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Abstract

We study the invasion of an unstable state by a propagating front in a peculiar but generic

situation where the invasion process exhibits a remnant instability. Here, remnant instability

refers to the fact that the spatially constant invaded state is linearly unstable in any exponen-

tially weighted space in a frame moving with the linear invasion speed. Our main result is the

nonlinear asymptotic stability of the selected invasion front for a prototypical model coupling

spatio-temporal oscillations and monotone dynamics. We establish stability through a decom-

position of the perturbation into two pieces: one that is bounded in the weighted space and a

second that is unbounded in the weighted space but which converges uniformly to zero in the

unweighted space at an exponential rate. Interestingly, long-time numerical simulations reveal

an apparent instability in some cases. We exhibit how this instability is caused by round-off

errors that introduce linear resonant coupling of otherwise non-resonant linear modes, and we

determine the accelerated invasion speed.

Keywords: traveling front, remnant instability, pointwise semigroup methods, absolute spectrum

1 Introduction

The stability analysis of fronts invading unstable states is complicated by the presence of unstable

essential spectrum. This unstable spectrum is a consequence of the instability of the homogeneous

state that the front is propagating into. Perturbations of the front that are placed sufficiently far

ahead of the front interface will grow in norm at an exponential temporal rate from the homogeneous

state. Stability typically is recovered by compensating temporal growth with exponential spatial

decay of allowable perturbations away from the front interface. Technically, this amounts to viewing
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the stability problem in an exponentially weighted function space. The hope is that some weight

can be chosen so that the essential spectrum is stabilized in the comoving frame of the front and

the stability analysis can then proceed in a fashion similar to that of fronts connecting stable states;

see for example [30]. In this paper we study a model system where no such stabilization is possible

and investigate the consequences for both the stability analysis of the front and the associated

dynamics of the full partial differential equation.

As a specific example throughout, we consider the system of equations∂tu = d∂xxu+ s∂xu+ f(u) + βv,

∂tv = −(∂xx + 1)2v + s∂xv + µv,
t > 0, x ∈ R, (1.1)

where f(u) := αu(1 − u2) for some α > 0. Parameters are set such that d > 0, µ < 0, β 6= 0, and

s > 0. The u component is governed by a Fisher-KPP type equation while the v component is the

Swift-Hohenberg equation typically used as a model for pattern formation, although we consider

the case of µ < 0 where patterns are suppressed and the zero state is stable. The two equations

are coupled through the βv term in the first equation. In terms of traveling fronts, there exist

monotone front solutions (Q(x), 0) connecting (u−, v−) = (1, 0) at −∞ to (u+, v+) = (0, 0) at +∞
for any wavespeed s ≥ s∗ := 2

√
df ′(0) = 2

√
dα; see for example [1]. Similar systems have been

studied in [13, 15], focusing however on fronts between stable states u = ±1.

Investigating stability of these traveling front solutions, we linearize (1.1) near the traveling front

solution (Q∗(x), 0). The essential spectrum of the resulting linear operator can be characterized

in terms of the asymptotic systems as x → ±∞, that is, linearizing at (u±, v±), respectively. The

boundaries of the essential spectrum are given by spectra of these asymptotic systems, determined

by solutions of the form eikx with temporal growth rate λ(k). Focusing on the asymptotic system

near x = +∞ for (1.1), it is easy to see that the essential spectrum is stable for the v component

since µ < 0. On the other hand, the essential spectrum for the u component is unstable since

f ′(0) = α > 0. In an exponentially weighted space, the essential spectrum instead records the

temporal growth rate associated to modes of the form e(ik+η)x for some η ∈ R. It is known that the

essential spectrum for the u-component is real, {λ ≤ α − s2

4d}, for the specific choice η = −s/(2d);

see [30]. It is possible however that the v-equation will possess unstable essential spectrum and

therefore exhibit exponential growth for this specific choice of exponential weight η = −s/(2d). This

paper focuses precisely on this situation, in the case of the critical front with speed s∗ = 2
√
αd

when the essential spectrum of the u-component is marginally stable, {λ ≤ 0}. We shall refer to

such instabilities, where the linearization at the solution (Q∗(x), 0) possesses essential spectrum in

{Reλ > 0} for any choice of exponential weights as remnant instabilities, a term introduced in [29].

