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Constructive Solving of Raven’s IQ Tests

with Analogical Proportions

William Correa Beltran,1,∗ Henri Prade,2,† Gilles Richard2,‡

1IRISA ENSSAT, Lannion France
2IRIT, University of Toulouse, Toulouse, France

The paper shows that a Boolean logic modeling of analogical proportions can serve as a basis for 
solving quizzes as well as a common and popular type of IQ tests, namely Raven’s progressive 
matrices. They are nonverbal tests supposedly measuring general intelligence. A 3 × 3 Raven 
matrix exhibits eight geometric pictures displayed as its eight first cells: the remaining ninth cell 
is empty. In these tests, a set of candidate pictures is also given among which the subject is asked 
to identify the solution. In this paper, we investigate a general approach allowing to automatically 
solve Raven’s progressive matrices tests. The approach is based on a logical view of analogical 
proportions, i.e., statements of the form “A is to B as C is to D.” We assume that analogical 
proportions hold between the rows and between the columns of the Raven’s matrix. This view 
can be applied to a feature-based description of the pictures but also, in a number of cases, to a 
very low level representation, i.e., the pixel level. It appears that the analogical proportion reading 
just amounts here to a recopy of patterns of feature values that already appear in the data, after 
checking that there is no conflicting patterns. Implementing this principle, our algorithm builds 
up the ninth picture, without the help of any set of candidate solutions, and only on the basis of 
the eight known cells of the Raven matrices. A comparison with other approaches is provided. 
The ability to construct the missing picture without relying on candidate solutions is a distinctive 
feature of our work. Moreover, we emphasize the general principle underlying the approach that 
offers a simple and uniform mechanism applicable to the tests. At this step, the paper makes no 
claim about the cognitive validity of the approach with respect to the way humans solve such tests. 

1. INTRODUCTION

The human ability “to see a particular object or situation in one context as
being the same as another object or situation in another context”1 is the main
process at work when making analogy, and this ability is one of the main features
of human intelligence. One of the classical approaches to intelligence evaluation is
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to apply psychometric tests supposed to measure the intelligence quotient (namely
IQ tests). Very early, these IQ tests have been considered as offering challenging
problems for AI systems. These IQ tests often involve analogical reasoning tasks.

In the last past years, a logical view of analogical proportions has been
proposed,2–5 leading to infer plausible conclusions on the basis of existing analogical
proportions. In this process, items are described as vectors of Boolean features and
we look for proportions between items that hold componentwise. This view allows
to design analogy-based classifiers where each example is described as a Boolean
vector and associated with a label. A new vector is then classified on the basis of
triples of already classified examples such that a proportion holds on a maximum
number of features. Then the class of the new vector is determined by solving an
analogical proportion equation. These analogical classifiers have shown promising
results6,7 and are able to often outperform the results obtained with the k-nearest
neighbors method.

Besides, the potential of this logical view of proportions for solving IQ quizzes
including an instance of Raven’s tests,8 has been first advocated by Prade and
Richard.9 Raven tests, which are widely used in practice, take the form of a series
of instances having the format of a n × n matrix (where n is 2, 3, or 4) whose
cells contain diverse geometric figures, except the last cell which is empty and
has to be completed by selecting a solution among eight candidates (when n =

3). The series of matrices in a test are of increasing difficulty, hence the name
“Raven’s progressive matrices,” abbreviated as RPM. In that case, the application
of analogical proportions is not as straightforward as it is with simple quizzes where
a sequence of three figures has to be completed by a fourth one. Until now, two
computerized approaches10,11 have been proposed that are able to solve a large
number of Raven tests. An approach proposed by Carpenter et al.10 exploit human-
originated rules that describe the different types of situations encountered (without
reference to analogy). Lovett et al.11 described an analogy-based method which
leads to an abstract categorization of the possible instances of Raven tests, reducing
the problem at hand to a small number of classes of situations.

Our aim in this paper is to show that it is possible to solve almost all Raven tests
with a uniform approach, based on the analogical proportion view. The approaches
of Carpenter et al.10 and Lovett et al.11 estimate the plausibility of each candidate
solution and choose the most plausible one. In that respect, this is similar to the
first AI program by Th. Evans12 in the 1960s for solving simple geometric quizzes,
which also considers the different candidate solutions. In our method, the candidate
solutions are not supposed to be given, which departs from the previous works.

Our method is motivated by the results obtained by analogical proportion-based
classifiers. The approaches like those of Carpenter et al.10 and Lovett et al.11 are
based on models whose cognitive validity has been recognized. Despite its good
performance with respect to Raven’s tests, we do not make any claim regarding the
cognitive value of our model. Moreover, the feature extraction step is supposed to be
done by an external system. Even if the extraction of simple features from pictures
may often be easy and could be realized by a computer program, identifying all the
relevant ones (in particular, higher order features which may be required in difficult
tests) remains a challenging part of the test.



The paper is organized in the following way. First, a brief background on the
logical view of analogical proportions and its origins is provided emphasizing their
predictive power. Then the proposed approach is detailed and illustrated on different
Raven matrix problems. It is shown that some instances of Raven problems can be
solved with a low-level representation in terms of pixels, whereas others can be only
solved on the basis of a feature-based representation. It is worth pointing out that the
approach computes the content of the last cell in Raven matrices, rather than selecting
it among a set of candidate solutions. Interestingly enough, it is in fact, a particular
view of analogical proportions, presented in this paper, which is at work here. It
mainly amounts to recopying observed changes or absence of changes in a controlled
manner. The paper ends with a state of the art and a comparative discussion of the
related works, after having analyzed the few cases where the approach (partially)
fails. The paper is a thoroughly revised and substantially expanded version of two
conference papers.13,14

2. ANALOGICAL PROPORTIONS: A REVIEW

To investigate analogical proportions, a relevant starting point is to consider
numerical proportions linking four numbers a, b, c, d. We have two kinds of numer-
ical proportion: the geometric one asserting an equality of ratios as a

b
= c

d
, and the

arithmetic one asserting an equality of differences as a − b = c − d . In the case of
geometric proportion, the ratio a

b
could be considered as a compact representation

of the dissimilarities between a and b. In the case of arithmetic proportion, the
representation is more straightforward. If we interpret a ratio a

b
(resp. a difference

a − b) as the way a differs from b, since a
b

= c
d

(resp. a − b = c − d) is equivalent

to b
a

= d
c

(resp. b − a = d − c); in both cases, these numerical proportions tell us
that “a differs from b as c differs from d” and conversely.

2.1. Basic Definitions

When we consider Boolean values instead of numbers, a simple way to ab-
stract these notions has been given by Prade and Richard,4 where similarity and
dissimilarity indicators are defined for a Boolean pair (a, b) as

r a ∧ b and a ∧ b are the similarity indicators.
r a ∧ b and a ∧ b are the dissimilarity indicators.

Indeed, a and b are supposed to be the values of a given binary feature for
two distinct items. Then, a ∧ b holds if the two items have this feature in common,
a ∧ b holds if none of the items has this feature, a ∧ b holds if the first item has the
feature alone, and vice versa for a ∧ b.

