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Abstract 7 

Dairy farms follow a wide variety of management practices depending on the economic and 8 

environmental objectives that farmers target. Management practices are reflected, among 9 

other things, by a wide variety of forage-production and animal-feeding strategies, which 10 

influence productivity and greenhouse gas (GHG) emissions of dairy farms. Many studies 11 

focus on agricultural systems with “average” characteristics to generalize results to a larger 12 

percentage of existing systems. This approach, however, ignores systems with uncommon 13 

characteristics, whose environmental impacts may be unusually large (e.g. due to 14 

inefficiencies) or small (e.g. due to innovations). To address this issue, we used Extreme-15 

Value Theory (EVT) as a statistical tool to identify dairy farms with forage-related 16 

characteristics that could be considered “extreme”. Application of EVT to a dataset of 78 17 

dairy farms in Normandy (France) identified 15-20% of dairy farms with extreme minimum 18 

amounts of dry matter (DM) of grass from pastures or maize silage and 10-15% of farms with 19 

extreme maximum amounts of one or the other. Mean amounts of DM between the minimum 20 

sample and maximum sample differed by a factor of ca. 3 for grass and a factor of 1.5 for 21 

maize silage. Consequently, the maximum sample for grass or maize silage had mean 22 

estimated gross GHG emissions (kg CO2 eq) 13% lower or 25% higher, respectively, than 23 

those of the minimum sample. Four strategies were identified for setting DM of grass and 24 

maize silage at extreme levels, which influenced milk production and GHG emissions. 25 

Extreme changes in the DM of one forage were generally compensated by changes in those of 26 

the other forage and concentrated feed fed at non-extreme levels, which influenced enteric 27 

methane emissions, manure management or the amount of feeds purchased. 28 

Keywords: animal feeding, environmental impact, extreme value, forage production 29 

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1871141318305134
Manuscript_451462b6432b80bf42651cbac305d093

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1871141318305134
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1871141318305134


2 
  

1. Introduction 30 

Management practices of dairy farms are widely studied due to their influence on farm inputs, 31 

which in turn influence farm productivity and environmental impacts. Studying effects of 32 

management changes on greenhouse gas (GHG) emissions and farm profitability is useful for 33 

developing farm-level GHG mitigation strategies that could be financially viable (Lovett et 34 

al., 2008). For instance, animal-feeding strategies directly influence enteric methane (CH4) 35 

emissions of dairy cattle, which contribute ca. 67% of GHG emissions of the global livestock 36 

sector (Dollé et al., 2011; Gerber et al., 2011; Gerber et al., 2013). Thus, studies that predict 37 

CH4 emissions from dairy cattle often consider feed and forage intake as input variables 38 

(Bannink et al., 2011). The quantities of inputs used to feed animals (either directly, such as 39 

concentrated feed, or indirectly, such as fertilizers) vary greatly among farms, which may 40 

cause these farms’ environmental impacts (e.g. GHG emissions) to vary greatly as well. Many 41 

studies of agricultural systems focus on “average” characteristics to generalize results to a 42 

larger percentage of existing systems. This approach, however, ignores systems with 43 

uncommon characteristics, whose environmental impacts may be unusually large (e.g. due to 44 

inefficiencies) or small (e.g. due to innovations).  45 

This study was concerned with modeling and predicting consequences of “extreme events” 46 

(e.g., uncommon farm characteristics), which can help understand how variability in dairy 47 

farm characteristics influences their environmental impacts. Dairy farms are confronted with 48 

extreme climate events, financial instability and environmental concerns such as climate 49 

change. In this context, farmers are developing various agricultural strategies to ensure food 50 

production, and these strategies are reflected in a wide variety of farm characteristics. This 51 

raises the issue of identifying dairy farm inputs with uncommon values, which affect their 52 

productivity and GHG emissions. Extreme-Value Theory (EVT) is the most popular approach 53 

to model extreme events. To analyze agricultural systems accurately, an increasing number of 54 

studies combine statistical analysis with quantitative models of environmental processes. For 55 

instance, statistics-based sensitivity analysis can be performed to assess the relative influence 56 

of input variables on model outputs (Confalonieri et al., 2010; Drouet et al., 2011). Likewise, 57 

uncertainty analysis is used to assess the robustness of predicted environmental impacts of 58 

agricultural systems (Basset-Mens et al., 2009; Chen and Corson, 2014; Cucurachi et al., 59 

2016). However, statistical analyses have generally failed to study variables with accuracy 60 

when these variables deviate from average trends. In contrast, EVT considers the stochastic 61 

nature of maximum and minimum values of a process (Embrechts et al., 1996; Charras-62 
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Garrido and Lezaud, 2013). Initially developed to study flood levels, EVT is now applied to 63 

finance, insurance, meteorological events and environmental sciences. For instance, EVT was 64 

applied to examine trends in hydrological extremes due to the anticipated intensification in the 65 

hydrological cycle caused by climate change (Katz et al., 2002). Likewise, EVT was used to 66 

model hospitalization and death peaks due to cardiovascular disease in Canada (Chiu et al., 67 