In order to understand the possibility of stabilizing a system using exponential weights more sys-

tematically, we analyze the linearization at (u+, v+) in more detail, referring in particular to the

absolute spectrum, Σabs, introduced in [29]. Roughly speaking, stability of the absolute spectrum

implies that there exists a continuous choice of exponential weights η(λ) in {Reλ > 0} so that λ

does not belong to the essential spectrum in the space with exponential weight η(λ). More alge-
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Region Remnantly

Unstable

Absolute Spectrum

Unstable

Resonance Poles

Unstable

Front Stability

Rst no no no stable, adaptation of [8]

Rrem yes no no stable, Theorem 1

Rabs yes yes no stable, Theorem 1

Rpw yes yes yes pointwise unstable [20]

Table 1: Overview of different types of linear instability and results on stability of the critical front of (1.1).

Regions outlined in parameter space in Figure 1, below.

braically, one computes all possible “spatial eigenvalues” ν(λ) corresponding to solutions eλt+ν(λ)x

for a given λ and determines if this collection can be consistently separated by real part along a

curve with Reλ → +∞. This consistent splitting breaks whenever λ ∈ Σabs. In this way, the

existence of unstable absolute spectrum implies what we shall refer to as a remnant instability [29],

an instability that cannot be stabilized using exponential weights.

The absolute spectrum forms curves in the complex plane which terminate on double roots (some-

times referred to as branch points), where two values ν1/2(λ) collide; see [28]. These double roots

typically lead to resonance poles, which are singularities of the resolvent kernel (also referred to

as the pointwise Green’s function), and their location in the complex plane prescribes the point-

wise exponential growth or decay rate of solutions to the homogeneous equation; see for exam-

ple [3, 4, 6, 20, 23, 31]. Typically, but not always, those resonance poles form the rightmost part

of the absolute spectrum.

In summary, unstable resonance poles imply unstable absolute spectrum, which in turn implies

a remnant instability. In most cases in the literature, these three concepts of instability are in

fact equivalent, that is, for given parameter values, a system exhibits all or none of those three

instabilities. The main interest in our system (1.1) is the fact that it provides a simple example

where this equivalency fails, that is, there is a parameter region Rrem with remnant instability but

no unstable absolute spectrum and a parameter regionRabs with unstable absolute spectrum but no

unstable resonance poles. Table 1 summarizes the characterization of these regions in comparison

to Region Rst, where the essential spectrum of the unstable state can be (marginally) stabilized

using an exponential weight, and Region Rpw with unstable resonance poles. One expects stability

inRst using a generalization of the argument for the scalar case, see [8, 12], and instability in Region

Rpw, where the unstable state possesses resonance poles in the right half of the complex plane and

pointwise instability of the front is expected1. Figure 1 depicts these regions in parameter space.

We next outline the main contributions of this paper which provide stability results for fronts in

the intriguing intermediate regions Rrem and Rabs.

1The resonance poles here are indeed relevant in the sense of [17, 20].
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(a) µ = −1/3. (b) α = 3.

Figure 1: Numerically computed regions Rst, Rrem, Rabs, and Rpw for µ = −1/3 and α = 3 in (1.1),

respectively; see Table 1 for a region labels and Figure 2 for space-time plots of solutions in different regions.

Nonlinear Asymptotic Stability. The main analytical result of this paper establishes nonlinear

stability of the traveling front (Q∗(x), 0) propagating at the linear spreading speed s∗ = 2
√
dα for

parameters in Rrem ∪ Rabs. We delay a precise statement of this main result until Section 3 and

present an informal statement, here.

We write perturbations of the front as u(t, x) = Q∗(x) +P (t, x), such that the pair (P (t, x), v(t, x))

solves ∂tP = d∂xxP + s∗∂xP + f(Q∗ + P )− f(Q∗) + βv,

∂tv = −(∂xx + 1)2v + s∗∂xv + µv,
t > 0, x ∈ R. (1.2)

For δ > 0 sufficiently small, let define a positive, bounded, and smooth weight function with

ω(x) =


e−

s∗
2d
x, x ≥ 1,

1, x = 0,

eδx, x ≤ −1,

(1.3)

where we recall that this weight is the one required for the stability analysis of the scalar Fisher-KPP

equation; see once again [8, 12].