Generally speaking, a logical proportion15 is a conjunction of two equivalences
between such indicators. Among the 120 distinct logical proportions that exist, the
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Figure 1. Analogical proportion truth table.

analogical proportion, denoted a : b :: c : d, is defined with

a : b :: c : d =def (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d) (1)

(i.e., the proportion holds when this Boolean formula holds). Thus, a logical propor-
tion is modeled by means of a quaternary connective. This definition can be seen as
the logical counterpart of “a differs from b as c differs from d,” and vice versa.2,3

This is the expected meaning of “a is to b as c is to d”. In the Boolean setting, we
need two equivalences instead of one equality in the case of numerical proportions:
This is due to the fact that (a ∧ b ≡ c ∧ d) does not imply (a ∧ b ≡ c ∧ d). Using
two equivalences ensures a proper “Boolean translation” of numerical proportions
in the following sense: a : b :: c : d implies a : c :: b : d, which would not be the
case with only one equivalence. Other noticeable properties of numerical propor-
tions have their Boolean counterpart still valid, as we are going to see. As a Boolean
formula, analogical proportions can be viewed through its truth table that we display
in Figure 1 (where the lines leading to false are discarded). As we can see, 0110
and 1001 do not satisfy an analogical proportion. It can be easily checked from
definition (1) that the basic properties of a numerical proportion still hold in the
Boolean setting:

r symmetry: a : b :: c : d ⇒ c : d :: a : b,
r central permutation: a : b :: c : d ⇒ a : c :: b : d , and
r transitivity: (a : b :: c : d) ∧ (c : d :: e : f ) ⇒ (a : b :: e : f ).

From symmetry and central permutation, we get a : b :: c : d ⇒ b : a :: d : c,
which is still a property of numerical proportions (see the work by Prade and
Richard15 for other properties).

One of the side product of the numerical proportion is the well known “rule
of three,” where it is stated that, when one number x is missing for a numerical
proportion a : b :: c : x to hold, there is a way to compute/predict this missing
number x as being c×b

a
. In the Boolean context, depending on a, b, c, the analogical

equation a : b :: c : x = 1 is not always solvable. Indeed, 0 : 1 :: 1 : x or 1 : 0 :: 0 :
x have no solution. A direct examination of the truth table gives the answer to this
equation and can be formalized as follows: The analogical equation a : b :: c : x is
solvable iff ((a ≡ b) ∨ (a ≡ c)). In that case, the unique solution x is a ≡ (b ≡ c).2

International Journal of Intelligent Systems DOI 10.1002/int



In light of the equation a : b :: c : x = 1, we have to observe that the above truth
table can be split into two parts:

– a part with the four lines 0101, 1010, 1111, and 0000, where it is clear that the
first pair (a, b) and the second one (c, d) are identical, then the third item is equal to
the first one (i.e., a ≡ c). Then, the equation-solving process reduces to a (re)copy
of the second item into the fourth position. The logical formula corresponding to
a truth table with these four lines is (a ≡ c) ∧ (b ≡ d). As we shall see, these four
lines constitute the effective patterns at work for solving Raven’s tests using only a
recopy scheme.

– and a part with the remaining lines 0011 and 1100 : In this case, the proportion
encodes that the two pairs (a, b) and (c, d) (which are distinct) refer to different
contexts, and solving the equation 0 : 0 :: 1 : x does not correspond to having (c, d)
as a copy of (a, b). Note however that the patterns 0011 and 1100 should belong to
the truth table of the analogical proportion as being derivable from 0101 and 1010
by central permutation.

2.2. Equivalent Definitions for an Analogical Proportion

The initial definition of analogical proportion as

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

is not the only one which could be considered. In fact there are other logically
equivalent expressions,3,4 and one of them is particularly worth mentioning. In a
Boolean setting, it can be checked that the previous definition is strictly equivalent
to the following one which does not involve any negation operator:

(a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c) (2)

This definition of a : b : c : d asserts equivalences between a combination of the
mean terms b and c and the same combination of the extreme terms a and d . Inter-
estingly enough, such an expression was considered and named “logical proportion”
by Piaget,16 but without, apparently, any reference to the idea of analogy. The truth
table of a : b :: c : d is then easily deducible from this definition: for instance, the
fact that 1 : 0 :: 0 : 1 is not a valid analogical proportion is obvious with respect
to definition (2). When thinking in terms of Boolean lattice with ∧ being the least
upper bound lub, ∨ the greatest lower bound glb, and ≡ the equality, the formula
asserts that the pairs (a, d) and (b, c) should have the same lub and glb.

In some sense, this formula establishes a strong link with the usual numerical
proportion a

b
= c

d
which is simply defined as a × d = b × c.a Defining analogical

proportions on general lattices (not only Boolean lattices) has been done by Hesse,17

aWhen considering the set of natural numbers N, partially ordered by divisibility, where the
lub is the least common multiple and the glb is the greatest common divisor, the definition of
numerical proportion a

b
= c

d
as a × d = b × c is more general than having lub(a, d) = lub(b, c) ∧

glb(a, d) = glb(b, c): for instance 5
6

= 10
12

but glb(5, 12) = 1 6= glb(6, 10) = 2.
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Figure 2. An example of proportion with Boolean vectors in B.5

Stroppa and Yvon,18,19 but it is out of the scope of this paper to investigate this view
here.

2.3. Extension to Boolean Vectors

In practice, items are often described in terms of several Boolean features, and
the idea of analogical proportion has then to be extended to Boolean vectors: We just
consider that a proportion holds on Boolean vectors of dimension n (i.e., belonging

to B
n), namely, −→a ,

−→
b , −→c ,

−→
d iff it holds componentwise. This can be formally

stated as

−→a :
−→
b :: −→c :

−→
d iff ∀i ∈ [1, n], ai : bi :: ci : di

For instance, when −→a = (1, 0, 1, 0, 1),
−→
b = (0, 0, 1, 0, 1), −→c = (1, 1, 0, 0, 1),

−→
d = (0, 1, 0, 0, 1), they build an analogical proportion, which is better viewed

as the matrix in Figure 2.
An important point to be noticed is that we can now build proportions where all

the involved items are different: This was not the case with the Boolean definition
(i.e., with B) just because B has exactly two elements. It is immediate to check
that this definition on B

n still satisfies the requirement of an analogical proportion,
namely, symmetry and central permutation. This is a simple way to consider a
proportion as establishing a link between objects described by multiple features, but
being still of the same type. When dealing with Raven’s matrices, it appears that we
need more than that. That is why, in the next subsection, we investigate a way to
define analogical proportions between objects of different types.

2.4. Cross-Domain Analogical Proportions

In the above definition of an analogical proportion, a, b, c, and d belong to the
same domain, namely, the set of truth values {0, 1}. We may need a view of analogy
where a, b, c, and d do not belong to a unique universe. An easy way to do this is
to state that an analogical proportion holds between a, b, c, and d as soon as there
exists a relation R such that

R(a, b) = R(c, d)



Under this view, R should practically be nontrivial (i.e., not every pair satisfies R),
but it should also be as simple as possible. Moreover, to have a useful analogical
proportion, R needs to be relevant for the user’s tasks. Indeed, defining R just as the
two pairs R = {(a, b), (c, d)} is certainly not enough, while recognizing that a and
b on the one hand and c and d on another hand are linked by the same structural
equation may be useful (Hesse20 provided us with an interesting discussion).

