnetization curve b(h) used in the model is from a standard steel material
as shown in Figure 4. The electric conductivity of copper is equal to 59.6 106(S/m). The
armature is supplied with three-phase sinusoidal current. The boudary conditions are
shown in Figure 5. The double airgap motor has an axial symetry and so the condition
b × n is used on an area in the middle of the stator yoke. The torque can be computed
by applying the Maxwell stress tensor ( ¯̄Tm) on a circular area in the airgap between the
stator and the rotor. To reduce numerical noise the torque is calculated using an av-
erage of this surface integral on a thickness e along the air gap (Ωe) as presented in a
study by (Fontchastagner et al. 2015). Calculation are made on two slot pitches for 32
positions. Instability on results from vector potential formulation is observed with an
ordinary tetrahedral mesh in the air gap as seen in Figure 6. This kind of mesh does not
allow to estimate high-order harmonics torque:

Torque =
1

e

∫
Ωe

(r× ( ¯̄Tm · ez) dΩ) · ez (1)
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Figure 2: Synchronous axial claw pole
motor

Figure 3: Periodic model
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Figure 4: B-H curve of steel
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b× n = 0
Periodic condition

b · n = 0

1

Figure 5: Boundary conditions
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To analyse the confidence about simulation results both formulations will be used.
Using both formulations is essential in this study because only one magnetic continuity
condition is imposed strongly using FEM(Bossavit 1998), which can leads to unaccuracies
(Tarnhuvud & Reichert 1988). In fact, the continuity of the normal component of the
magnetic flux density bn is strongly imposed using the vector potential weak formulation
and tangential component of the magnetic field strength ht is strongly imposed using the
scalar potential weak formulation. This issue is not solved and is still a current research
topic (Martinez et al. 2008)(Lefevre et al. 2018).

To strongly improve the mesh quality, we propose to split the airgap into four parts (see
Figure 7). This method replaces a classical moving band. The torque is then calculated
with equation (1) in the two central parts in which the meshing step of the structured
mesh is equals to the rotating step as seen in Figure 8. The two other parts are used to
connect the structured mesh on the central parts to the mesh on rotor and stator interface.
Even if the problem is meshed for each position, the meshes will be similar in the central
air gap for any configuration. With this mesh, torques from both the formulations are well
calculated as seen in Figure 9. The differences between the results are mainly because of
the weak formulations and much less because of the air-gap meshing problems as shown in
Figure 6. However, scalar and vector potential formulations give different results. Facing
these difficulties, the authors decided to investigate in the present work the creation of
a procedure to evaluate the information contained in output data and to estimate the
precision of the results for different meshes.
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Figure 6: Torque with tetrahedra mesh

Figure 7: Airgap split into four parts

Figure 8: Structured mesh in airgap
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Figure 9: Torque with structured mesh

3 Proposed approach

The proposed method lies in a comparison between scalar and vector potential formula-
tions. Such comparison between both formulations has already been used in several works
(Dular, Geuzaine & Legros 1999)(Dular, Henrotte & Legros 1999). The aim is to evaluate
the confidence level of high-order harmonics torque.

3.1 Weak formulations

A finite element magnetostatic problem can be describe with both scalar and vector po-
tential formulations.
• Scalar potential formulation:
To use the magnetic scalar potential ϕ in the weak formulation, a dummy magnetic field
hs is calculated to replace the electric current density j in the sources domain Ωs as:

j = ∇× hs

∇× (h− hs) = 0
(h− hs) = −∇ϕ

Gauss’s law for magnetism gives:∫
Ω

∇ · b dΩ =

∫
Ω

∇ · (µ(hs −∇ϕ)) dΩ = 0 (2)

The weak form is: ∫
Ωs

µhs ·∇ϕ′ dΩs −
∫
Ω

µ∇ϕ ·∇ϕ′ dΩ = 0 (3)
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• Vector potential formulation:
As the magnetic flux density is divergence-free (Gauss’s law for magnetism: ∇ ·b = 0), a
vector magnetic potential a always exists as b = ∇× a. The Ampere- Maxwell law with
j the electric current in the sources domain Ωs gives:∫∫∫

Ω

(∇× (
1

µ
∇× a)) dΩ−

∫∫∫
Ωs

j dΩs = 0 (4)

The weak formulation is:∫
Ω

(
1

µ
∇× a) · (∇× a′) dΩ −

∫
Ωs

j · a′ dΩs −
∫
dΩ

((
1

µ
∇× a) ∧ n) · a′ dS = 0 (5)

3.2 Proposed approach

The aim is to study results consistency versus degrees of freedom (Dofs) number or mesh
density. To make a fair comparison, the two calculations use the same mesh. The meshing
step in the central air gap exactly equals the rotating step. However, in the motor, the
mesh size depends on a reference length lref . Figure 10 and Figure 11 show, respectively,
example with a small and a large lref .