Theorem 1 (Nonlinear stability – informal statement). For parameters in a subregion Π ⊂ Rrem∪
Rabs, solutions to (1.2) with sufficiently small initial conditions (P0, v0) ∈ X × Y, with weighted

function spaces defined in Theorem 3, exist for all t > 0 and converge to zero in the following sense.

There is a pointwise decomposition

P (t, x) = Eu(t, x) + Ev(t, x), x ∈ R,

such that

|Ev(t, x)| ≤ Ce−θte−γ|x|‖v0‖X , t ≥ 1, x ∈ R,

|Eu(t, x)| ≤ Ct−3/2(1 + |x|)ω(x) (‖v0‖X + ‖P0‖Y) ,

|v(t, x)| ≤ Ce−θte−δ|x|‖v0‖X , t ≥ 1, x ∈ R,

4



(a) (d, α, µ) ∈ Rst or Rrem. (b) (d, α, µ) ∈ Rabs. (c) (d, α, µ) ∈ Rpw.

Figure 2: Space-time plots for (1.1) in the comoving frame s = s∗, β = 1, with parameters in Rrem (a),

Rabs (b) , and Rpw (c), respectively. (a) Stability of critical front, which remains stationary despite remnant

instability (plots in region Rst would be identical); see Theorem 1 and [8], resp.. (b) Stability despite unstable

absolute spectrum for long times, Theorem 1, and instability and acceleration to the absolute spreading speed

for very long times due to round-off, Conjecture 1. (c) Instability against pattern-forming front due to

unstable resonance pole, then absolute spreading speed from round-off error.

for some constants C > 0, θ > 0, 0 < γ < s∗
2d ,

On the other hand, there exist ε > 0 and initial conditions v0 ∈ X arbitrarily small such that for

some t > 0,

sup
x∈R

|P (t, x)|
ω(x)

≥ ε,

that is, the front is not asymptotically stable in the fixed weight.

We refer the reader to Theorem 3 for a precise statement of the stability result. The region Π is

described in Definition 3.1 and excludes potential nonlinear 3:1-resonances in the sense of [10]. The

proof relies on pointwise semigroup methods, developed in [33] for stability problems in the presence

of marginally stable essential spectrum; see [2, 21, 32] among others. The method was recently

applied in [8] to re-derive the nonlinear stability of the critical Fisher-KPP front [5, 7, 9, 12, 25]. The

pointwise representation allows us to separate the weak algebraic decay in exponentially weighted

spaces intrinsic to the u-equation and the exponential unweighted decay in u induced by coupling

to the v-equation.

Wavespeed selection and the role of the absolute spectrum. Numerical simulations illus-

trating stability are shown in Figure 2. For parameters in Rabs, the front is stable, stationary in the

comoving frame for a long time period as predicted but overtaken by a faster invasion mode after

very long times. We will demonstrate that the speed of this faster invasion mode is approximately

the speed sabs at which the absolute spectrum becomes (marginally) stable. We will present numer-

ical evidence that this faster invasion speed is induced by numerical round-off errors. Corroborating

this numerical evidence is the following result that we formulate as a conjecture here.
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Conjecture 1. Consider the following modification of (1.1) where the coupling term βv is replaced

with βσ(x)v for some inhomogeneity σ(x),∂tu = d∂xxu+ s∂xu+ f(u) + βσ(x)v,

∂tv = −(∂xx + 1)2v + s∂xv + µv,
t > 0, x ∈ R. (1.4)

Suppose that the Fourier transform of σ(x) has full support. Then for parameters in Rabs, the

traveling wave (Q∗(x), 0) is pointwise unstable due to resonance poles accumulating on the unstable

absolute spectrum Σabs.

We motivate this conjecture using a pointwise analysis and present numerical evidence in Section 5.

Taking a step back, an underlying motivation of ours is to understand wavespeed selection mecha-

nisms and determine invasion speeds based upon properties of the linearization at the unstable state

whenever possible; see [31] for a review of wavespeed selection principles with many applications.