We see that the condition about the type of a, b, c, d is relaxed as this definition
only forces a and c, respectively, b and d , to belong to the same domain, respectively.
Thus we may have two distinct domains.

A particular instance of the above definition is when R is based on a function
f which leads to the definition:

a : b :: c : d iff ∃f such that b = f (a) and d = f (c) (3)

which leads to the generic pattern:

x : f (x) :: y : f (y)

Solving a : b :: c : x assuming that b = f (a) amounts to induce f to compute f (c).
Again, the more relevant f , the more useful the proportion.

Somehow these patterns fit with the intuition and satisfy the symmetry property,
i.e. if a : b :: c : d holds then c : d :: a : b holds. Unfortunately, they are in trouble
with central permutation since there is no obvious generic way to link a and c starting
from the link between a and b. More precisely, in terms of the general definition
with R, the idea of central permutation would lead to state that a : b :: c : d holds,
we should have S(a, c) = S′(b, d) for some S and S ′. We have then two relations
involved due to the existence of distinct domains, and there is still no clear generic
way to build S and S ′ from R.

However, there is a particular instance of x : f (x) :: y : f (y) which easily fits
the analogical scheme, namely,

x : f (x) :: x : f (x)

Note that this pattern excludes patterns of the form x : y :: x : y ′ with y 6= y ′ where
the underlying relation linking x and y is not functional. Moreover, x : f (x) :: x :?
is an equation solvable in a unique way without the need to guess f : we just have
to copy f (x).

Moreover, in this case, we may consider that the central permutation property
holds since S and S ′ will just be the equality relations over the two respective do-
mains. A particular example of such a proportion is when f is a function whose
domain is a particular Cartesian product (for instance, a function with two compo-
nents), leading to the pattern:

(x1, x2) : f (x1, x2) :: (y1, y2) : f (y1, y2) (4)



Figure 3. Boolean coding for the quizz with reversed letter.

Figure 4. Generic analogical proportion patterns.

This approach is still suitable for solving A : :: B :? if we are able to guess
that the function f applied to A results in a 180 degree rotation of A. In that case,
a simple Boolean coding with three attributes: isA, isB, isReversed leads to the
representation in Figure 3.

For the three last columns in Figure 3, the equation-solving process leads to the
vector (0, 1, 1), which is the exact representation of the solution, a reversed B: .
The attributes, especially the one of the third column, acknowledge the observable
effects at work when browsing the first three items of the sequence. Obviously, in
the case where the function f , which changes the first item into the second one
(namely, a into f (a)), is explicitly identified, we are in a position to choose the
appropriate attributes for encoding the items.

In Figure 4, we gather generic analogical proportion patterns. The patterns
a : b :: a : b (which includes the particular case a = b) and a : f (a) :: a : f (a)
(which is a special case of the functional pattern) are of particular interest. Both of
them embed the idea of recopying, whereas f (a) (in place of b) opens the possibility
that a and f (a) belong to different sets. For instance, in the following, a is a pair of
Boolean variables, whereas f (a) is a Boolean variable. They have straightforward

vector extensions, e.g., −→a :
−→
b :: −→a :

−→
b for the first one. Extensions of analogical

proportion patterns to numerical features21 or to other non-Boolean structures22 are
out of the scope of this paper, where features are Boolean (or nominal in a few
cases). Let us now investigate the use of these patterns to solve picture-based quizz
problems.

2.5. Basic Examples

It is clear that any sequence of three items a, b, c, represented as Boolean vec-
tors, which has to be completed with an item d to build an analogical proportion, is



Figure 5. A simple analogical sequence of pictures.

Figure 6. A Boolean coding for Figure 5.

just the vectorial extension of the equation-solving problem. Let us consider the ex-
ample of Figure 5. A basic way to code the problem is to consider five Boolean pred-
icates hasSquare(hS), hasBlackDot(hBD), hasT riangle(hT ), hasCircle(hC),
hasEllipse(hE) in that order.

This leads to the code of Figure 6. Applying componentwise the solving pro-
cess, we get d = (0, 1, 1, 1, 0) which is the code of the expected solution. All the
lines of the analogy truth table are used (except the line 0000 but it could be easy
to have it by adding a missing feature like hasWhiteDot for instance). Obvi-
ously, there are many examples of this type where only a subpart of the analogical
proportion truth table is involved, or where the same pattern may occur several
times.

Let us remark that this approach is constructive in the sense that the missing
picture d is obtained by computation from a, b, c. The method provides a picture
which is the unique solution satisfying symmetry and central permutation, which
are characteristic properties of analogical proportion. Clearly, we may imagine
some sequence of pictures a, b, c which cannot be completed by a fourth picture
d in the sense of analogical proportion since the equation a : b :: c : x = 1 is not
always solvable. As in the case of Prade and Richard,9 when there is no analogical
solution, we may try to use another type of logical proportions among the so-called
homogeneous proportions,23 which include the analogical proportion. This may be
a way to increase our ability to solve other tests beyond pure analogy, but this is out
of the scope of this paper.

This contrasts with the classical approaches to this problem, pioneered by Th.
Evans,12 where d is rather to be chosen among a set of candidate pictures which
contains a picture considered as being the right answer.

It should also be clear that the approach may not be suitable for solving quizzes
obeying to a functional pattern of the form a : f (a) :: b : f (b), where the function
f has to be guessed on the basis of some simplicity principle.



Figure 7. Modified Raven test 12 and its solution.

3. PROPOSED APPROACH FOR SOLVING RAVEN’S TESTS

Originally developed by John C. Raven in 1936, Raven’s progressive matri-
ces (RPM)8 constitute a set of nonverbal tests where the participant is presented
with a matrix (4 × 4, 3 × 3 or 2 × 2) of images in which the bottom right im-
age is missing and is asked to pick the answer that best completes the matrix,
among a set of candidate answers. The resulting performance is considered as a
measure of the reasoning ability of the participant, and ultimately of his/her gen-
eral intelligence. An exampleb is given with its solution (a simple big square) in
Figure 7. Solving an RPM is primarily a visual exercise and heavily relies on
the representation of the space and objects at hand. Let us focus here on the
3 × 3 Raven’s matrices. We denote the Raven matrix as pic: This is a 3 × 3
matrix where pic[i, j ] (i, j ∈ {1, 2, 3} × {1, 2, 3}) denotes the picture at row i

and column j . pic[3, 3] is unknown and has to be predicted. The other ones
pic[1, 2], pic[1, 3], pic[2, 1], pic[2, 2], pic[2, 3], pic[3, 1], and pic[3, 2] are
completely known. The last picture pic[3, 3] is missing and has to be chosen
among a panel of eight candidate pictures (see example above). We assume that the
Raven matrices can be understood in the following way, with respect to rows and
columns:

∀i ∈ [1, 2], ∃f such that pic[i, 3] = f (pic[i, 1], pic[i, 2])

∀j ∈ [1, 2], ∃g such that pic[3, j ] = g(pic[1, j ], pic[2, j ])

The two complete rows (resp. columns) are supposed to help to discover f (resp.
g) and to predict the missing picture pic([3, 3]) as f (pic[3, 1], pic[3, 2]) (resp.
g(pic[1, 3], pic[2, 3])). This representation is summarized in Figure 8.