2016) and to assess water quality by analyzing marine biomarkers (Durrieu et al., 2016). EVT 68 

increases the rigor of studies of extreme events by enabling one to statistically test and 69 

identify threshold values and suitable probability distribution functions for modeling the tails 70 

of distributions. To our knowledge, EVT has never been used to analyze dairy farms.  71 

Based on a sample of dairy farms in Normandy (France), this study aimed to (1) identify those 72 

with “extreme” forage-related characteristics and (2) compare their milk production and GHG 73 

emissions. Groups of farms identified with extreme forage-related characteristics were also 74 

compared according to other characteristics, such as their size (e.g. number of livestock units 75 

(LU), utilized agricultural area (UAA)), areas of forage crops and sources of GHG emissions. 76 

 77 

2. Material and methods 78 

2.1. Data 79 

The dataset consisted of 78 dairy farms in Normandy surveyed in 2014 by the French 80 

Livestock Institute (IDELE). Annual data for a variety of annual farm inputs, characteristics 81 

and outputs were collected for each farm: areas of pastures and silage maize in the forage 82 

area, grass yield, number of LU, milk produced per cow, amount of concentrated feed fed, 83 

estimated CH4 emissions from dairy cows and heifers (Table 1). The main dairy cow breeds 84 

were Holstein (minimum, mean and maximum of 45%, 89% and 100%, respectively) on 54 85 

farms, Normande (61%, 89% and 100%, respectively) on 18 farms, and cross-breeds (50%, 86 

63% and 100%, respectively) on 6 farms. GHG emissions (CH4, nitrous oxide and carbon 87 

dioxide) due to production and transport of purchased feeds, purchased fertilizers and on-farm 88 

energy consumption were estimated. Milk production per cow was calculated as total milk 89 

production per year divided by the number of dairy cows. 90 
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Table 1. Descriptive statistics of annual characteristics of 78 dairy farms in Normandy 91 

(France) in 2014. 1Q = 1
st
 quartile, 3Q = 3

rd
 quartile, CV = coefficient of variation, GHG = 92 

greenhouse gas 93 

Characteristic Min 1Q Median Mean 3Q Max CV (%) 

Utilized Agricultural Area (UAA) (ha) 30.6 82.5 104.9 118.7 149.4 258.1 44 

Main Forage Area (ha) 21.5 56.7 76.7 83.5 98.1 204.4 45 

Area of pastures (ha) 13.8 35.4 45.4 55.8 73.2 161.5 59 

Area of pastures in UAA (%) 15.2 34.6 44.9 48.1 59.0 100.0 40 

Area of silage maize (ha) 0.0 18.2 24.7 27.1 36.1 59.6 48 

Area of silage maize in UAA (%) 0.0 17.9 24.3 24.1 31.2 44.6 38 

Number of livestock units 32 81 97 108 130 201 36 

Replacement rate (%) 0.0 26.0 31.5 30.5 36.0 55.0 32 

Grass yield (t DM/ha/year) 1.9 4.7 5.9 6.1 7.1 12.6 32 

Concentrated feed fed (g/l milk) 0.0 144.5 184.0 184.8 16.8 319.0 35 

Milk production per cow (l/year) 4271 6278 7387 7210 8283 9490 18 

Gross GHG emissions (kg CO2 

eq/farm/year) 
3830 6173 6725 6618 7160 8118 12 

Enteric CH4 emissions (kg CO2 

eq/farm/year) 
2537 3421 3576 3566 3729 4408 10 

 94 

IPCC Tier 3 methodology (IPCC, 2006) was used to predict CH4 emissions (g CH4/kg of 95 

digestible organic matter) from dairy cows and heifers, based on an empirical model adapted 96 

to French national contexts that considers factors such as feeding levels and proportion of 97 

concentrated feed in the diet (Sauvant and Noziere, 2016). The main sources of GHG 98 

emissions were enteric fermentation from cattle (50%), manure storage and management 99 

(20%), organic and inorganic fertilization (9%), production and transport of inputs (e.g. feeds 100 

(12.5%), fertilizers (3%), and animals (<1%)), and on-farm energy consumption (5%) 101 

(Supplementary Table A1). Emissions were estimated from information provided by farmers. 102 

For instance, the amount of manure produced per year per farm was estimated from the type 103 

of animal housing, milk production (for dairy cows) and calving period (for suckler cows). 104 

Farmers also supplied additional information, such as the average duration of manure storage 105 

and amounts of off-farm effluents imported. Likewise, farmers provided amounts of mineral 106 

fertilizers and effluents applied per ha, feed purchased and total energy (electricity and diesel) 107 

consumed based on information in their bills and accounting books. GHG emissions from 108 

these sources were estimated using emission factors (e.g. kg CO2 eq per kg of feed, kWh of 109 
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electricity or L of diesel purchased). Carbon sequestration (e.g. by pastures) was not 110 

considered. These contributions to GHG emissions led to a strong correlation between GHG 111 