In other words, one seeks to identify a “linear” spreading speed based on linear information that

gives the nonlinear asymptotic spreading speed associated to compactly supported perturbations

of the unstable state. In the most common case, the linear spreading speed is induced by a simple

branch point located on the imaginary axis. Fronts invading at this linear spreading speed are

called pulled, distinguishing them from a case of pushed fronts where the spreading speed is faster,

determined and driven by nonlinearity; see agin [31]. Going beyond these classical predictions, we

showed in [10] that generic nonlinear mixing of linear modes can lead to faster invasions whose

speeds can be determined based solely on information from the linearized unstable state. Conjec-

ture 1, motivated in part by [16] suggests that, in the presence of generic multiplicative fluctuations,

the absolute spreading speed is most relevant for invasion problems.

Estimates on the boundaries of instability regions. Complementing the previous nonlinear

analysis, we now demonstrate that our simple model actually exhibits all phenomena discussed

above, that is, Theorem 1 holds in the regions Rrem and Rabs which are both nonempty.

Theorem 2. For α, d > 0, s = s∗ fixed, there exist

µrem(α, d) := 2α− 4α

d
− 8α2

d2
≤ µabs

0 (α, d) :=
d2

4
− 4α

d
− 4α2

d2
, (1.5)

such that the origin has

(i) unstable absolute spectrum if µabs
0 < µ < 0, that is, {(µ, α, d)|µ ∈ (µabs

0 , 0)} ⊂ Rabs ∪Rpw;

(ii) a remnant instability if µrem < µ < 0, that is, {(µ, α, d)|µ ∈ (µrem, 0)} ⊂ Rabs ∪Rrem ∪Rpw.

Moreover,

(iii) Rabs ∪Rrem 6= ∅ when µrem < 0;

(iv) Rabs 6= ∅ when µabs
0 < 0 and α > d+ d2

2 ;

(v) Rrem 6= ∅ when µrem < 0 and d2 6= 4α.

Proofs can be found in Sections 2 and 4.
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Outline. The remainder of the paper is organized as follows. In Section 2, we discuss essential

and weighted essential spectra of the linear asymptotic operators and characterize the boundary of

the remnant instability region. In Section 3, we present our main stability result and its proof. In

Section 4, we present explicit formulas for the absolute spectra of the Fisher-KPP as well as Swift-

Hohenberg components in isolation, characterize the absolute spectrum associated to (1.1) near

the unstable state, and characterize (non empty) regions of parameters where our main nonlinear

stability result holds. Finally, we provide some numerical simulations in Section 5 that show the

emergence of pointwise growth modes.

Acknowledgments. The research of M. H. was partially supported by the National Science Foun-

dation through DMS-2007759. A. S. was supported by the National Science Foundation through

NSF DMS-1907391 L. S. acknowledges support by the Deutsche Forschungsgemeinschaft (German

Research Foundation), Projektnummer 281474342/GRK2224/1.

2 Exponential weights and remnant instabilities

We review essential and weighted essential spectra and identify parameters of remnant instability

in Proposition 2.1, below, where exponential weights cannot stabilize the essential spectrum of (1.1)

linearized near the traveling front. In Section 2.1 we introduce the dispersion relation and its roots.

In Section 2.2 we discuss weighted essential spectra and derive Proposition 2.1. In Section 2.3, we

discuss pointwise and other stability concepts.

While most of this section is relevant for Theorem 2, only, we also introduce notation that will be

required in subsequent sections including the weighted essential spectrum Ση
ess(L), the dispersion

relation D(λ, ν) and its roots (νj(λ) for the v component, ν0
±(λ) and ν1

±(λ) for the u component

near zero and one, respectively), and finally pinched double roots that lead to singularities of the

pointwise Green’s function (λbp
v for the v component and λrp for resonance poles coming from the

coupling of the two equations). We also provide some background on the signifigance of each of

these terms, although we refer the reader to [20] for a more in-depth treatment.