First of all, the extended analogical scheme has to be applied for telling
us (a, b) : f (a, b) :: (c, d) : f (c, d) holds for rows and (a, b) : g(a, b) :: (c, d) :

bFor copyright reasons and to protect the security of the test problems, all original Raven
tests have been replaced by specifically designed examples (still isomorphic in terms of logical
encoding to the original ones).



Figure 8. Raven matrix representation.

Figure 9. A monofeature matrix with distinct column function f and row function g.

g(c, d) for columns, which translates into

(pic[1, 1], pic[1, 2]) : pic[1, 3] :: (pic[2, 1], pic[2, 2]) : pic[2, 3]

(pic[1, 1], pic[2, 1]) : pic[3, 1] :: (pic[1, 2], pic[2, 2]) : pic[3, 2]

Similar analogical proportions are supposed to relate row 1 to row 3 and row 2
to row 3, and the same for the columns. Thus, in that case, we have to consider a
pair of cells (pic[i, 1], pic[i, 2]) as the first element a of an analogical proportion,
whereas the second one b is the singleton pic[i, 3]. The pictures are assumed
to be described in terms of Boolean features. Given such a Boolean feature, the
values of this feature of the two first cells of a row (resp. a column) functionally
determines the value of this feature in the third cell in the row (resp. the column). This
view calls for the use of the fourth pattern a : f (a) :: a : f (a) of Figure 4, linking
different types of items (here pairs of values and single values) and where having
the three first elements a : f (a) :: a :?, there is no need to guess f to complete the
proportion.

We also assume that f and g are defined componentwise with respect to
the n components of the vectors encoding the pictures, i.e., f = (f1, . . . , fn) and
g = (g1, . . . , gn). In the following, these vectors are just the encoding of Boolean
features.

Note that nothing forbids f and g to be distinct functions as illustrated by
the example in Figure 9, where ? = 1. Indeed, in that case, f (1, 0) = 1 (see row
2) and g(0, 1) = 1 (see column 1). Observe also that g(1, 0) = 0 (column 2) while
f (1, 0) = 1, thus f 6= g.



Figure 10. An example where a pattern to be completed cannot be found for the same feature.

3.1. Feature-Based Representation

In the following, we assume that the pictures are represented as vectors of high
level Boolean features. This means that these features are provided by an external
system or manually. In the case of Figure 7, each picture pic[i, j ] is represented as
a Boolean vector of dimension 4, the four binary features denoting the presence of a
Big Square, a Small Square, a Circle, and a Cross. In the next section, we investigate
an automatic way to proceed using a pixel-based encoding. Then we can apply the
basic functional pattern of Figure. 4, vertically and horizontally, to try to build up
the missing picture. Let us first illustrate the idea on examples, before summarizing
the whole procedure.

Situation 1: On the toy example in Figure 9, we can see that the horizontal
pattern (1, 0) is completed in row 2 with f (1, 0) = 1. This suggests that the missing
bit is one since we check that there is no contradiction of this row completion
with respect to the other remaining row. But we have to do the same job with the
columns. The corresponding vertical pattern (0, 1) is then completed in column 1 by
g(0, 1) = 1. Again there is no contradiction of this column completion with respect
to the other remaining column. Since the vertical analysis and the horizontal analysis
lead to the same value 1, 1 is then acceptable as a solution for the missing value.

However there are two other situations missing in this example of Figure 9 that
could be encountered.

Situation 2: This case is faced when the above process leads to a contradiction
either internally within the rows, or internally within the columns, or between the
rows and the columns candidate solutions. In those three cases, we cannot suggest
any solution and the algorithm stops by giving a “no solution found” message.

Situation 3: The third case is when the horizontal (resp. vertical) pattern cannot
be found in the two other rows (resp. columns). We illustrate this situation on another
toy example in Figure 10.

Considering the first missing feature, we are in the context of situation 1 again:
the horizontal pattern (0, 0) to be completed in row 3 does not appear neither in line
1 nor in line 2, so we have to move to a vertical analysis and to look for the vertical
pattern (0, 1) to be completed in column 3, that we find in column 2 with solution
0. Since there is no contradiction, we can suggest 0 as a solution for this missing
feature.

Unfortunately, when looking for a pattern for solving the second feature, we
do not find the pattern (0, 1) neither horizontally (in rows 1 or 2) nor vertically (in
columns 1 or 2) for this feature. We are exactly in the context of situation 3 described
above.



We have to consider that a Raven matrix expresses a set of analogical pro-
portions without any consideration of a particular feature. For this reason, to find
the solution for feature i, we may take lesson from other features by looking for a
solution in a row or a column coming from another feature j 6= i. If, whatever the
considered feature in row or column, we always find the same solution, then we
allocate its value to the missing feature. More precisely, to complete an horizontal
pattern in row 3 pertaining to feature i, we have to check that this pattern, when
appearing in another row for any other feature, is always completed in the same way.
Moreover, we have also to check that the vertical pattern in column 3 for feature i,
when appearing in another column for any other feature, is again completed in the
same way. Finally, we have to check that the solution coming from the horizontal
analysis is identical to the solution coming from the vertical one. In that case, this
solution can be proposed, otherwise the algorithm stops by giving a “no solution
found” message as in situation 2.

In the case of Figure 10, regarding the second missing feature, we observe
that the pattern (0, 1) (here both found in row and column) to be completed in
row 3, does not appear in rows 1 and 2 (resp. columns 1 and 2). But we find this
pattern (0, 1) vertically in the second column for the first feature: This leads to
solution 0. Since there is no other pattern (0, 1) leading to another solution, we
allocate the value 0 to the second feature in pic[3, 3]. And we have completed the
matrix.

Let us now summarize the procedure that is implemented in algorithm ANAR-
AVEN. For finding the value of feature i in the ninth-cell of the Raven matrix, we
first consider the horizontal pattern to be completed in row 3 and the vertical pattern
to be completed in column 3 for this feature.

1. If the horizontal (resp. vertical) pattern is found horizontally (resp. vertically), always
with the same completion and the horizontal and vertical completions coincide, a solution
has been found for feature i. If only either the horizontal or the vertical pattern is found
(always with the same completion), still the completion found is considered as the
solution for feature i.

2. If there is an horizontal contradiction, or a vertical one, or the horizontal and the vertical
solutions do not coincide, we are unable to propose a value for feature i.

3. If both the horizontal and the vertical patterns cannot be found in the rest of the matrix
for feature i, we have to apply the same procedure feature by feature, for all the other
features j 6= i. Then a solution is obtained if and only if the solutions that may be found
for some feature(s) coincide. Otherwise the algorithm stops by giving a “no solution
found” message as in situation 2. This may be due to the fact that for some features j
we are in some of the three contradictory situations as explained in the previous item, or
that there are two features j and k leading to distinct solutions.

