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Abstract. For the development of large-scale representations of knowl-
edge, the application of methodologies and design principles becomes
relevant. The knowledge may be organized in ontologies in a modular
and hierarchical fashion. An upper-level (reference) ontology typically
provides specifications of requirements, functions, design or standards
that are to be complied with by domain ontologies for a specific task
on a lower level (task ontology) in the hierarchy. Verifying whether and
how specifications have been implemented by a task ontology becomes
a challenge when relevant axioms of the domain ontology need to be
inspected. We consider specifications to be defined using entailments of
certain queries over a given vocabulary. For selecting the relevant axioms
from task ontologies, we propose a novel module notion called projection
module that entails the queries that follow from a reference ontology. We
develop algorithms for computing minimal projection modules of De-
scription Logic terminologies for subsumption, instance and conjunctive
queries.

1 Introduction

A common practice in the area of the Semantic Web is to reuse and extend exist-
ing ontologies for a specific task. Therefore, an approach to comparing multiple
ontologies is often desired. In this paper, we propose the notion of projection
module which characterizes the relative knowledge of an ontology, say, an on-
tology developed for a specific task (called task ontology), by taking another
ontology as a reference (called reference ontology), e.g. an upper-level ontology.
This can thus lead to (1) a method for comparing the entailment capacities of
any two ontologies about a given vocabulary of interest, and (2) a fine-grained
ontology comparison measurement between two ontologies.

? This work is partially funded by the ANR project GoAsQ (ANR-15-CE23-0022).



Fig. 1. Projection Module

T1 = {α1}, T2 = {β1, β2, β3, β4}

α1 : Professor v Faculty u ∃has.PhD u ∃teach.Course

β1 : Professor v Faculty u ∃has.PhD u
∃teach.Master Course u
∃teach.Bachelor Course

β2 : Faculty v ∃has.PhD
β3 : Bachelor Course v Course

β4 : Master Course v Course

Fig. 2. Example: Minimal Projection Modules

As illustrated in Figure 1, for a user interest expressed as a set Σ of con-
cept and role names, the reference ontology T1 (resp. task ontology T2) contains
S1 (resp. S2) as a sub-ontology, e.g., a minimal module [9, 10], that provides
a minimal number of axioms entailing all Σ-consequences. A projection mod-
ule, on the other hand, additionally takes a reference ontology into account
as to preserve the relevant Σ-knowledge only, which can yield an even smaller
module S3 of T2. Figure 2 shows a concrete example with T1 being the upper-
level (reference) ontology modelling aspects of a university domain, and a task
ontology T2 as an extended and modified version of T1. Consider the signa-
ture Σ = {Professor, Faculty, has, PhD, teach, Course} (consisting of the symbols
marked in blue in Figure 2). Then T1 has merely one module S1 = {α1} that
preserves T1’s knowledge about Σ. When extracting modules of T2 for Σ, we
obtain T2 itself using existent module notions such as modules based on local-
ity [14] or the module extracted by MEX [20]. Here we have two candidates for
a minimal module S2 of T2 that each preserve all inclusions over Σ: {β1, β2, β3}
and {β1, β2, β4} [9]. The projection modules of T2, however, preserving the Σ-
inclusions entailed by T1 are even smaller with S3 = {β1, β3} or S3 = {β1, β4}.
Every projection module S3 is a strict subset of a minimal module of T2, which
is in line with the fact that the task ontology T2 has extended the reference
ontology T1 with new Σ-consequences, e.g., Faculty v ∃has.PhD.

Various approaches to comparing ontologies have been suggested, including
ontology matching [13] and logical difference [22, 23, 25, 27]. Ontology matching
is the process of determining correspondences, e.g., the subsumption relations
between two concept or role names from different ontologies, for which a good
concept similarity [1,26] is often helpful. In contrast, logical difference focuses on
the comparison of entailed logical consequences from each ontology and returns
difference witnesses if differences are present. When an ontology has no logical
difference compared to another one, our approach further extracts sub-ontologies
of the first that contain the knowledge as represented by the second ontology.

Ontology modularity [9, 18, 22, 25, 28, 29] is about the extraction of sub-
ontologies that preserve all logical consequences over a signature. The proposed
projection module is different from modules of a single ontology, as illustrated
by the example in Figure 2. To compute projection modules, in this paper,
we generalize the notion of justification to the notion of subsumption justifi-
cation as a minimal set of axioms that maintains the entailment of a conse-



quence. Our algorithm employs the classical notion of justification to compute
subsumption justifications. Currently, the approaches for computing all justifi-
cations of an ontology for a consequence can be classified into two categories:
“glass-box” [2, 5, 16,17] and “black-box” [11,16,30].

We proceed as follows. After reviewing some preliminaries in Section 2, the
notion of a minimal project module for subsumption, instance and conjunctive
queries is introduced in Section 3. In Section 4, we introduce the algorithm for
computing minimal projection modules. In Section 5, two applications of minimal
projection modules are presented. Finally, we close the paper with a conclusion
in Section 6.