2.1 The dispersion relation and essential spectra

We study the asymptotic linearized operators in a comoving frame,

L+ :=

(
L+
u β

0 L+
v

)
, L− :=

(
L−u β

0 L−v

)
,

where plus and minus indicate the asymptotic rest states (0, 0) and (1, 0) at +∞ and −∞, respec-

tively, and where

L+
u := d∂xx + s∂x + α, L−u := d∂xx + s∂x − 2α, L±v := −(∂xx + 1)2 + s∂x + µ,

are the componentwise linearizations.
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The dispersion relation D(λ, ν) relates spatial modes eνx to their exponential temporal growth rates

eλt. Due to the skew-product nature, the dispersion relation associated to the linearization near

the zero state is given by the following product

D0(λ, ν) = D0
u(λ, ν) ·Dv(λ, ν) = (dν2 + sν + α− λ) · (−ν4 − 2ν2 + sν − 1 + µ− λ). (2.1)

The dispersion relation has six spatial roots. The two roots of D0
u(λ, ν) have analytic expressions

which we denote as

ν0
±(λ) = − s

2d
± 1

2d

√
s2 − 4dα+ 4dλ (2.2)

while Dv(λ, ν) has four roots which we denote by νj(λ) with the specifications that

lim
Re(λ)→+∞

Re(ν1,2(λ)) < 0, lim
Re(λ)→+∞

Re(ν3,4(λ)) > 0. (2.3)

When discussing the absolute spectrum it will be more convenient to label roots according to their

real part. So, we will also denote the four spatial eigenvalues of L±v by ρj(λ) defined so that for all

λ ∈ C,

Re (ρ1(λ)) ≤ Re (ρ2(λ)) ≤ Re (ρ3(λ)) ≤ Re (ρ4(λ)). (2.4)

By Fourier transform, the spectrum of L+ as a linear operator on L2(R) × L2(R) consists of the

set of spectral values λ ∈ C for which there exists a solution D0(λ, ik) = 0 for some k ∈ R, that is,

Σess(L+) = Σess(L+
u ) ∪ Σess(L+

v ), with

Σess(L+
u ) =

{
−dk2 + sik + α, k ∈ R

}
, Σess(L+

v ) =
{
−k4 + 2k2 + sik − 1 + µ, k ∈ R

}
Since throughout µ < 0, Re (Σess(L+

v )) < 0. However, since α > 0, Σess(L+
u ) extends into the right

half of the complex plane reflecting instability of the invaded state.

2.2 Exponential weights

In order to recover stability of the invasion process, one utilizes exponential weights that stabilize

the essential spectrum. Therefore, consider the weighted Sobolev space L2
η(R) ⊂ L2

loc with norm

‖u(·)‖L2
η

= ‖u(·)eη·‖L2 , η ∈ R.

Clearly, by measuring perturbations in L2
η we penalize mass at +∞ for η > 0. On the other hand,

measuring solutions, the norm neglects growth at −∞. Stability in a weighted norm of an otherwise

unstable system therefore reflects unidirectional transport. Again using Fourier transform, we

obtain the weighted essential spectra through parameterized curves

Ση
ess(L+

u ) = {σu(k; η), k ∈ R} , Ση
ess(L+

v ) = {σv(k; η), k ∈ R} ,

σu(k; η) :=− dk2 + i(s+ 2dη)k + dη2 + sη + α

σv(k; η) :=− k4 + 4iηk3 + (2 + 6η2)k2 + i(s− 4η3 − 4η)k − (1 + η2)2 + sη + µ.
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(a) Σηess(L+
u ) as η varies.
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(b) Σηess(L+
v ) as η varies.

Figure 3: Weighted essential spectra from the u (left) and v (right) component in the complex plane for various

choices of weights η and s = s∗ and other parameters are fixed such that (2.6) fails. Note that Σess(L+
u ) is

marginally stabilized using the optimal weight η∗ while destabilizing Σηess(L+
v ) for η < ηc ∼ 0.5695η∗.