ANARAVEN is applicable to any Raven test represented as assumed above
(i.e., a Boolean vector in {0, 1}n). Given an index i corresponding to a feature,
ANARAVEN first searches for an existing pattern leading to an answer by means of
the function existAnswer, which calls for a consistency checking via the existCon-
tradiction function. If successful, the function getAnswer returns the unique solution
for feature i.





3.2. Pixel-Based Representation

Instead of dealing with a small number of high level features for describing
the pictures, we may consider an image as a matrix of pixels of dimension n ×

m (considering only noncompressed format as BMP (bitmap), for instance), this
is again a Boolean (or similar) coding automatically performed by the picture
processing device (e.g., the camera or the scanner), where each pixel, black or
white, plays the role of a feature. In that case, instead of dealing with eight pictures
hand-coded as Boolean vectors, we deal with eight BMP files. Apart from the fact
that we have to take care of the headers of the files (which do not obey any proportion
pattern), there is no reason to change our method and our basic algorithm still applies
without any change to the data part of the files. Clearly, we have to implicitly assume
that the eight files have exactly the same dimensions in order for our algorithm to
work: The RPM tests are amenable to such representation since they are entirely
picture based.

In the following section, we experiment with both representations and we
analyze the results.



Figure 11. Modified Raven test 10.

Figure 12. Modified Raven test 10: What the algorithm finds.

Figure 13. Modified Raven test 10: Actual solution.

4. RESULTS AND EXAMPLES

There are diverse sets of RPM available in the literature. In this paper, we
consider the advanced scheme, which is divided into a set of 12 tests and a set of
36 tests. Dedicated to adults with above-average IQ, the second batch is supposed
to be the most difficult one. We have applied our algorithm to these 36 tests, both
at a pixel level and with high level Boolean description. We now present examples
of success and then discuss the failures. We recall that we do not provide the set of
candidate solutions, normally given with a complete RPM test.

4.1. Pixel-Based Approach

Let us start with the pixel approach where we rely on the picture device to
provide the coding of the pictures. The only input of our algorithm is a list of eight
BMP files of the same size, corresponding to the sequence of eight pictures of a
given Raven test. When we apply our algorithm to the 36 tests of our chosen test
set, we get 16 successful results, leaving 20 unsolved. Among the tests that we
solve with this approach, there is test 12 (in Figure 7) already mentioned. In such a
case, it is possible to build the solution point by point (i.e., pixel by pixel) using the
analogical proportion–based mechanism described in Section 3. Note that in Figure
7, there is no rotation or modification of shapes, this is just a matter of presence or
absence (in each cell) of a big square, of a small square, of a circle, and of a cross,
and this amounts, pixel by pixel, to the presence (or absence) of collections of black
points at definite places that altogether figure the different shapes.

An example of a failure is test 10 in Figure 11. The solution that the algorithm
provides starting from a pixel representation is shown Figure 12, and the actual
solution is shown Figure 13, showing that the obtained solution just retains the



Figure 14. A Boolean encoding of the modified Raven test 10.

constant feature appearing in all pictures. The algorithm is unable to provide the
external lines needed to get the proper solution. This should not come as a surprise,
and we cannot expect from such a low level (pixel) representation to capture the
whole information coming from the eight pictures. Generally speaking, the proposed
method is not successful when the variation of an object between two successive
images is a matter of modification or rotation of a shape. It is nevertheless remarkable
that this simple view is sufficient for solving 16 tests. Let us move to the higher
level approach where we still consider a Boolean encoding, but which has now been
manually done.

4.2. Feature-Based Approach

When using the high level feature-based approach, we can solve, on top of the
previous list, 16 new tests, leading to a total of 32 test problems among 36. Let
us consider here two examples, which are considered as relatively difficult in the
RPM scale. First of all, consider test 10 that we previously failed to solve with the
pixel-based approach. We can use the following encoding which provides the exact
solution. Since the central dot is a constant in the eight pictures, we know that this dot
will appear in the picture we want to build (and this is exactly what happens with the
pixel-based approach). Then, we do not consider it in the following. Then, we have
six features covering the problem leading to a picture being represented as a Boolean
vector of dimension 6: (i) three features describing the figures: corner , rectangle,
and triangle, (ii) three features describing the position of the figures position1,
position2, and position3 where position2 denotes a 45-degree clockwise rotation
from position1 and position3 denotes a similar rotation from position2.

We show the complete encoding in Figure 16. The features are coded in this
order: corner , rectangle, triangle, position1, position2, position3. With a
vertical analysis, we get the following code 001001 for the last picture. This means
that the answer must include a triangle in position3. We have to note that we cannot
vertically complete the pair 11 for the last feature: We have then to look for another
target feature for finding a similar context in the first column (for instance) and
subcolumn 4, which gives us the final value: 1.

Let us now come to a second example, namely, test 27, which we provide
with its solution in Figure 15. A Boolean coding of this test uses the features (the
ordering below is the one used in Figure 16): (i) for the presence (or not) of lines in
outsideSquare, centralSquare, insideSquare; (ii) for the direction of the lines:
vertical, diagonal, and horizontal, leading to Boolean vectors of dimension 6. We



Figure 15. Modified Raven test 27 and its solution.

Figure 16. A Boolean encoding of the modified Raven test 27.

Figure 17. Results for 36 Raven tests.

Figure 18. A typical failure case with the Boolean encoding.

show the complete encoding in Figure 16. By solving this matrix with our algorithm,
we get the encoding 100010 which is the exact code of the solution picture.

To conclude this section, we summarize our results in Figure 17. It appears that
four Raven’s tests are not solvable with the proposed approach. In the following,
we propose a careful examination of these tests, either suggesting that an advanced
representation may be useful in some cases, or that in other cases, a constraint
satisfaction mechanism may be needed.

4.3. Using Post Algebra

Among the cases where the procedure fails, some are due to the fact that a non-
Boolean attribute is encoded through a finite set of Boolean features. For example,
in Figure 18, where we have an attribute ranging over the four values R, V, B, and
J and where the solution is R, the Boolean encoding leads to inconsistencies when
applying the approach described in subsection 3.1. Indeed, for the first feature, we



Figure 19. Example with an encoding “à la Post”.

Figure 20. Encoding with Post algebra.

Figure 21. Solution of “Post example.”

have to complete the pattern 00 and there is only one option which is 0 as revealed
by looking at feature 1, in the second column. But for the second feature, we
have again to complete the pattern 00, but we do not have any solution by looking
horizontally or vertically at the second feature. So, we look at other features and we
find, from feature 1, we get 0 whereas from feature 3 (from row 1) we get 1. We get
a contradiction.

In such a case, one may use an encoding based on Post algebra,24 as briefly
described by Prade and Richard.25 In this approach, an operator σ enables us to
define a cyclic negation, while preserving the definition of the analogical proportion
in an extended way. Namely, given a total ordering over a set of items {a1, ..., an}

(the ordering may be chosen arbitrarily), one defines σ (ai) = ai+1, for i ∈ [1, n − 1],
and σ (an)=a1. The negation of an element a is simply σ (a).