2 Preliminaries

We start by reviewing the description logic EL and several of its extensions.
Let NC, NR and NI be mutually disjoint and countably infinite sets of concept

names, role names and instance names. The signature sig(ξ) is the set of concept
and role names occurring in ξ, where ξ ranges over any syntactic object. The sets
of EL-concepts C, ELran-concepts D, ELu-concepts E, and ELu,u-concepts F ,
and the sets of ELHr-inclusions α, ELran-inclusions β and ELran,u,u-inclusions γ
are built according to the grammar rules:

C ::= A | C u C | ∃r.C | dom(r)
D ::= A | D uD | ∃r.D | dom(r) | ran(r)
E ::= A | E u E | ∃R.E
F ::= A | F u F | ∃R.F | ∃u.F
α ::= C v C | ran(r) v C | ran(r) u C v C | C ≡ C | r v s
β ::= D v C | r v s
γ ::= D v F | r v s

where A ∈ NC, r, s ∈ NR, u is a fresh logical symbol (the universal role) and
R = r1 u . . . u rn with r1, ..., rn ∈ NR, for n ≥ 1. We refer to inclusions also as
axioms. A Γ -TBox is a finite set of Γ -inclusions, where Γ ranges over the sets
of ELHr- and ELran,u,u-inclusions. We use lhs(α) (resp. rhs(α)) to represent the
left-hand side (resp. right-hand side) of an inclusion α.

The semantics is defined as usual in terms of interpretations interpreting
concept/role names as unary/binary relations and are then inductively extended
to complex concepts. The notions of satisfaction of a concept, axiom and TBox
as well as the notions of a model and the logical consequence relation are defined
as usual [4].

An ELHr-terminology T is an ELHr-TBox consisting of axioms α of the form
A v C, A ≡ C, r v s, ran(r) v C or dom(r) v C, where A is a concept name,
C an EL-concept and no concept name occurs more than once on the left-hand
side of an axiom.To simplify the presentation we assume that terminologies do
not contain axioms of the form A ≡ B or A ≡ > (after having removed multiple
>-conjuncts) for concept names A and B. For a terminology T , let ≺T be a
binary relation over NC satisfying that A ≺T B iff there is an axiom of the form



A v C or A ≡ C in T such that B ∈ sig(C). A terminology T is acyclic if the
transitive closure ≺+

T of ≺T is irreflexive; otherwise T is cyclic. We say that a
concept name A is conjunctive in T iff there exist concept names B1, . . . , Bn,
n > 0, such that A ≡ B1u. . .uBn ∈ T ; otherwise A is said to be non-conjunctive
in T . An ELHr-terminology T is normalised iff it only contains axioms of the
forms

– r v s, ϕ v B1 u . . . uBn, A v ∃r.B, A v dom(r), and
– A ≡ B1 u . . . uBm, A ≡ ∃r.B,

where ϕ ∈ {A, dom(s), ran(s)}, n ≥ 1, m ≥ 2, A,B,Bi ∈ NC, r, s ∈ NR, and each
conjunct Bi is non-conjunctive in T . Every ELHr-terminology T can be nor-
malised in polynomial time such that the resulting terminology is a conservative
extension of T [19]. A subset M ⊆ T is called a justification for an ELH-concept
inclusion α from T iff M |= α and M ′ 6|= α for every M ′ (M .

We denote the set of all justifications for an ELH-concept inclusion α from an
ELH-terminology T with JustT (α). The latter may contain exponentially many
justifications in the number of axioms in T . An ABox contains assertions of
the form >(a), A(a) and r(a, b), where a, b ∈ NI and r ∈ NR. An ABox consists
of finitely many ABox assertions.

Let NI and NV be disjoint sets of individual and variable names. A con-
junctive query is a first-order formula built according to the following format:
∃y1 . . . ∃yn.

∧
i∈I1 Ai(si) ∧

∧
j∈I2 rj(tj , t

′
j), where y1, . . . , yn ∈ NV for n ≥ 1 are

variable names, I1, I2 are finite sets of indices, and for i ∈ I1 and j ∈ I2, Ai
ranges over concept names in NC, rj ranges over role names in NR, and si, tj , t

′
j

range over individual and variable names in NI ∪ NV.
A signature Σ is a finite set of symbols from NC and NR. The symbol Σ

is used as a subscript to sets of concepts or inclusions to denote that the ele-
ments only use symbols from Σ, e.g., ELHrΣ and ELran,u,u

Σ . For a signature Σ,
let Σdom = { dom(r) | r ∈ NR∩Σ } and Σran = { ran(r) | r ∈ NR∩Σ } be the sets
consisting of concepts of the form dom(r) and ran(r) for every role name r in
Σ, respectively. We recall the notion of logical difference for concept subsump-
tion queries, instance queries and conjunctive queries from [19, 24]. For a more
detailed introduction to description logics, we refer to [3, 4]. For latest results
on logical inseparability see [7, 8, 15], and for a survey on query inseparability,
see [6].

Definition 1 (Logical Difference). The L-subsumption query difference, for
some logic L, the instance and conjunctive query difference between T1 and T2
w.r.t. Σ are the sets cDiffLΣ(T1, T2), iDiffΣ(T1, T2), and qDiffΣ(T1, T2), respec-
tively, where

– ϕ ∈ cDiffLΣ(T1, T2) iff ϕ is an L-inclusion, T1 |= ϕ and T2 6|= ϕ;
– (A, λ) ∈ iDiffΣ(T1, T2) iff A is a Σ-ABox and λ a Σ-instance assertion such

that (T1,A) |= λ and (T2,A) 6|= λ;
– (A, q(a)) ∈ qDiffΣ(T1, T2) iff A is a Σ-ABox and q(a) a Σ-conjunctive query

such that (T1,A) |= q(a) and (T2,A) 6|= q(a).