(and enteric CH4) emissions and milk produced per cow (Figure 1).  112 

 113 

 114 

 115 

Figure 1. Pairwise scatter plots of areas of pastures and silage maize in UAA (%), number of 116 

livestock units (LU), concentrated feed fed (g/l of milk produced), milk production per cow 117 

(l), and estimated greenhouse gas (GHG) and enteric methane (CH4) emissions (kg CO2 118 

eq/farm/year) of 78 dairy farms in Normandy (France) in 2014, with Spearman’s rho rank 119 

correlation coefficients    ( = 78). 120 
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We calculated each farm’s production of each forage per LU (kg dry matter (DM)/LU/year) 121 

by dividing the total DM of grass from pastures (DMGrass) or maize silage (DMMaize) (equal to 122 

area (ha) × yield (t DM/ha)) by the number of LU. Since the yield of silage maize was not 123 

available for dairy farms in our dataset, we used the mean regional yield of 19.3 t DM/ha in 124 

2014 (ARVALIS-Institut du Végétal). DMGrass and DMMaize varied greatly among farms 125 

(coefficients of variation (CV) = 47% and 38%, respectively), but the variability in DMMaize 126 

was due only to that of the area of silage maize, since we used the mean yield. Distributions 127 

of the amount of concentrated feed fed had similar characteristics as those of DMGrass and 128 

DMMaize (CV = 35%) (Table 1). Milk production per cow and estimated GHG and CH4 129 

emissions, however, varied less (CV = 10-18%) (Table 1). Annual GHG and CH4 emissions 130 

were analyzed according to two functional units: farm (kg CO2 eq/farm/year) and l of milk 131 

produced (kg CO2 eq/l/year). 132 

2.2. Extreme-Value Theory 133 

Consider a sequence of independent and identically distributed (iid) random variables (rv) 134 

            with realizations            , with its maximum sequence being denoted 135 

by     Within the EVT framework, limit laws for the (normalized and centered)     of the iid 136 

inputs             belong to asymptotic distributions of type Fréchet, Weibull or Gumbel 137 

(Embrechts et al., 1996). EVT thus enables identification of probability distribution functions 138 

of inputs affected by extreme variations. Applying EVT to a dataset consists of extracting a 139 

maximum sequence,            , which contains values at maximum values of inputs, then 140 

fitting it using appropriate probability distribution functions such as the generalized Pareto 141 

distribution (GPD) (Coles, 2001). EVT also enables one to extract a minimum sequence and 142 

then fit it using extreme value distributions. 143 

2.2.1. Generalized Pareto distribution 144 

For a fixed threshold  , consider the distribution of the excesses       above  , extracted 145 

from observations   of the rv    The excess distribution function  (       ) above   146 

can be approximated by a GPD function, with parameter θ=(   ), defined by the empirical 147 

distribution function 148 

 (       )    [   (
 ( )

 
)]
    

     ( ) Equation 1 
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for     and    (
   

 
)   , with     and   the scale and shape parameters, respectively 149 

(Beirlant et al., 2004). GPD also enables one to approximate distribution function of values 150 

below another fixed threshold   extracted from observations   of the rv    151 

2.2.2. Threshold selection 152 

Selecting the threshold   requires a compromise between selecting too-small and too-large 153 

values of  , which affects the bias and variance of the estimated GPD parameters. Setting   154 

too small increases the sample size of extremes and the bias of estimated parameters to the 155 

point that the fitted GPD may not approximate the tail well. Conversely, setting   too large 156 

decreases the sample size of extremes, increasing the variance in estimated parameters. 157 

Finally,   must be sufficiently large to ensure that the GPD is a reliable model (Scarrott and 158 

MacDonald, 2012). Several methods are available to select  , such as automatic selection of a 159 

threshold based on the Hill estimator (Grama and Spokoiny, 2008; Durrieu et al., 2015) and 160 

graphical assessment using a mean residual life function and threshold stability properties. We 161 

chose to test four minimum and maximum extreme quantiles each and use them to calculate 162 

the corresponding values of   (Chiu et al., 2016). 163 

2.2.3. Statistical tests and root mean squared error  164 

Once the minimum or maximum sample was extracted, the adequacy of its distribution to the 165 

GPD was tested using the Kolmogorov-Smirnov (K-S) test. For the K-S test, the null 166 

hypothesis H0 was that the extracted sample followed a GPD, with results considered 167 

significant at α=5%. For each quantile tested, the extracted sample was also compared to the 168 

fitted GPD using the root mean squared error (RMSE). The Mann-Whitney (M-W) U test was 169 

also performed to test differences in mean farm characteristics between the minimum and 170 

maximum samples, with the differences considered significant at α=5%. For the M-W test, 171 

the null hypothesis H0 was that characteristics of farms in the minimum and maximum 172 

samples followed the same distribution. We used the “evd” (Stephenson, 2002) and 173 

“extremefit” (Durrieu et al., 2017) packages of R software (R Core Team, 2018) to apply 174 

EVT. 175 

 176 
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3. Results 177 

3.1. Extreme samples for dry matter of grass from pastures 178 

Quantiles of the entire dataset were tested as potential thresholds for the minimum (10%, 179 