The analogical proportion schema becomes a : σ k(a) :: b : σ k(b), and we can
notice that the example in Figure 18 can now be solved with this encoding and the
order R, V, B, J .

Let us consider a complete example (a RPM test), the one in Figure 19, where
we use two attributes, a shape attribute with values rectangle, circle, triangle, and
a second attribute with values vertical, horizontal, and diagonal for describing
the lines with the following ordering (as suggested by the two first rows).

This leads to the encoding shown in Figure 20. To take advantage of the cyclic
encoding, we also need to apply analogy with the form of continuous proportions,
which corresponds to the pattern A:B::B:C, for expressing (in row or in column)
that if the cell C comes after cell B that comes after A, then in some sense “A
is to B as B is to C.” Then, for solving with respect to attribute a, we have to



Figure 22. Example of a failure.

evaluate the pattern a3 : a2 :: a2 :? according to Post logic. Since a2 = σ 2(a3), we
get x = σ 2(a2) = a1. The same reasoning applies for attribute b with the pattern
b2 : b3 :: b3 :? where b3 = σ (b2) then we get y = σ (b3) = b1. It turns out that a1b1

is exactly the encoding of the expected solution (Figure 21). This enables us to solve
this test and another one where we previously failed. This second test is shown in
Appendix A, section A.1 with its encoding and its solution.

As can be seen, the solving of these two additional tests is done by means
of an analogical proportion pattern, extended to non-Boolean domains, and also
by means of a new analogical reading of the Raven matrix where a continuous
analogical proportion is assumed to hold inside each row (and column), while the
approach developed in this paper is based on analogical proportion between two
rows or two columns. The full investigation of the alternative analogical reading
introduced above is left for further research.

4.4. The Two Remaining Failure Cases

The analogical approach seems unable to solve the two remaining Raven tests
(among the 36 tests). In one of the cases, when using cyclic or Boolean encod-
ings, it leads to inconsistencies, i.e. we get two distinct answers for the same
feature. However, in this case, the Boolean encoding yields the correct unique
answers for all features but one, and for the feature where we get contradic-
tory answers, one of the options is the right one, whereas the other leads to a
feasible solution which is not among the eight candidate solutions proposed in
the test. This would enable to conclude by elimination, but then the approach is
no longer entirely constructive. Details about this test are given in Appendix A,
section A.3.

Figure 22 exhibits the last case where the proposed approach fails. In this
example, we have to predict the three figures that altogether make the answer, as
well as their relative position. With a Boolean encoding, using the names of the
figures as attributes (circle, triangle, square, star, hexagon) without taking into
account either their position or their number of occurrences in each image, we
conclude that the image of the answer should include a circle, a triangle and a



Figure 23. The solution for the test given in Figure 22.

square (see the encoding in Appendix A, section A.2). The approach cannot succeed
in finding the relative positions of these figures (see Appendix A, section A.2).

It can be noticed in Figure 22 that there are situations that always hold both in
rows or in columns: (a) There are two stars in each row and each column; (b) there
are two circles in each row and each column, and moreover in columns they are
in the same position; (c) there are two triangles in each row and each column, and
moreover in rows, they are in the same position; (d) there is one hexagon in each
row and each column. This suggests the need to evaluate the rows and the columns
in terms of the above-mentioned constraints.

Constraint (b) ensures that a circle maintains its position in each column, and
since in image [3, 1] the circle is on the right, it should have the same position in the
solution. By using constraint (c), one concludes that the triangle should be on the
left of the image and this leads to deduce that the square should be in the middle of
the image. The final answer is thus “triangle square circle” as shown in Figure 23
(see Appendix A, section A.1. for details).

This shows that the complete solving of this example, beyond copying, involves
constraints between characteristics for being able to conclude here that the central
remaining position can be only occupied by the remaining element (the square):
This does not seem to be easy to handle with a pure analogical approach since the
analogical readings (between or inside rows and columns) fail to provide a solution
for this test. One may also notice on Figure 22 that the solution corresponds to the
unique permutation of the three elements (triangle, square, circle) that is missing,
the three other cells corresponding to all the possible permutations of a hexagon and
two stars. This seems beyond a standard definition of analogical proportion.

5. RELATED WORK

There is a huge literature on computational models of analogical reasoning with
applications in different areas. For an introductory overview of computational trends
in analogical reasoning, the reader is referred to Prade and Richard’ bibliographical
study.26 The use of analogical proportions to solve geometric quizzes is just a
particular instance of analogical reasoning. We can consider Th. Evans12,27 as a
pioneer in this domain. He designed a program able to select an answer to complete
a sequence of three geometric figures A, B, and C. The problem was then to find,
among a given set of candidate solutions, the figure X that gives the best fit to the
analogical proportion “A is to B as C is to X.” The program exploited appropriate
representations of the geometrical figures in terms of how subfigures relate in a given
figure and tried to match rules describing changes from A to B with rules describing
changes from C to X, for the different Xs taken in the set of candidate solutions.
This approach did not explicitly rely on a formal framework to analogical reasoning
and was specifically tailored to solve analogies between geometric patterns.



When it comes to provide a formal framework for analogical reasoning, we
can roughly distinguish two kinds of approaches: the symbolic ones and those
incorporating connectionist features.1 Among the first type of approaches, we can
distinguish:

r the ones based on a purely logical approach, either first-order logic28 or second-order
logic29,30

r the ones proposed by Gentner31 and Winston,32 more model oriented, which use appropri-
ate symbolic representations (for instance graphs) of the involved items and consider the
analogy-making process as a matching process allowing to reveal some hidden analogical
relations.

More problem-driven, the connectionist view33–35 makes use of constraint sat-
isfaction networks to determine, through an optimization process, the best solution
among competing hypotheses.

RPM tests are a particularly challenging case of geometric quizz. Automatically
solving RPM has been attempted with diverse computer models. In a comparative
overview of computer models to solve intelligence test problems,36 survey about 30
systems, among which half a dozen deal with RPM tests. We review these works
below.

5.1. The First Model

As far as we know, the first effective computational model targeting RPM was
developed by Carpenter et al.10 Based on psychological studies, it has been found
that most humans solve these tests in the following way:

r by observing the top row of the matrix, starting to compare pairs of consecutive pictures,
to generate hypotheses about how the pictures vary along in the first row and to guess
transformations rules from their observations,

r then by testing those hypotheses by looking at the middle row,
r finally by mapping the similarities and dissimilarities between those first two rows and

the bottom one to know how to apply the same rules to this row.

Starting from these observations, Carpenter et al.10 have implemented two
programs, namely FAIRAVEN and BETTERAVEN, both of them using hand-coded
input representations, and a set of six human-inspired rules implemented in the
system. Given a Raven matrix, the two systems proceed as follows: (1) identifying
which rules among the six rules apply to the first two rows and (2) computing a
mapping between those two rows and the bottom row to determine how to apply the
same rules in that row.