According to [19], L-subsumption queries for L = ELran and L = ELran,u,u are
sufficient to detect the absence of any instance query and conjunctive query dif-
ferences, respectively. Therefore, we only consider how to detect L-subsumption
queries for L = {ELHr, ELran, ELran,u,u}. Let αLΣ be an L-inclusion that only
uses symbols in Σ. We organise the Σ-symbols (and the domain and range con-
cepts over role names from Σ) that occur as “witnesses” of a L-subsumption
query difference between T1 and T2 as follows:

WtnLΣ(T1, T2) := (roleWtnLΣ(T1, T2), lhsWtnLΣ(T1, T2), rhsWtnLΣ(T1, T2)),

where roleWtnLΣ(T1, T2) = { r ∈ Σ ∩ NR | r v s or s v r ∈ cDiffLΣ(T1, T2) },
lhsWtnLΣ(T1, T2) = {ϕ ∈ (Σ ∩ NC) ∪ Σdom ∪ Σran | ϕ v rhs(αLΣ) and α is a

LΣ − inclusion} and rhsWtnLΣ(T1, T2) = {A ∈ Σ ∩ NC | lhs(αLΣ) v A ∈
cDiffQΣ(T1, T2) }. The set WtnLΣ(T1, T2) can be seen as a finite representation

of the set cDiffLΣ(T1, T2), which is typically infinite when it is not empty. It fol-
lows from the “primitive witnesses” theorems in [19] that cDiffLΣ(T1, T2) = ∅ iff
WtnLΣ(T1, T2) = (∅, ∅, ∅). Thus, deciding the existence of logical differences is
equivalent to decide non-emptiness of the three witness sets.

3 Projection Modules

To understand the relations among different ontologies, we introduce the notion
of projection module, as a way to explain how the knowledge that is encoded
in a reference ontology is implemented in a task ontology. We are interested
in computing all projection modules, since it provides a complete list of all
implementations of an ontology regarding a reference, each of which may be
necessary to be checked. To enable a manual validation by domain experts, we
need to present only necessary information, so we focus on computing minimal
projection modules.

A terminology T1 together with a signature Σ and a type of query Q deter-
mine a set Φ of queries from Q formulated using only symbols from Σ that follow
from T1. A projection module of another terminology T2 is a subset of T2 that
entails the queries in Φ. For convenience, we bundle the parameters together in
a tuple ρ = 〈T1, Σ, T2〉, which we call a projection setting.

Definition 2 (Projection Module). Let ρ = 〈T1, Σ, T2〉 be a projection set-
ting, A be a Σ-ABox. A subset M ⊆ T2 is a subsumption (resp. instance, con-
junctive) query projection module under projection setting ρ, denoted as Mc

ρ

(resp. Mi
ρ, Mq

ρ) iff:

– Mc
ρ: for each ELHrΣ-inclusion α, if T1 |= α, then M |= α;

– Mi
ρ: for each Σ-instance assertion λ, if (T1,A) |= λ, then (M,A) |= λ;

– Mq
ρ: for each q(a), if (T1,A) |= q(a), then (M,A) |= q(a), where a is a

tuple of individual names from A and q(a) is a Σ-conjunctive query.

A minimal subsumption (resp. instance, conjunctive) query projection module is
a projection module Mc

ρ (resp. Mi
ρ,Mq

ρ) minimal w.r.t. (.



Note that there may exist several, even exponentially many minimal projection
modules. It can readily be checked that cDiffLΣ(T1,Mc

ρ) = ∅, for L = ELHr,
iDiffΣ(T1,Mi

ρ) = ∅ and qDiffΣ(T1,Mq
ρ) = ∅ (cf. Definition 1).

Example 1. Suppose T1 = {A1 v A2, A2 v A3}, T2 = {A1 v A3 u B1, B1 v
∃r.A3}, and the interested vocabulary Σ = {A1, A3, r}. T2 has no logical dif-
ference from T1. However, the concept project module of T2 with respect to T1
and Σ is {A1 v A3 u B1} ( T2. This means that a strict sub-ontology of T2 is
sufficient to capture all the information of T1 about Σ. Moreover, T2 also entails
a consequence A1 v ∃r.A3, which is not the case for T1.

The following example shows that the three notions of projection modules
based on different query languages are distinct.

Example 2. Let T = {X v Y, Y v ∃t.Z, ran(r) v A1, ran(s) v A2, B ≡ A1uA2},
Σ = {X,Y, Z,B, r, s}, and ρ = 〈T , σ, T 〉. We have that Mc

ρ = {X v Y },
Mi

ρ =Mc
ρ ∪ {ran(r) v A1, ran(s) v A2, B ≡ A1 uA2} and Mq

ρ = T .

Definition 3. Let Q ∈ {c, i, q}. The relationship between T1 and T2 is a 〈Σ,Q〉-
implementation, denoted T1  Q

Σ T2, iff there exists a projection module MQ
ρ

under the setting ρ = 〈T1, Σ, T2〉.

If T1  Q
Σ T2, we also say that T2 〈Σ,Q〉-implements T1. In case T1 and T2 〈Σ,Q〉-

implement each other, they cannot be separated using the query language Q.

Proposition 1. Let T1  Q
Σ T2 and T2  Q

Σ T1. Then:

– Q = c: cDiffLΣ(T1, T2) = cDiffLΣ(T2, T1) = ∅, for L = ELHr;
– Q = i: iDiffΣ(T1, T2) = iDiffΣ(T2, T1) = ∅; and
– Q = q: qDiffΣ(T1, T2) = qDiffΣ(T2, T1) = ∅.