Figure 10: Small lref Figure 11: Large lref

The 15 different meshes, with 15 different lref , are used on the periodic model. The
meshes range from very fine mesh (1390e3 Dofs for vector potential, 232e3 Dofs for scalar
potential) to large mesh (185e3 Dofs for vector potential, 32e3 Dofs for scalar potential) as
seen in Figure 12. Dofs number of vector potential formulation is 6 time higher than scalar
potential in this model. This explains that the CPU time is lower with scalar formulation
than with vector formulation as shown in the ratio CpuTimevector

CpuTimescalar
plot in red in Figure 12.

For each mesh size, the torque is calculated on two slot pitches for 32 positions.
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Figure 12: Dofs number and CPU time

4 Results

A spectral analysis on time-dependent torque is made using fast fourier transform (FFT).
The study focusses on the mean value and the first four harmonics of torque. Differences
between the two formulations and the evolutions of these quantities depending on the mesh
size are investigated. To compare the two results, deviation and mean on the modulus
coefficient of FFT, Co, for each harmonics and for each mesh are calculated with:

Dev(k) =
CoScalar(k)− CoV ector(k)

CoScalar(k)+CoV ector(k)
2

(6)

and

Mean(k) =
CoScalar(k) + CoV ector(k)

2
(7)

k being the harmonic rank.

All curves are plot with torque in per unit as:

Torque(pu) =
Torqueactual
TorqueBase

(8)

with

TorqueBase =
TScalar + TV ector

2
(9)

TScalar and TV ector being the mean value of torque from scalar and vector formulations
for the finest mesh. Torques calculated with the finest and the lagest mesh are plot in
Figure 13. There are differences between the two formulations which decrease with finer
meshes.
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Figure 14: Mean torque

• Torque mean value:
The mean value and the deviation of torque versus the Dofs number are shown in Figure 14.
With finer mesh, the deviation decrease. The torque mean value is calculated with a good
accuracy even with large mesh size with Dev(k = 0) ≤ 7%.

• Torque harmonics:
the deviation of the first and third harmonics decreases as Dofs number increases and
the mean values of Co between scalar and vector formulations are constant. It can be
concluded that the first harmonic is calculated with a ±10% accuracy, with scalar Dofs
number = 232 000, up to ±30% with scalar Dofs number = 50 000 (see Figure 15). A
compromise has to be found between Dofs number (CPU time) and accuracy. The third
harmonic can only be estimated with an accuracy from ±45% with with scalar Dofs num-
ber = 232 000 up to ±65% with scalar Dofs number = 70 000 (see Figure 16).
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Figure 15: Torque: Harmonic 1
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Figure 16: Torque: Harmonic 3

It is more difficult to conclude for Harmonics 2 and 4 (Figure 17, Figure 18). Unlike the
previous point, the deviation for the second harmonic does not decrease with mesh size.
Considering Figure 18, we found out the Harmonic 4 value (mean of scalar and vector for-
mulations) continues to increase with Dofs number. As any steady state can be reached,
we cannot choose a specific value. It is considered that there is no information on these
harmonics with the considered mesh sizes. The Dofs number can not be more reduced
because of time and CPU memory issues.
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Figure 17: Torque: Harmonic 2
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Figure 18: Torque: Harmonic 4
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5 Conclusion

An ACPM is a complex topology to study and leads to complications for FEM simulation.
The results on this motor prove the need and the relevance of the method despite the fact
that it is time-consuming. In fact, for the proposed motor and mesh, only the mean value
(even with large mesh) and the first harmonic (with fine mesh) are calculated with a good
accuracy. The non-respect of the meshing rules has a strong impact on the results, which
has to be analyzed. Moreover, scalar and vector formulations do not give exactly the
same results and a finite elements model has to be validated by using both formulations.
An analysis of the results obtained using finite element method is essential before any
vibration calculation based on torque harmonics values. The method presented in this
paper can be used to better identify harmonics accurately calculated for any kind of
topology.
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