Note that rightmost point of Ση
ess(L+

u ) occurs for zero wavenumber k = 0. The maximal real part

of Ση
ess(L+

u ) is minimized for η = −s/(2d), when

Ση
ess(L+

u )
∣∣
η=−s/(2d)

=

(
−∞,− s

2

4d
+ α

]
. (2.5)

In case s = s∗ = 2
√
dα we also observe that this optimal weight η∗ := −

√
α/d implies marginal

stability, max Ση∗
ess(L+

u ) = 0; see Figure 3. For the v-component, a short calculation shows that the

real part of Ση
ess(L+

v ) is maximized at k = ±
√

3η2 + 1 with

Re (σv(±
√

3η2 + 1; η)) = 8η4 + 4η2 + sη + µ.

and note that Re (σv(0; η)) < Re (σv(±
√

3η2 + 1; η)),∀ η ∈ R.

For s = s∗, we conclude that there exists an exponential weight that stabilizes both u and v

linearizations simultaneously if and only if Re (σv(±
√

3η2
∗ + 1; η∗)) ≤ 0, a region given by

µ < min(µrem, 0); (2.6)

see Figure 3 (b) for an illustration. These considerations are summarized in the following proposi-

tion.

Proposition 2.1 (Boundary of remnant instability). With µrem(α, d) := 2α − 4α/d− 8α2/d2, we

have that, within {µ < 0, α > 0, d > 0},

Rst = {(d, α, µ) | µ < min(µrem, 0) and α, d > 0} ,

Rpw ∪Rrem ∪Rabs = {(d, α, µ) | µrem < µ < 0 and α, d > 0} .

In particular, there are instabilities with µ < 0, Rpw ∪ Rrem ∪ Rabs 6= ∅, whenever µrem(α, d) < 0,

that is, when α > d2/4− d/2.
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2.3 Dispersion relations and pointwise instabilities

We briefly discuss the role of branch points and resonance poles in pointwise instabilities.

A possible reason for remnant instability is pointwise instability, when localized initial conditions

grow in any fixed finite window of observation. Since the effect of the exponential weight in a

bounded window is irrelevant, exponential weights cannot stabilize the system. Pointwise insta-

bilities are typically caused by unstable branch points of the dispersion relation which lead to

resonance poles of the corresponding pointwise Green’s function. Instability of fronts propagating

into states exhibiting a pointwise instability in the frame moving with the speed of the front is

expected (see however [17, 19, 20] for subtleties pertaining to the definition of branch point) and

Theorem 1 therefore is concerned with remnant but not pointwise instabilities.

Recall the dispersion relation for the linearization at the origin, D0(λ, ν) from (2.1). We solve

D0(λ, ν) = 0 for spatial modes ν as functions of temporal growth λ. For Re(λ) � 1 one finds 3

roots with Re ν < 0 and 3 roots with Re ν > 0. Decreasing Re(λ), one of the ν’s with positive real

part will eventually cross the imaginary axis at a location ik, precisely when λ ∈ Σess(L+) where

D0(λ, ik) = 0. Still, the roots ν(λ) can be continued analytically in λ as long as they are simple.

Deforming Fourier transform integrals in the complex plane, one readily notices that locations λ of

double roots, where two roots νI/II(λ) collide are the only candidates for singularities of the Green’s

function to L+ − λ. One can further verify that only pinched double roots, where Re νI(λ)→ +∞
and Re νII(λ) → −∞, can cause such singularities; see [3, 4, 6, 20, 23, 31]. Thinking in terms of

stabilizing the system with exponential weights, one sees immediately that pinched double roots

are lower bounds on essential spectra in any exponentially weighted space, since weights η need to

separate νI/II(λ) by real part for all λ: pointwise instabilities imply remnant instabilities.

Thinking in terms of pointwise stability, we can construct the heat kernel to the linearized PDE

via inverse Laplace transform of the Green’s function to L+−λ. Deformation of the path integrals

in the inverse Laplace transform then exhibit that singularities of the pointwise Green’s function

encode exponential growth or decay in time of the heat kernel. In the notation of (2.1)–(2.3),

we find pinched double roots when ν0
+(λ) = ν0

−(λ), and when νj(λ) = νk(λ) for j = 1 or 2 and

k = 3 or 4 describing pointwise growth rates of u- and v-components without coupling. Additional

double roots that lead to singularities occur due to the coupling of the two components where

ν+
0 (λ) = νj(λ) for j = 1 or 2. Due to the skew-product nature of (1.1) this lead to poles, rather

than branch points, of the pointwise Green’s function and we will refer to these singularities as

resonance poles.