We obtain the following monotonicity properties of the 〈Σ,Q〉-implementation
relation.

Proposition 2 (Implementation Monotonicity).

(i) If T2 ⊆ T3 and T1  Q
Σ T2, then T1  Q

Σ T3;

(ii) If T1 ⊆ T2 and T2  Q
Σ T3, then T1  Q

Σ T3.

Property (i) states that if a terminology T3 is obtained from T2 by adding fur-
ther axioms to it, then it 〈Σ,Q〉-implements all the terminologies T1 that T2
〈Σ,Q〉-implements. Property (ii) states T3 〈Σ,Q〉-implements all subsets T1 of
T2 provided that T3 〈Σ,Q〉-implements T2. We leave investigating certain ro-

bustness properties of  Q
Σ regarding signature extensions and varying query

languages for future work; see, e.g., [21].

4 Computing Minimal Projection Modules

It is shown in [19] that detecting concept inclusion differences formulated in
ELran and ELran,u,u is equivalent to detecting a difference with instance and con-
junctive queries, respectively. We therefore consider subsumption queries from
ELran and ELran,u,u to compute minimal projection justifications for instance
and conjunctive queries, respectively.



4.1 Definition of Subsumption Projection Justifications

For computing minimal subsumption projection modules for subsumption queries,
we introduce the notion of a subsumption projection justification between two
terminologies. As the notion depends on several parameters, we organise them
for better readability in a tuple χ of the form 〈T1, X1, Σ, T2, X2,L〉, where T1
and T2 are normalised ELHr-terminologies, Σ is a signature, X1, X2 ∈ NC ∪
{ dom(r), ran(r) | r ∈ NR }, and L ∈ {ELHr, ELran, ELran,u,u}.

To obtain subsumption modules, we use an operator ‘⊗’ to combine sets of
role, subsumee and subsumer projection justifications. Given a set S and sets
of sets S1,S2 ⊆ 2S , we define S1 ⊗ S2 := { S1 ∪ S2 | S1 ∈ S1, S2 ∈ S2 }. For
instance, if S1 = {{α1, α2}, {α3}} and S2 = {{α1, α3}, {α4, α5}}, then S1⊗S2 =
{{α1, α2, α3}, {α1, α2, α4, α5}, {α3, α4, α5}, {α1, α3}}. For a set M of sets, we
define a function Minimise⊆(M) as follows: M∈ Minimise⊆(M) iff M∈M and
there does not exist a set M′ ∈ M such that M′ ( M. Continuing with the
example, Minimise⊆(S1 ⊗ S2) = {{α1, α3}, {α1, α2, α4, α5}, {α3, α4, α5}}.

Definition 4 (Subsumption Projection Justification). Let χ = 〈T1, X1, Σ,
T2, X2,L〉. A setM is a subsumee module under χ iffM⊆ T2 and for every LΣ-
inclusion α: T1 |= lhs(α) v X1 impliesM |= lhs(α) v X2; andM is a subsumer
module under χ iff M ⊆ T2 and for every LΣ-inclusion α: T1 |= X1 v rhs(α)
implies M |= X2 v rhs(α).
M is called a subsumption projection module under χ iff M is a subsumee

and a subsumer projection module under χ. A subsumee (subsumer, subsump-
tion) projection justification under χ is a subsumee (resp. subsumer, subsump-
tion) projection module under χ that is minimal w.r.t. (.

We denote the set of all subsumee (resp. subsumer, subsumption) justifications
under χ as J←χ (resp. J→χ , Jχ), where χ = 〈T1, ϕ1, Σ, T2, ϕ2,L〉, and ϕ1, ϕ2 ∈
(NC ∩Σ) ∪Σdom ∪Σran.

Definition 5 (Role Subsumption Projection Justification). Let ρ = 〈T1, Σ,
T2〉 be a projection setting. A setM is called a role subsumption module under ρ
iff M⊆ T2 and for every r, s ∈ NR ∩Σ, T1 |= r v s implies M |= r v s. A min-
imal role subsumption projection justification under ρ is the role subsumption
module under ρ that is minimal w.r.t. (.

We denote the set of all role subsumption projection justifications under ρ as
JRρ . The following lemma states how role subsumption projection justifications
can be computed. The lemma can be shown using Definition 5 and the notion
of justification.

Lemma 1. Let ρ = 〈T1, Σ, T2〉 be a projection setting.

JRρ = Minimize⊆
( ⊗
r,s∈Σ∩NR,T1|=rvs

JustT2(r v s)
)

Using Definitions 1 and 4, we obtain the following lemma stating the absence
of certain concept names, and domain and range concepts over role names as left-
hand and right-hand difference witnesses between two terminologies T1 and T2.



Lemma 2. Let ϕ ∈ (NC∩Σ)∪Σdom∪Σran and let A ∈ Σ∩NC. Additionally, let
χ = 〈T1, ϕ,Σ, T2, ϕ,L〉, χ′ = 〈T1, A,Σ, T2, A,L〉 and L ∈ {ELHr, ELran, ELran,u,u}.
Then:

– ϕ 6∈ lhsWtnLΣ(T1, Jϕ) for every Jϕ ∈ J→χ ;

– A 6∈ rhsWtnLΣ(T1, JA) for every JA ∈ J←χ′ ;

– roleWtnLΣ(T1, J) = ∅ for every J ∈ JRρ .

We need at least one subsumption justification, for every potential difference
witness, to be contained in a projection module in order to prevent the witness;
cf. Lemma 2. This is made precise in the following theorem.