15%, 20% and 25%) and maximum (75%, 80%, 85% and 90%) samples (Table 2). 180 

Distributions of extracted minimum and maximum samples changed as the quantile increased 181 

(Figure 2 and Figure 3).  182 

  183 

Figure 2. Distributions of the maximum sample of dry matter (DM) of grass from pastures 184 

(kg/livestock unit (LU)/year) extracted as a function of dataset quantile (75%, 80%, 85% and 185 

90%) 186 

 187 
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   188 

Figure 3. Distributions of the minimum sample of dry matter (DM) of grass from pastures 189 

(kg/livestock unit (LU)/year) extracted as a function of dataset quantile (10%, 15%, 20% and 190 

25%) 191 

 192 

The K-S test did not reject the null hypothesis of the adequacy of the GPD for any of the 193 

quantiles considered. For the minimum sample (GrassMIN), the 10% and 15% quantiles had 194 

the smallest RMSE but did not have the largest p-values of the K-S test (Table 2). Because the 195 

sample size of the 10% quantile was 7, we selected the 15% quantile as the minimum 196 

threshold, corresponding to DMGrass of 1708 kg/LU/year, to obtain a larger sample size of 11. 197 

For the maximum sample (GrassMAX), we selected the 90% quantile, which had the largest 198 

p-value, the smallest RMSE and sample size of 10, as the maximum threshold, corresponding 199 

to DMGrass of 4946 kg/LU/year (Table 2). Other choices of thresholds were obviously 200 

possible. 201 
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Table 2. Results of applying Extreme-Value Theory to extract minimum (“MIN”) and 202 

maximum (“MAX”) samples of dry matter (DM) of grass from pastures (kg/livestock unit 203 

(LU)/year) as a function of multiple quantiles of the entire dataset of 78 farms in Normandy 204 

(France). Bold values indicate the quantiles retained as thresholds. RMSE = root mean 205 

squared error, K-S = Kolmogorov-Smirnov. 206 

Sample Quantile 

DM of grass 

(kg/LU/year) 

Sample 

size 

Estimated 

shape  ̂ 

Estimated 

scale  ̂ RMSE 

K-S adequacy 

test (p-value) 

MIN 10% 1586 7 -0.50 451.02 489.23 0.10 

15% 1708 11 -0.26 400.02 482.11 0.33 

20% 1868 15 -0.30 471.12 531.47 0.55 

25% 2088 19 -0.29 547.12 646.07 0.11 

MAX 75% 3614 19 -0.28 1528.51 1790.08 0.23 

80% 4176 16 -0.20 1185.48 1458.05 0.62 

85% 4480 13 -0.22 1115.73 1356.73 0.66 

90% 4946 10 -0.18 919.31 1142.26 0.85 

 207 

3.2. Extreme samples for dry matter of maize silage 208 

EVT was also applied to observations of DMMaize. Like for DMGrass, the K-S test did not reject 209 

the null hypothesis (Table 3). Thus, to obtain sufficiently large sample sizes, minimum and 210 

maximum quantiles of 20% and 85%, respectively, were selected for minimum (MaizeMIN) 211 

and maximum samples (MaizeMAX) of DM of maize silage, respectively, corresponding to 212 

threshold values of 3647 and 6443 kg/LU/year, respectively.  213 
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Table 3. Results of applying Extreme-Value Theory to extract minimum (“MIN”) and 214 

maximum (“MAX”) samples of dry matter (DM) of maize silage (kg/livestock unit 215 

(LU)/year) as a function of multiple quantiles of the entire dataset of 78 farms in Normandy 216 

(France). Bold values indicate the quantiles retained as thresholds. RMSE = root mean 217 

squared error, K-S = Kolmogorov-Smirnov. 218 

Sample Quantile 

DM of maize silage 

(kg/LU/year)  

Sample 

size 

Estimated 

shape  ̂ 

Estimated 

scale  ̂ RMSE  

K-S adequacy 

test (p-value) 

MIN 10% 2860  5 -0. 34 1517.92 1024.74 0.57 

15% 3439  9 -0. 19 1457.39 1205.25 0.78 

20% 3647  13 -0. 03 1237.25 1152.08 0.49 

25% 3811  17 0.03 1124.43 1120.97 0.34 

MAX 75% 5872 19 0.01 1306.87 1863.52 0.90 

80% 6115 16 0.02 1282.16 1853.90 0.84 

85% 6443 13 0.06 1225.65 1820.91 0.67 

90% 6935 8 0.07 1318.36 1945.92 0.61 

 219 

According to these thresholds, three farms were in both GrassMIN and MaizeMAX, five 220 

farms were in both GrassMAX and MaizeMIN, and one farm was in both GrassMAX and 221 

MaizeMAX (Figure 4). 222 

3.3. Milk production and emissions by sample 223 

On average, GrassMAX and GrassMIN produced less and more milk per cow (6269 and 7954 224 

l/cow/year, respectively) than the mean of the entire dataset (7210 l/cow/year) (Table 4). 225 