Whereas FAIRAVEN could perform at the level of an average participant,
BETTERAVEN was able to match the performance of the best participants to RPM
tests. It is not clear how the information coming from the columns is used in the
global process. The authors do not make any reference to analogical reasoning.

Lovett et al.11 suggested for the first time that beyond spatial reasoning, RPM
appears to make use of another important cognitive ability, namely, the ability to
perform analogy and more generally comparison. Starting from this assumption,
the authors combine qualitative spatial representations with analogical comparison



via structure mapping, leading to a more powerful model than the previous one.
The approach relies on a very successful model of analogy, the so-called structure
mapping theory (SMT),37 and on its computational counterpart, namely, the structure
mapping engine (SME)38 that we review in the next subsection.

5.2. Structure Mapping Theory and Structure Mapping Engine

SMT and its implementation SME are assumed to emulate the way human
beings buildup analogies by mapping knowledge from one source domain to a
target domain. The input of SME is the encoding of two contexts via entities,
predicates, and relations linking predicates and entities. Acyclic graphs whose nodes
are entities and the root is a higher order relation linking the elements of the graph, are
thus obtained. Matching hypotheses are created between two context descriptions,
modulo identities of predicates or entities. They are combined to build maximal set
of coherent hypotheses. A conflict is encountered when an expression cannot match
two distinct expressions.

As some expressions may appear in one graph but not in the other one, a
maximal set of matching hypotheses allows the handling of candidate expressions
possibly valid in the graph where they do not appear. Each maximal set is associated
with a score taking into account the underlying graph structure.

The output of SME is made of the maximal sets with their corresponding
score and their candidate inferred expressions. When it comes to solve RPM tests,
CogSketch, a sketch understanding system created by Forbus et al.,39 takes as input
a sketch drawn by the user, which has to be segmented into objects and generates
a qualitative representation of those objects (or their edges and groups of objects),
and their relations (relative position, topology, etc.). For instance, CogSketch can
tell which objects are placed side by side, whether two objects intersect, or whether
one is located inside another. At the end of the process, each picture is represented
as an entity with attributes and relations with other entities. At this stage, we have a
representation of the relative position of the objects.

CogSketch uses this edge level representation (which identifies the correspond-
ing edges in two distinct objects) to compare two objects in a sketch, with the aim of
determining whether there is a transformation (rotation, size modification) or even a
deformation (total shape change) between these two objects. With this information,
the objects with equivalent or strict shapes in common, are grouped together. At this
stage, we have a representation of the modification between objects.

To select the correct answer for the target test, the system described by Lovett
et al.11 proceeds as follows:

1. The first two rows of the current matrix are evaluated via SME to generate some rules
for both of them, which are called pattern of variance and are a representation of how
the objects change across the row of images. There are four different strategies available
to build up these patterns of variances (Lovett et al.11 provided us with more details).

2. SME is then used again, but now for comparing the two patterns of variance previously
found for the top two rows and obtaining a similarity score. This comparison is called
second-order comparison as it operates on patterns instead of object representations.

3. This similarity score is compared to a threshold to determine its validity.



4. If the patterns of variance are considered similar enough, an analogical generalization
(which is a new pattern) is built describing what is common to both rows.

5. Each one of the eight candidate answers is scored by inserting that answer into the bottom
row, computing a pattern of variance, and then using SME to compare this pattern to the
generalization pattern for the top two rows. The final answer is the one with the highest
score.

6. In the case where the two patterns of variance corresponding to the top rows are not
similar enough, another strategy is applied.

That approach overcomes the limitations of the work by Carpenter et al.10

because

– the spatial representations of the pictures are automatically generated using
CogSketch (instead of being hand-coded), and

– there is no set of built-in rules since SMT is used for generating the rules that have to be
applied to the bottom row.

Finally, this model was evaluated on the 48 problems of the sections B– E of
the Standard Progressive Matrices tests, solving 44 of these problems. Lovett et al.11

argued that the four remaining problems without solution are among the six hardest
ones for human participants, being the ones with the lowest resolution scores. Again,
it is not clear how the information coming from the columns is used in the system.

At this stage, four main differences can be observed between the SMT approach
and the one presented in this paper:

1. First, the feature encoding of the pictures is not automatically handled, whereas Lovett
et al.11 use CogSketch for getting the encoding. Still, when images are entered in CogS-
ketch, the type (e.g., rectangles, crosses) of each figure in each image has to be given to
the program, which is then able to generate the representation of the relation between
the figures. The choice of specific features to focus on is certainly a part of the cognitive
difficulty of the tests for humans. For representing each problem (especially when tests
cannot be solved by working at the pixel level), we use a Boolean description of all the
features that are present or absent. These basic features often pertain to subparts easy to
identify (e.g., “is there a circle?,” “is it black?”), but may also pertain to the evolving
position of a component, and in a few cases to shapes that are transformed in some way
(e.g., “is the circle elongated?”). In any case for getting the encoding, there is no need to
know the solution.

2. Once we have a feature-based description of the matrix, the remaining problem to
be solved is not fairly straightforward. Indeed, Lovett et al.11 have to build rules for
describing changes in the first two rows of the matrix combined with four different
strategies to be applied to solve a test. In particular, the change patterns identified in the
first two rows are then compared to the change patterns that would be at work in the third
row, when the empty cell is replaced by each candidate solution. The solution which is
associated with change patterns that maximizes the similarity with the change patterns
identified in the first two rows, is chosen. The procedure of Lovett et al.11 seems more
intricate than the one presented here where the same simple and uniform principle is
applied whatever the context.

3. Our approach makes use of both, rows and columns of the matrix. If a matching pattern
is not found within the rows, we look for such a pattern within the columns. It is an open
question to know if all Raven’s tests can be solved only by observing the rows.

4. Finally, our approach provides a constructive process to build up an analogical proportion,
defining step-by-step the final solution picture, without choosing it among a set of
candidate solutions.



The combination of the two approaches might be investigated to try to solve
the four tests where we (partially) fail, apart of the four tests that Lovett et al.11

missed.

5.3. Other Approaches

Quite at the same time as the conference version of a work by Correa et al.,14

another constructive approach for RPM has been proposed by Strannegård et al.40

This work does not explicitly refer to analogy, but relies on a principle close to
the idea of recopy. Indeed the authors summarize their method in the following
way: “The proposed solving strategy relies on pattern matching. Problems can be
processed either row or column-wise; patterns holding for both of the first two
are applied to the third one, obtaining a prediction value for the solution cell.”
The performance of the method is measured on the standard progresssive matrices
(SPM) where 28 over 36 problems are completely solved this way.

Apart from the symbolic approaches to RPM automatic solving, there is a
another recent alternative involving only visual strategies that use iconic representa-
tions. This approach has been mainly investigated in a work by McGreggor et al.41

where two methods are presented (the so-called affine and fractal methods) which
share the same two intuitions: comparing images under a variety of transforma-
tions, and judging the similarity based upon features which arise from the images.
Each of the methods compares images (or fragments of images) under a variety of
transformations and, roughly speaking, proceeds as follows:

r Induce a best-fit composite transformation for a set of collinear elements in the ma-
trix. This can work on raw scanned images, without any intermediary modification (i.e.
grayscale PNG images).

r Apply this transformation to the parallel set of elements containing the empty element;
the result is a predicted answer image.

r Compare this predicted image to the given candidate solutions for maximum similarity.
In terms of similarity, the ratio model as described by Tversky42 is used. The candidate
solution having maximum similarity with the predicted image is considered as the final
answer to the test.