Theorem 1. Let ρ = 〈T1, Σ, T2〉 be a projection setting and let Q ∈ {c, i, q}.
Additionally, let MQ

ρ be the set of all minimal projection modules under ρ for
query type Q. Finally, let

SLρ = Minimize⊆
(
JRρ ⊗

⊗
ϕ∈(Σ∩NC)∪Σdom∪Σran

J→χ(ϕ,L) ⊗
⊗

A∈Σ∩NC

J←χ(A,L)
)

where χ(ψ,L) = 〈T1, ψ,Σ, T2, ψ,L〉, and L = ELHr if Q = c, L = ELran if
Q = i, and L = ELran,u,u if Q = q. Then it holds that MQ

ρ = SLρ .

In this paper, we present an algorithm for computing subsumee projec-
tion justifications for subsumption queries of ELran,u,u. Recall that ELran,u,u-
inclusions are sufficient to detect any difference that is detectable with conjunc-
tive queries. The algorithm for computing subsumer projection justifications,
and the algorithms for the other query languages are similar.

4.2 Computing Subsumee Projection Justifications

We now present the algorithm for computing subsumee projection justifications.
The basic idea of the algorithm is to collect as few axioms from a terminology
T2 as possible while ensuring the existence of a so-called subsumee simulation
between another terminology T1 and T2 [12, 27].

Inclusions of the form ran(r) v X might cause non-trivial entailments. For
example, let T1 = {X ≡ ∃r.Y, Y ≡ A1 u A2} and Σ = {X,A1, A2, r}. Then T1
entails that X is subsumed by the Σ-concepts ∃r.> and ∃r.(A1 u A2) (modulo
equivalence). For T2 = T1∪{ran(r) v A1}, however, we additionally obtain T2 |=
∃r.A2 v X. Hence, when formulating the algorithms for computing subsumee
simulations, an additional parameter ζ ∈ {ε}∪ (NR ∩Σ) is needed which is used
in range concepts of the form ran(ζ). We call this parameter context of a role.
We treat ε as a special role name and set ran(ε) = >. The set of all role contexts,
in symbols CΣ , is defined as CΣ = {ε} ∪ (NR ∩Σ).

To identify concept and role names that are relevant for a subsumee simula-
tion that we propose later, we first use the following notion of Σ-entailment:

– A ∈ NC is Σ-entailed in T iff there is an ELran
Σ -concept C such that T |=

C v A;



Algorithm 1: Computing all Subsumee Pro-

jection Justifications

1 function Cover← (T1, X1, Σ, T2, X2, ζ)

2 if X1 is not Σ-entailed w.r.t. T1 then

3 return {∅}
4 M←(X1,X2)

:= CoverNC← (T1, X1, Σ, T2, X2, ζ)

5 if X1 is not complex Σ-entailed in T1 then

6 return M←(X1,X2)

7 if X1 ≡ ∃r.Y ∈ T1, and r, Y are Σ-entailed

w.r.t. T1 then

8 M←(X1,X2)
:=

M←(X1,X2)
⊗Cover∃←(T1, X1, Σ, T2, X2, ζ)

9 else if X1 ≡ Y1 u . . . u Ym ∈ T1 then

10 M←(X1,X2)
:=

M←(X1,X2)
⊗Coveru←(T1, X1, Σ, T2, X2, ζ)

11 return Minimise⊆(M←(X1,X2)
)

Algorithm 2: Computing all Subsumee Pro-

jection Justifications (S←∃ )

1 function Cover∃← (T1, X1, Σ, T2, X2, ζ)
2 let αX1 := X1 ≡ ∃r.Y1 ∈ T1
3 M←(X1,X2)

:= {max-tree uT2(X2)}
4 for every s ∈ NR ∩Σ such that T1 |= s v r

do
5 for every X ′2 ∈ non-conjT2(X2) such that

ζ 6= ε implies T2 6|= ran(ζ) v X ′2 and
T2 6|= dom(s) v X ′2 do

6 let αX′
2

:= X ′2 ≡ ∃r′.Y ′2 ∈ T2
M←Y ′

2
:= Cover←(T1, Y1, Σ, T2, Y ′2 , s)

M←(X1,X2)
:= M←(X1,X2)

⊗
(
{{αX′

2
}} ⊗ JustT2(s v r)⊗M←Y ′

2

)
7 return M←(X1,X2)

Algorithm 3: Computing all Subsumee Pro-

jection Justifications (S←NC
)

1 function CoverNC← (T1, X1, Σ, T2, X2, ζ)
2 M←(X1,X2)

:= {∅}
3 for every B ∈ Σζ such that T1 |= B v X1 do
4 for every X2 ∈ non-conjT2(X1) such that

ζ = ε or T2 |= ran(ζ) v X2 do
5 M←(X1,X2)

:= M←(X1,X2)
⊗ JustT2(B v X2)

6 return M←(X1,X2)

Algorithm 4: Computing all Subsumee Pro-

jection Justifications (S←u )

1 function Coveru← (T1, X1, Σ, T2, X2, ζ)

2 let αX1 := X1 ≡ Y1 u . . . u Ym ∈ T1
3 M←(X1,X2)