Similar differences in means were observed for annual GHG and enteric CH4 emissions (kg 226 

CO2 eq) per farm and per l of milk produced (Table 5). Amounts of concentrated feed fed for 227 

GrassMAX and GrassMIN were less than the dataset mean. 228 

Conversely, MaizeMIN and MaizeMAX produced less and more milk per cow (5785 and 229 

7351 l/cow/year, respectively) than the dataset mean (7210 l/cow/year) (Table 4). Similar 230 

differences in means were observed for annual GHG and enteric CH4 emissions per farm 231 

(Table 5). Per l of milk produced, annual GHG and enteric CH4 emissions for MaizeMIN and 232 

MaizeMAX were generally slightly greater than or equal to, respectively, the dataset mean. 233 

Amounts of concentrated feed fed for MaizeMIN and MaizeMAX were less or slightly 234 

greater, respectively, than the dataset mean (Table 5).  235 

 236 
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Table 4. Mean and coefficient of variation (CV) of annual farm characteristics for the entire 237 

dataset and for farms in minimum (“MIN”) and maximum (“MAX”) samples of dry matter 238 

(DM) of grass and maize silage. % chg. = percentage increase from minimum to maximum 239 

sample. M-W p = p-value of Mann-Whitney test for the difference between minimum and 240 

maximum samples. UAA = Utilized Agricultural Area, MFA = Main Forage Area, LU = 241 

livestock unit 242 

Variable Statistic 

Entire 

dataset 

Grass DM sample Maize silage DM sample 

MIN 

sample 

MAX 

sample % chg. M-W p 

MIN 

sample 

MAX 

sample % chg. M-W p 

UAA (ha) Mean 118.7 121.7 124.8 +3% 0.56 112.7 127.8 +13% 0.27 

CV 44% 26% 56%   51% 36%   

MFA (ha) Mean 83.5 76.2 103.8 +36% 0.39 94.2 90 -5% 0.75 

CV 45% 39% 52%   45% 41%   

Grass DM 

(kg/LU/year) 

Mean 3031 1325 5862 +342% <0.001 3987 2531 -36% 0.07 

CV 47% 23% 12%   37% 56%   

Maize silage 

DM (kg/LU/ 

year) 

Mean 4836 5939 3931 -33% 0.02 2409 7669 +150% <0.001 

CV 38% 10% 76%   51% 19%   

Number of LU Mean 108 119 93 -21% 0.10 111 102 -8% 0.55 

CV 36% 24% 44%   39% 30%   

Concentrated 

feed fed (g/l 

milk prod./year) 

Mean 185 177 153 -13% 0.39 173 186 +7% 0.85 

CV 35% 25% 47%   55% 34%   

Milk prod. per 

cow (l/year) 

Mean 7210 7954 6269 -21% 0.04 5785 7351 +27% <0.001 

CV 18% 12% 24%   19% 15%   

 243 
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Table 5. Mean and coefficient of variation (CV) of annual gross greenhouse gas (GHG) and 244 

enteric methane (CH4) emissions (kg CO2 eq) by functional unit (FU) (per farm or per l of 245 

milk produced) for the entire dataset and for farms in minimum (“MIN”) and maximum 246 

(“MAX”) samples of dry matter (DM) of grass from pastures and maize silage. % chg. = 247 

percentage change from minimum to maximum sample. M-W p = p-value of Mann-Whitney 248 

test for the difference between emissions for farms in minimum and maximum extracted 249 

samples of DM of each forage. 250 

FU Variable Statistic 

Entire 

dataset 

Grass DM sample Maize silage DM sample 

MIN 

sample 

MAX 

sample 

% 

chg. 

M-W 

p 

MIN 

sample 

MAX 

sample 

% 

chg. M-W p 

Farm GHG 

emissions 

Mean 6618 7044 6113 -13% 0.13 5549 6962 +25% <0.001 

CV 12% 7% 20%   16% 9%   

Enteric CH4 

emissions 

Mean 3566 3430 3667 -6% 0.05 3208 3616 +12% 0.001 

CV 10% 13% 4%   9% 8%   

l of milk 

produced 

GHG 

emissions 

Mean 0.93 0.89 0.99 +11% 0.03 0.98 0.97 -1% 0.93 

CV 14% 11% 13%   13% 17%   

Enteric CH4 

emissions 

Mean 0.50 0.46 0.56 +21% 0.003 0.56 0.50 -11% 0.02 

CV 13% 8% 13%   11% 12%   

 251 
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Figure 4. Bivariate plot of annual gross greenhouse gas (GHG) emissions (kg CO2 eq) of 252 

farms (a) per farm and (b) per l of milk produced, as a function of annual dry matter (kg per 253 

livestock unit (LU) per year) of grass (with solid lines for maximum and minimum 254 

thresholds) and maize silage (with dashed lines for maximum and minimum thresholds) 255 

 256 
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3.4. Sensitivity to extreme differences in DM of grass from pastures and maize silage 257 