These two visual methods show a robust level of performance both for SPM43

and advanced progressive matrices.41 Still, they are not constructive methods allow-
ing to build a solution from scratch, without choosing among a set of already built
candidate solutions.

From another perspective, Ragni et al.44,45 have developed a system for solving
RPM, implemented on top of a cognitive architecture ACT-R,46 a theory for simu-
lating and understanding human cognition. As it is the case with Carpenter’s work,
they have to identify, among a set of five rules, which one applies to a given picture.
Each picture of the matrix is described via a static set of attributes such as shape,
size, color, rotation, etc.

Despite the method is not constructive, the system performs quite well and, in
fact, slightly better than BETTERAVEN, solving around 91% of the tested RPM.
The authors have also added to their experiments explanations related to the success



or failure of the system, establishing a clear correlation between response times and
the difficulty of the test.45,47

6. CONCLUSION

We have presented an approach based on a unique principle that enables us
to solve almost all (advanced) RPM problems in a constructive manner. The few
ones which have not been solved involve constraint propagation mechanisms and
would apparently require a more sophisticated mechanism. In a number of cases, the
approach can be successfully applied at the pixel level, providing the exact answer
as it is expected.

It is remarkable that the approach relies on a simple and uniform principle,
which follows from the logical modeling of analogical proportions, and in fact here
from a specialized form of this logical modeling. However, the approach discussed
in this paper has privileged a reading in terms of analogical proportions between
rows and columns, but another reading in terms of continuous analogical proportions
inside rows and columns may also be considered and would be worth investigating.

The approach presented here amounts to copy what can be observed in the
matrix and to reproduce it if no other observation (in the context of other features)
goes in the opposite way and prevents the copy. This computational approach based
on analogical proportions may raise questions of interest from a cognitive science
viewpoint. Is it the case that most of Raven test participants try an analogical reading
of the matrix? If yes, of what type? (Between or inside rows and columns), what is
the role of the copying in their choice of the solution? When solving such a test, what
are the respective roles of similarities and differences between pictures? Answering
all these questions may help to build more accurate computer models than the ones
investigated in this paper.

Beyond IQ tests, the analogical proportion solving principle can be of interest
in different reasoning tasks such as extrapolation,48 classification,6,49 and more
generally, machine learning.50
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A APPENDIX

A.1 The Second Case Mentioned in Section 4.3

In Figure A1, we exhibit the second case mentioned in section 4.3 which can be
solved by using Post algebra. We only need two attributes, the first one with values
losange, star , pentagone, and the second one with values sprayed , empty, and
f illed . We consider the following order:

a1 : losange a2 : star a3 : pentagon

b1 : sprayed b2 : empty b3 : filled

This leads to the encoding shown in A2. Using the equation-solving process,
we get the encoding a3b2 (Figure A3), which is the encoding of the correct answer:
an empty pentagon.

A.2 Boolean Encoding of the Test of Figure 22

Back to the above-mentioned test in section 4.4, and exhibited in Figure 22,
let us investigate a Boolean coding using the features circle, triangle, square,

Figure A1. Modified Raven test 17.

Figure A2. Encoding with Post algebra.

Figure A3. Modified Raven test 17: actual solution.
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Figure A4. A partial Boolean encoding of the test exhibited in Figure 22.

Figure A5. A complete Boolean encoding of the test exhibited in Figure 22.

star , and hexagon (where, for instance, circle get the value 1 if there is a circle
in the picture, 0 otherwise). Each picture is then encoded with a sequence of five
Boolean values: the complete encoding is shown in Figure A4. Using ANARAVEN
algorithm, we get the solution 11100 which indicates that the answer should contain
a circle, a triangle, and a square, but we do not know in what particular order. To
try to get the exact solution, we have to define a more accurate Boolean encoding,
taking into account the position of the corresponding figure in a picture. As we
have three candidate positions, a total of 3 × 5 = 15 attributes is necessary, denoted
a1, . . . , a15 as below:

a1 : circlePosition1 a2 : circlePosition2 a3 : circlePosition3

a4 : trianglePosition1 a5 : trianglePosition2 a6 : trianglePosition3

a7 : squarePosition1 a8 : squarePosition2 a9 : squarePosition3

a10 : starPosition1 a11 : starPosition2 a12 : starPosition3

a13 : hexagonPosition1 a14 : hexagonPosition2 a15 : hexagonPosition3

This leads us to the encoding shown in Figure A5. Looking for a solution for
attribute a1, we are led to complete the vertical pattern 00, which has already been
observed in the previous column, leading to the unique solution 0. This agrees with
an horizontal reading where the pattern to be completed is 10: This pattern appears
in the previous row giving the unique solution 0 (no contradiction with the previous
vertical reading). The same reasoning applies for a2 since we have to complete the
pattern 00 vertically and the pattern 01 horizontally: both of them have previously
been observed leading to the unique solution 0.

When it comes to a3, the corresponding vertical pattern is 10 not previously
seen, and the horizontal one is 00 which has been observed on both the previous row,
leading to 1 with the first row and 0 with the second row: this is a typical case where



Figure A6. A Boolean encoding of the modified Raven test 32.

Figure A7. Encoding with Post algebra.

we have no answer. This situation still occurs for other attributes and ANARAVEN
does not provide any global solution to this test.

A.3 The First Case Mentioned in Section 4.4

Figure A8 exhibits the Raven test mentioned in the first paragraph of Section 4.4
for which ANARAVEN fails to find a solution. Starting from the Boolean encoding
corresponding to the nine features below:

A Position1, A Position2, A Position3,

B Position1, B Position2, B Position3,

C Position1, C Position2, C Position3

We get the encoding given in Figure A6.
It is clear that attribute B Position1 (feature 4) leads to a contradiction (be-

cause of the contradictory vertical pattern (0, 0) for feature 4) thus preventing
ANARAVEN to give a solution.

Let us move to a Post algebra encoding using three attributes, one per position,
with the following order:

a1 : A Position1 a2 : B Position1 a3 : C Position1 a4 : rien Position1

b1 : A Position2 b2 : B Position2 b3 : C Position2 a4 : rien Position2

c1 : A Position3 c2 : B Position3 c3 : C Position3 c4 : rien Position3

The encoding of this test using Post Algebra is exhibited in Figure A7. It is
easy to get the two first features by applying the method: we get x = a2 (B in the
first cell) and y = b4 (a blank in the second cell). Unfortunately, no solution can



Figure A8. Modified Raven test 32.

Figure A9. Candidate solutions for the test.

be found for the third feature. However, it can be seen that, among the candidate
solutions reproduced in Figure A9 (remember that in a true Raven’s tests, candidate
solutions are proposed to the attendee), only one start with B and then a blank,
which here will enable to reach the solution.