:= ∅
4 for every Γ ∈ DefForestuT2(X2) do

5 let δΓ := { def uT2(X ′) | X ′ ∈
leaves(Γ ) ∩ def uT2 }

6 M←Γ := {Γ}
7 for every X ′2 ∈ leaves(Γ ) such that ζ = ε

or T2 6|= ran(ζ) v X ′2 do

8 M←X′
2

:= ∅
9 for every X ′1 ∈ non-conjT1(X1) such

that ζ = ε or T2 6|= ran(ζ) v X ′1 do

10 if 〈T1, X ′1〉 ∼←Σ,ζ 〈T2 \ δΓ , X ′2〉 then
11 M←X′

2
:= M←X′

2
∪

Cover←(T1, X ′1, Σ, T2 \ δΓ , X ′2, ε)
12 M←Γ := M←Γ ⊗M←X′

2

13 M←(X1,X2)
:= M←(X1,X2)

∪M←Γ
14 return M←(X1,X2)

Fig. 3. Algorithms for Computing all Subsumee Justifications

– s ∈ NR is Σ-entailed in T iff there exists s′ ∈ NR ∩Σ such that T |= s′ v s;
– A ∈ NC is (Σ, s)-entailed in T iff there is an ELran

Σ -concept C such that
T |= C u ran(s) v A.

Moreover, we say that X ∈ NC is complex Σ-entailed w.r.t. T iff for every
Y ∈ non-conjT (X) one of the following conditions holds:

– there exists B ∈ Σ such that T |= B v Y and T 6|= B v X;
– there exists Y ≡ ∃r.Z ∈ T and r, Z are Σ-entailed in T .

X is said to be simply Σ-entailed if X is Σ-entailed but not complex Σ-entailed.
For example, let T = {X ≡ X1 u X2, B1 v X1, X2 ≡ ∃r.Z, B2 v Z, s v r}.
We have that non-conjT (X) = {X1, X2}, then r is Σ-entailed w.r.t. T ; X is
complex Σ-entailed w.r.t. T for Σ = {B1, B2, s}; but X is not complex Σ′-
entailed w.r.t. T , where Σ′ ranges over {B1, B2}, {B1, s}, {B2, s}. Additionally,
X is not complex Σ-entailed w.r.t. T ∪ {B1 v X}.



We now define the notion of a subsumee simulation from T1 to T2 as a subset
of (NC ∩ sig(T1))× (NC ∩ sig(T2))× CΣT1 , where CΣT1 := {ε} ∪ (NR ∩ (Σ ∪ sig(T1)))
is the range of role contexts.

Definition 6 (Subsumee Simulation). A relation S ⊆ sigNC(T1)×sigNC(T2)×
CΣT1 is a Σ-subsumee simulation from T1 to T2 iff the following conditions hold:

(S←NC
) if (X1, X2, ζ) ∈ S, then for every ϕ ∈ Σζ and for every X ′2 ∈ non-conjT2(X2)

with T2 6|= ran(ζ) v X ′2, T1 |= ϕ v X1 implies T2 |= ϕ v X ′2;
(S←∃ ) if (X1, X2, ζ) ∈ S and X1 ≡ ∃r.Y1 ∈ T1 such that T1 |= s v r for s ∈ Σ

and Y1 is (Σ, s)-entailed in T1, then for every X ′2 ∈ non-conjT2(X2) not
entailed by dom(s) or ran(ζ) w.r.t. T2, there exists X ′2 ≡ ∃r′.Y2 ∈ T2 such
that T2 |= s v r′ and (Y1, Y2, s) ∈ S;

(S←u ) if (X1, X2, ζ) ∈ S and X1 ≡ Y1 u Y2 u . . . u Yn ∈ T1, then for every
Y2 ∈ non-conjT2(X2) not entailed by ran(ζ) w.r.t. T2, there exists Y1 ∈
non-conjT1(X1) not entailed by ran(ζ) w.r.t. T2 with (Y1, Y2, ε) ∈ S.

We write T1 ∼←Σ T2 iff there is a Σ-subsumee simulation S from T1 to T2 such
that for every A ∈ NC ∩Σ: (A,A, ε) ∈ S.

For ζ ∈ Σ ∩ NR, we write 〈T1, X1〉 ∼←Σ,ζ 〈T2, X2〉 iff there is a Σ-subsumee
simulation S from T1 to T2 with (X1, X2, ζ) ∈ S for which T1 ∼←Σ T2.

A subsumee simulation captures the set of subsumees in the sense that T1 ∼←Σ
T2 iff rhsWtnΣ(T1, T2) = ∅. Moreover, if a concept name X2 in T2 Σ-subsumee
simulates a concept name X1 in T1, then X2 subsumes all Σ-concepts w.r.t. T2
that are subsumed by X1 w.r.t. T1. Formally: 〈T1, X1〉 ∼←Σ,ζ 〈T2, X2〉 iff for every
C ∈ ELran

Σ : T1 |= C v X1 implies T2 |= C v X2 [27].

Algorithm 1 provides the function Cover← for computing the set of all
subsumee justifications. The algorithm recursively computes sets of axioms suf-
ficient to construct a subsumee simulation. For better readability, the algorithm
is structured into several parts, one for each condition of a subsumee simula-
tion, cf. Definition 6. Algorithm 3 handles Case (S←NC

), Algorithm 2 takes care
of Case (S←∃ ) and Algorithm 4 is responsible for Case (S←u ). Note that each
of these algorithms requires a role context ζ as an input parameter. The no-
tion of complex Σ-entailment is employed in Algorithm 1. If X is not complex
Σ-entailment, then neither the existential nor the conjunctive case need to be
considered, and Algorithm 1 terminates in Line 6.