3.4.1. Milk production and farm sizes 258 

GrassMAX had mean DMGrass 3 times as high as GrassMIN, and its farms produced 21% less 259 

milk per cow, had 33% less DMMaize and fed 13% less concentrated feed per l of milk (Table 260 

4, Figure 5). In contrast, MaizeMAX had mean DMMaize 150% higher than that MaizeMIN, 261 

and its farms produced 27% more milk per cow, had 36% less DMGrass and fed 7% more 262 

concentrated feed per l of milk (Table 4, Figure 5). The difference in the amount of milk 263 

produced per cow between the minimum and maximum samples of DMGrass or DMMaize was 264 

significant according to the M-W test (i.e. the null hypothesis was rejected) (Table 4). 265 

Although MaizeMAX or GrassMIN produced more milk per cow than MaizeMIN or 266 

GrassMAX, respectively, their farms did not differ significantly in mean size (e.g. number of 267 

LU, UAA) (Table 4) or replacement rate (29-31% among the four extreme samples) 268 

(Supplementary Table A2).  269 

Cross-comparison of the same end of the distribution of each forage showed that GrassMIN 270 

produced 27% more milk per cow than MaizeMIN (Table 4). Conversely, MaizeMAX 271 

produced 17% more milk per cow than GrassMAX. Meanwhile, MaizeMAX fed 21% more 272 

concentrated feed per l of milk than GrassMAX, while MaizeMIN fed 2% less concentrated 273 

feed per l of milk than GrassMIN (Table 4). 274 

  275 

  276 

Figure 5. Boxplots of milk production per cow (l/cow/year), concentrated feed fed (g/l of milk 277 

produced), grass from pastures and maize silage (kg dry matter (DM)/livestock unit/year) for 278 
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farms in minimum (“MIN”) and maximum (“MAX”) samples of DM of grass from pastures 279 

and maize silage  280 

 281 

3.4.2. GHG and enteric methane emissions per farm 282 

Per farm, GrassMAX emitted 13% less gross GHGs than GrassMIN (non-significant), while 283 

MaizeMAX emitted 25% more than MaizeMIN (significant) (Table 5, Figure 6). The same 284 

trend was observed for enteric CH4 emissions, which were the main source (48-54%) of GHG 285 

emissions among the four extreme samples. The other sources  manure storage and 286 

management, purchased feeds, organic and inorganic fertilization, energy consumption and 287 

purchased fertilizers  contributed a mean of 18-21%, 9-14%, 8-10%, 5-6% and 2-3%, 288 

respectively, among the four extreme samples. Compared to MaizeMIN, percentage 289 

contributions to gross GHG emissions of enteric CH4 emissions, manure storage and 290 

management, and organic and inorganic fertilization for MaizeMAX differed significantly: 291 

11% lower, 12% lower and 32% higher, respectively (Supplementary Table A2). The 292 

percentage contribution of purchased feeds was also higher (by 37%), but not significantly so. 293 

Compared to GrassMIN, percentage contributions of these sources for GrassMAX did not 294 

differ significantly, except for that of purchased feeds, which was significantly lower. On-295 

farm energy consumption and purchased fertilizers did not differ significantly between 296 

GrassMAX and GrassMIN or between MaizeMAX and MaizeMIN. 297 
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 298 

 299 

Figure 6. Distributions of annual gross GHG and enteric methane (CH4) emissions (top) per 300 

farm per year (kg CO2 eq/farm/year) and (bottom) per l of milk produced (kg CO2 eq/l/year) 301 

for farms in minimum (“MIN”) and maximum (“MAX”) samples of dry matter (DM) of grass 302 

from pastures and maize silage 303 

 304 

3.4.3. GHG and enteric methane emissions per l of milk produced 305 

Per l of milk produced, GrassMAX emitted 17% more gross GHGs than GrassMIN 306 

(significant), while MaizeMAX emitted 1% less than MaizeMIN (non-significant) (Table 5, 307 

Figure 6). Enteric CH4 emissions followed the same trend: 20% larger for GrassMAX than 308 

GrassMIN and 11% smaller for MaizeMAX than MaizeMIN (both significant). Cross-309 

comparison of the same end of the distribution of each forage showed that GrassMIN emitted 310 

17% less GHGs than MaizeMIN, but GrassMAX emitted nearly the same amount of GHGs as 311 

MaizeMAX (1% difference). In comparison, GrassMIN emitted 21% less enteric CH4 than 312 

MaizeMIN, but GrassMAX emitted 10% more enteric CH4 than MaizeMAX. 313 

 314 
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4. Discussion 315 

4.1. Differences in forages and concentrated feed, milk production and cattle 316 

management 317 

Extreme changes in the amount of DM of a given type of forage (grass or maize silage) were 318 

generally compensated by changes in the other forage and concentrated feed fed at non-319 

extreme levels. To feed their animals, MaizeMAX maintained grass from pastures and 320 

concentrated feed at levels similar to those of MaizeMIN. In contrast, GrassMAX fed less 321 

maize silage than GrassMIN but maintained concentrated feed at a level similar to that of 322 