Compared with computing subsumer projection justifications, the challenge
of computing subsumee projection justifications is to handle conjunctions on the
left-hand side of subsumptions. Concept names defined as conjunctions in T2
use conjuncts which in turn may also be defined as conjunctions. Such axioms
form tree structures. When selecting axioms, all minimal subsets of T2, i.e., all
sub-trees, that maintain a subsumee simulation need to be considered. To this
end, we define for each concept name X a so-called definitorial forest consisting
of sets of axioms of the form Y ≡ Y1 u . . . u Yn which can be thought of as
forming trees. Any 〈X,Σ〉-subsumee projection justification contains the axioms
of a selection of these trees, i.e., one tree for every conjunction formulated over



Σ that entails X w.r.t. T . Formally, we define a set of a DefForestuT (X) ⊆ 2T

to be the smallest set closed under the following conditions:

– ∅ ∈ DefForestuT (X);

– {α} ∈ DefForestuT (X) for α := X ≡ X1 u . . . uXn ∈ T ; and

– Γ ∪{α} ∈ DefForestuT (X) for Γ ∈ DefForestuT (X) with Z ≡ Z1u . . .uZk ∈ Γ
and α := Zi ≡ Z1

i u . . . u Zni ∈ T .

Given a tree Γ ∈ DefForestuT (X) rooted at X, we use leaves(Γ ) to denote the
set sig(Γ ) \ {X ∈ sig(C) | X ≡ C ∈ Γ } of leaves if Γ 6= ∅; and {X} other-
wise. We denote with max-tree uT (X) the set in DefForestuT (X) that is max-
imal w.r.t. ⊆. Finally, we set non-conjT (X) := leaves(max-tree uT (X)) to be
the set of leaves of the maximal tree. For example, for T = {α1, α2, α3} with
α1 := X ≡ Y u Z, α2 := Y ≡ Y1 u Y2, and α3 := Z ≡ Z1 u Z2, we ob-
tain DefForestuT (X) = {∅, {α1}, {α1, α2}, {α1, α3}, {α1, α2, α3}}. Moreover, we
have that leaves({α1, α3}) = {Y, Z1, Z2}, max-tree uT (X) = {α1, α2, α3}, and
non-conjT (X) = {Y1, Y2, Z1, Z2}.

The definitorial forest is used to enumerate and find all trees for which
Case (S←u ) holds, which is done in Algorithm 4. The set non-conjT (X), how-
ever, is also used in Algorithm 2, which we discuss next. The existence of axiom
αX1

:= X1 ≡ ∃r.Y1 ∈ T1 in Line 2 of Algorithm 2 is guaranteed by Line 7 of
Algorithm 1. The axiom αX′

2
:= X ′2 ≡ ∃r′.Y ′2 ∈ T2 in Line 6 of Algorithm 2

exists as we assume that T2, X2 subsumee-simulates T1, X1 w.r.t. Σ. Moreover,
there is at most one axiom αX1 ∈ T1 and at most one αX′

2
∈ T2 as T1 and T2

are terminologies. The concept name X2 may be defined as a conjunction in T2
whose conjuncts in turn may also be defined as a conjunction in T2 and so forth.
In Line 3 all axioms forming the maximal resulting definitorial conjunctive tree
are collected.

For the next algorithm, we define def uT := {X ∈ sigNC(T ) | X ≡ Y1u. . .uYn ∈
T } to be the set of concept names that are conjunctively defined in T . For every
X ∈ def uT , we set def uT (X) := α, where α = X ≡ Y1 u . . . u Yn ∈ T .

The axiom αX1
:= X1 ≡ Y1 u . . . u Ym ∈ T1 in Line 2 of Algorithm 4

is guaranteed to exist by Line 9 of Algorithm 4. In case X2 is defined as a
conjunction in T2, the pair consisting of T2 containing only a partial conjunctive
tree rooted at X2 and X2 needs to be considered to be sufficient to subsumee
simulate T1, X1. Therefore Algorithm 4 considers every partial conjunctive tree Γ
from DefForestuT2(X2) in Line 4 and removes the axioms in δΓ connecting the
leaves of Γ with the remaining conjunctive tree from T2 in lines 10 and 11.

The following theorem states that Algorithm 1 indeed computes the set of
subsumee projection justifications. The proof establishes that Algorithm 1 com-
putes all possible subsets of T2 that are minimal w.r.t. ( while preserving one
of the considered Σ-subsumee simulations from T1 to T2.

Theorem 2. Let χ = 〈T1, ϕ1, Σ, T2, ϕ2, ELran,u,u〉, and ϕ1, ϕ2 ∈ (NC ∩ Σ) ∪
{ dom(r), ran(r) | r ∈ NR∩Σ }. Additionally, let M := Cover←(T1, ϕ1, Σ, T2, ϕ2, ε)
using Algorithm 1. Then M is the set of all subsumee justifications under χ.



Algorithm 1 runs in exponential time in the number of axioms contained in
the input terminologies, in the worst case. On the one hand, the algorithm uses
justifications (see Line 6 of Alg. 2 and Line 5 of Alg. 3) whose number grows
exponentially for role inclusions as well as concept name inclusions. The different
justifications are each incorporated using the operator ⊗ resulting in possibly dif-
ferent subsumption justifications. The majority of the running time will be spent
on computing justifications. Another source of exponential blowup is contained
in Line 4 of Algorithm 4. The number of elements in the set DefForestuT (X)
grows exponentially in |T |. According to our experience so far, however, it seems
plausible to assume that definitorial forests in practical ontologies remain rather
small and, thus, they do not cause a serious slowdown of the algorithm.