GrassMIN. Meanwhile, an extreme increase in DMMaize was associated with increased milk 323 

production, since maize silage yields a large amount of DM and increases animal performance 324 

when included in animal diets (Beauchemin et al., 2008). Although most farms had Holstein 325 

cows (45-100% of cows on 69% of the farms), the prevalence of Normande cows (61-100% 326 

of cows on 23% of the farms) may have increased variability around the relation between 327 

DMMaize and milk production. Management practices for cattle, in terms of replacement rate, 328 

did not differ significantly between farms in minimum and maximum samples of each forage. 329 

Meanwhile, the stocking rate (i.e. LU/ha Main Forage Area) decreased significantly from 330 

GrassMIN to GrassMAX but not from MaizeMIN to MaizeMAX. 331 

4.2. Land management strategies 332 

As expected, significant differences in the percentage of UAA in pastures and maize silage 333 

were found between farms in minimum and maximum samples of each forage 334 

(Supplementary Table A2), since the area of each forage was used to calculate DM. On a 70 335 

ha commercial farm in the Netherlands, Vellinga and Hoving (2010) studied effects of 336 

increasing the proportion of maize silage in feed rations due to increasing the area of maize 337 

silage grown. They examined several land-use scenarios, such as converting permanent 338 

grasslands to silage maize, either in monoculture or in rotations with temporary grasslands. 339 

For instance, increasing the silage maize area by 4 ha decreased GHG emission intensity by 340 

11 g CO2 eq/kg milk (Vellinga and Hoving, 2010). However, the practicality of changing 341 

feeding strategies by changing land use depends on the size of the farm. Farms with small 342 

total area or grassland area may have difficulty making certain changes. Maximizing DMGrass 343 

also requires future studies that investigate how land use and management influence other 344 

services that grasslands provide besides forage production, such as modifying the quality (e.g. 345 

fatty-acid contents) of milk and meat and mitigating GHG emissions by sequestering soil 346 



19 
  

organic carbon. Models have thus been developed to simulate farm systems, as well as 347 

agronomic and environmental services provided by grasslands (Rotz, 2004; Graux et al., 348 

2013).  349 

4.3. Differences in GHG emissions by production strategy 350 

The results highlighted production strategies, reflected through the management of DMGrass 351 

and DMMaize, that influenced both economic (milk production) and environmental (GHG and 352 

enteric CH4 emissions) outputs from dairy farms. Thus, the strategies for setting DMGrass and 353 

DMMaize at extreme levels can be extrapolated, resulting in a change in annual GHG emissions 354 

whose direction (decrease or increase) tends to depend on the FU chosen: gross emissions per 355 

farm (kg CO2 eq/farm/year) or emission intensity of milk (kg CO2 eq/l milk). One strategy is 356 

to minimize DMMaize, which implies minimizing gross emissions but producing less milk than 357 

the dataset mean, meaning that emission intensity increases. A second strategy is to minimize 358 

DMGrass, which keeps gross emissions nearly constant and maximizes milk production, 359 

meaning that emission intensity decreases. A third strategy is to maximize DMGrass, which 360 

implies decreasing gross emissions and milk production (the former more than the latter), 361 

meaning that emission intensity decreases. Finally, a fourth strategy is to maximize DMMaize, 362 

which implies increasing gross emissions and milk production (the former more than the 363 

latter), meaning that emission intensity increases. In these four strategies, CH4 emissions 364 

tended to vary in the same way as total GHG emissions, contributing approximately half of 365 

the farms’ GHG emissions. 366 

These four strategies also reflected farmers’ management practices. For instance, feed 367 

purchases depend on a farm’s degree of feed self-sufficiency (Coquil et al., 2013). The 368 

contribution of purchased feed to gross GHG emissions was the smallest for GrassMAX and 369 

largest for GrassMIN. Likewise, from MaizeMIN to MaizeMAX, the contribution of organic 370 

and inorganic fertilization to gross GHG emissions increased but that of manure storage and 371 

management decreased. Meanwhile, no strategies resulted in a significant change in on-farm 372 

energy (diesel and electricity) consumption or amount of fertilizers purchased. 373 

From a product-oriented viewpoint, decreasing GHG emissions per l of milk is a primary 374 

objective, though debate continues over the total and per-ha impacts of the intensive dairy 375 

farms required to reach such high levels of milk production and which functional unit(s) best 376 

represent environmental impacts of dairy farms (Salou et al., 2017). In practice, management 377 

changes to address both GHG emissions and farm profitability should be a compromise 378 
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between the four strategies highlighted to develop farm-level GHG mitigation strategies that 379 

could be financially viable. 380 

4.4. EVT 381 

Applying EVT identified dairy farms with extremely low DMGrass and DMMaize. Hazards that 382 

would further decrease DMGrass and DMMaize would have greater consequences on these 383 

extreme minimum samples than on the other samples. Thus, one research perspective is to 384 

assess the risks that dairy farms face if they already produce small amounts of forage, as well 385 

as potential consequences of economic or climate perturbations on their productivity and 386 

environmental impacts. One must consider, however, the sensitivity of threshold values to 387 

various factors, such as a dairy farm’s type (extensive, intensive) and geographic location. 388 