5 Application of Minimal Projection Modules

In this section, we discuss two applications of minimal projection modules.

5.1 Computing Minimal Query Modules

We first define the minimal query modules for different queries.

Definition 7 (Query Module). A set M ⊆ T is a subsumption (resp. in-
stance, conjunctive) query module of T , denoted as M c

Σ (resp. M i
Σ, Mq

Σ)

– M c
Σ: for each ELHrΣ-inclusion α, if T |= α, then M |= α;

– M i
Σ: for each Σ-instance assertion λ, if (T ,A) |= λ, then (M,A) |= λ;

– Mq
Σ: for each q(a), if (T ,A) |= q(a), then (M,A) |= q(a), where a is a tuple

of individual names from A and q(a) is a Σ-conjunctive query.

A subsumption (resp. instance, conjunctive) query module is called a minimal
subsumption (resp. instance, conjunctive) query module iff it is minimal w.r.t. (.

In general, the reference and the implementing/task ontologies do not coin-
cide. Intuitively, the task ontology T2 might contain more knowledge about Σ
than the reference ontology T1. The following lemma illustrates the relationship
between minimal projection modules and minimal query modules.

Lemma 3. Let Q ∈ {c, i, q} and ρ = {T1, Σ, T2}. Then: for every minimal
projection module MQ

ρ for a query type Q and under a projection setting ρ,

there exists a minimal Q-query module MQ
Σ of T2 such that MQ

ρ ⊆M
Q
Σ .

Example 3 (Fig. 2 contd.). The minimal projection module of T2 under ρ =
{T1, Σ, T2} is {{β1, β3}, {β1, β4}}, for any query type Q ∈ {c, i, q}. The minimal
Q-query module of T2 w.r.t. Σ is {{β1, β2, β3}, {β1, β2, β4}}. The minimal Q-
query module of T1 is {α1}.

One solution for importing Σ-knowledge of a reference ontology to a task
ontology is to import a minimal Q-query module of the reference ontology. How-
ever, one can see that if we include α1 to T2, then α1 repeats the Σ-knowledge
that is already represented by β1. Besides, the resulting ontology would not be
a terminology anymore.



Consider a special projection setting of the form 〈T , Σ, T 〉, where the ref-
erence ontology T is also the implementing ontology. We denote such reflexive
projection settings with ρ	. A projection module M of T under ρ	 for sub-
sumption (resp. instance, conjunctive) queries is a subset of T that preserves
the answers to Σ-concept subsumption (resp. instance, conjunctive) queries as
given by T . It can readily be verified that a minimal projection module under
a reflexive projection setting coincides with a minimal module for the type of
queries considered.

5.2 Ontology Comparison Measure

In existent methods for measuring the entailment capacity of a terminology
about a signatureΣ for a query language, one can use logical difference. However,
the following example shows that using logical difference can be not sufficient in
some case.

Example 4. Let α1 := A v B1uB2uB3uB4, α2 := B1 v B2uB3, α3 := B2 v B4,
α4 := B3 v B4. Let T1 = {α1}, T2 = {α1, α2}, T3 = {α1, α2, α3, α4} and
Σ = {A,B1, B2, B3, B4}. We have that WtnLΣ(T1, T2) = WtnLΣ(T1, T3) = (∅, ∅, ∅),
for L ∈ {ELHr, ELran, ELran,u,u}.

In Example 4, the notion of logical difference cannot be used to distinguish
between T2 and T3 w.r.t.Σ as T2 and T3 preserve theΣ-knowledge w.r.t. T1. How-
ever, intuitively, T2 and T3 each contain more information about the Σ-concept
names B1, B2 and B4 than T1. We therefore propose a new measure based on
the notions of minimal projection module and query module for different query
languages.

Definition 8 (Projection Rate). Let Q ∈ {c, i, q} and let MQ
ρ range over

minimal projection modules under ρ = 〈T1, Σ, T2〉 and the query type Q. Addi-

tionally, let MQ
Σ range over minimal modules of T2 for the query type Q. The

projection rate PQ of T1 over T2 is defined as:

PQ =
|
⋃
MQ

ρ |
|
⋃

MQ
Σ |

Note that p ≤ 1 always holds by Lemma 3. Intuitively, the lower the projec-
tion rate, the more Σ-knowledge is contained in T2 compared with T1.

Example 5 (Ex. 4 contd.). Considering whenQ = c, we have thatMc
ρ=Mc

ρ′={α1}
under ρ = 〈T1, Σ, T2〉 and ρ′ = 〈T1, Σ, T3〉. The minimal subsumption query mod-
ule of T2 w.r.t. Σ is {α1, α2}. But there exists two minimal subsumption query
module of T3 w.r.t. Σ, which are {α1, α2, α3} and {α1, α2, α4}. So the union
of minimal subsumption query module of T3 w.r.t. Σ is T3 that contains four
axioms. Therefore, the projection rate P c of T1 over T2 is P c = 1/2 and the
projection rate P c of T1 over T3 is P c = 1/4. So T3 contains more Σ-knowledge
compared with T2 as 1/4 < 1/2.



6 Conclusion

We proposed a novel module notion called projection module that entails the
queries that follow from a reference ontology. We presented an algorithm for
computing all minimal projection modules of acyclic ELHr-terminologies and
two applications of minimal projection modules. We expect that the algorithms
can be extended to deal with cyclic terminologies and possibly general ELHr-
TBoxes, and to yield a ranking between different projection modules, e.g., via
weighted signatures.
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