Doing so would provide useful information about variability in threshold values and the 389 

factors that influence it. Furthermore, sensitivity of a sample’s GHG emissions to the choice 390 

of threshold values should be studied further. For instance, a threshold that is too small (or 391 

large) may lead to including (or excluding) values that are not (or are) extreme, affecting the 392 

relevance of results. In our study, one main criterion for choosing threshold values was to 393 

have a sufficiently large sample of dairy farms with extreme values of the inputs considered, 394 

to ensure the representativeness of the minimum and maximum samples extracted. 395 

Nonetheless, each extreme sample contained only 10-13 farms, which limited the 396 

representativeness of farms with extreme differences in forages and influenced the 397 

significance of statistical tests performed to assess differences between the samples. In a 398 

sufficiently large dataset, testing the adequacy of fit of the extreme value distribution to the 399 

GPD and measuring the error may be the only criteria needed to choose a threshold value. 400 
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Supplementary Materials 489 

Table A1. Descriptive statistics of the percentage of total greenhouse gas (GHG) emissions 490 

due to methane emissions, manure storage and management, purchased feeds organic and 491 

inorganic fertilization, on-farm energy consumption and fertilizers used of 78 dairy farms in 492 

Normandy (France) in 2014. 1Q = 1
st
 quartile, 3Q = 3

rd
 quartile, CV = coefficient of variation 493 

Characteristic Min 1Q Median Mean 3Q Max CV (%) 

Enteric methane emissions in total GHG (%) 41.0 47.0 49.0 49.6 53.0 66.0 9 

Manure storage and management in total GHG (%) 12.0 19.0 20.0 19.5 21.0 23.0 10 

Purchased feeds in total GHG (%) 0.0 10.0 13.0 12.5 15.0 21.0 33 

Organic and inorganic fertilization in total GHG (%) 4.0 7.0 9.0 9.0 11.0 14.0 25 

Energy consumption in total GHG (%) 3.0 4.0 5.0 5.3 6.0 12.0 27 

Fertilizers in total GHG (%) 0.0 2.0 3.0 3.4 5.0 7.0 52 

 494 
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Table A2. Mean and coefficient of variation (CV) of additional farm characteristics for the 495 

entire dataset and for farms in minimum (“MIN”) and maximum (“MAX”) samples of dry 496 

matter (DM) of grass and maize silage. % chg. = percentage increase from minimum to 497 

maximum sample. M-W p = p-value of Mann-Whitney test for the difference between 498 

minimum and maximum samples. % chg. = percentage increase from minimum to maximum 499 

sample. UAA = Utilized Agricultural Area, LU=Livestock Unit, MFA=Main Forage Area, 500 

GHG = greenhouse gas 501 

Variable Statistic 

Entire 

dataset 

Grass DM sample Maize silage DM sample 

MIN 

sample 

MAX 

sample 

% 

chg. 

M-W 

p 

MIN 

sample 

MAX 

sample 

% 

chg. 

M-W 

p 

Area of pastures in 

UAA (%) 

Mean 48.1 31.3 70.3 +124% <0.001 72.3 38.5 -47% <0.001 

CV 40% 36% 28%   26% 35%   

Area of silage maize in 

UAA (%) 

Mean 24.1 30.7 14.5 -53% <0.001 13.7 31.7 +131% <0.001 

CV 38% 22% 60%   62% 14%   

Replacement rate (%) Mean 30.5 29.5 31.1 +5% 0.36 29.2 29.9 +2% 0.91 

CV 33% 17% 29%   34.2.% 25.6%   

Stocking rate (LU per 

ha of MFA) 

Mean 1.4 1.6 0.9 -42% <0.001 1.2 1.1 -8% 0.89 

CV 26% 19% 24%   31% 21%   

Enteric methane 

emissions in total GHG 

(%) 

Mean 49.6 48.0 52.6 +10% 0.09 53.9 47.7 -11% <0.001 

CV 9% 6% 14%   9% 7%   

Manure storage and 

management in total 

GHG (%) 

Mean 19.5 19.2 19.8 +3% 0.54 20.7 18.2 -12% 0.02 

CV 10% 10% 9%   7% 17%   

Purchased feeds in total 

GHG (%) 

Mean 12.5 15.4 8.8 -43% <0.001 9.3 12.8 +37% 0.09 

CV 33% 16% 50%   48% 29%   

Organic and inorganic 

fertilization in total 

GHG (%) 

Mean 9 8.9 8.9 -0.1% 1 7.7 10.1 +32% 0.02 

CV 25% 29% 25%   29% 25%   

Energy consumption in 

total GHG (%) 

Mean 5.3 5.4 5.3 -3% 0.87 5.7 5.8 +3% 0.43 

CV 27% 12% 22%   39% 20%   

Fertilizers in total GHG 

(%) 

Mean 3.4 3.5 3.4 -4% 1 2.5 3.0 +18% 0.54 

CV 52% 52% 69%5   66% 67%   
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