We finally conclude this section by introducing the notations that will be used in Section 3 (see

also Remark 3.5). The two complex conjugates pinched double roots which are branch points of

the v dispersion relation Dv(λ, ν) = 0 will be denoted by (λbp
v , ν

bp
v ) with complex conjugate. The

two aforementioned pinched resonance poles will be denoted (λrp, νrp) with complex conjugate; see

Section 4 for explicit formulas and more details.
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3 Proof of nonlinear stability for Fisher-KPP invasion front

In this section, we present and prove the main result on nonlinear stability. Section 3.1 presents set-

up and outline, Section 3.2 develops estimates on the pointwise Green’s function, and Section 3.3

uses those to obtain estimates for the temporal Green’s function via the inverse Laplace Transform.

Finally, Section 3.4 contains a precise statement and proof of the nonlinear stability result.

3.1 Outline of the argument

We look for solutions to (1.1) of the form (u(t, x), v(t, x)) = (Q∗(x) + P (t, x), v(t, x)), which yields

∂t

(
P

v

)
=

(
Lu β

0 Lv

)(
P

v

)
+

(
N (P )

0

)
, t > 0, x ∈ R.

where Lu := d∂xx + s∗∂x + f ′(Q∗), Lv := −(∂xx + 1)2 + s∗∂x + µ, and

N (P ) := f(Q∗ + P )− f(Q∗)− f ′(Q∗)P = −3αQ∗P
2 − αP 3.

For the linear system

∂t

(
P

v

)
=

(
Lu β

0 Lv

)(
P

v

)
, t > 0, x ∈ R, (3.1)

we define its associated pointwise 2×2 matrix Green’s function Gλ(x, y) whose components satisfy(
Lu − λ β

0 Lv − λ

)(
G11
λ (x, y) G12

λ (x, y)

G21
λ (x, y) G22

λ (x, y)

)
=

(
−δ(x− y) 0

0 −δ(x− y)

)
, ∀(x, y) ∈ R2. (3.2)

Inverse Laplace transform formally gives the 2× 2 temporal matrix Green’s function G(t, x, y) with

Gij(t, x, y) :=
1

2πi

∫
Γ

eλtGij
λ (x, y) dλ,

for an appropriate contour Γ ⊂ C. Note that G21
λ (x, y) ≡ 0 by the upper triangular structure.

Solutions of (3.1) with initial condition (P0, v0) can be expressed implicitly with Duhamel’s formula,(
P

v

)
(t, x) =

∫
R
G(t, x, y)

(
P0

v0

)
(y) dy +

∫ t

0

∫
R
G(t− s, x, y)

(
N (P )

0

)
(s, y) dy ds.

Since Gij ≡ 0, again from the triangular structure,

v(t, x) =

∫
R
G22(t, x, y)v0(y) dy.

As a consequence, the perturbation P (t, x) satisfies the integral equation

P (t, x) =

∫
R
G11(t, x, y)P0(y) dy +

∫ t

0

∫
R
G11(t− s, x, y)N (P )(s, y) dy ds+

∫
R
G12(t, x, y)v0(y) dy.

(3.3)
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Suppose for the moment that the last summand vanishes, v0(y) ≡ 0. We can then follow the

analysis in [8], where we have studied the linear problem

∂tP = LuP, P (0) = P0,

on weighted spaces with weight function ω(x) from (1.3). In the weighted variables P = ωp,

P0 = ωp0, we find

∂tp = ω−1Lu(ωp) =: Lp, p(0) = p0.

with solution represented by the associated temporal Green’s function G̃11(t, x, y) as

p(t, x) =

∫
R
G̃11(t, x, y)p0(y) dy, G11(t, x, y) = G̃11(t, x, y)

ω(x)

ω(y)
, t > 0, ∀(x, y) ∈ R2.

Adding nonlinear terms, but still setting v0(y) ≡ 0, one finds

sup
x∈R

(
1

1 + |x|
|P (t, x)|
ω(x)

)
≤ Cε

(1 + t)3/2
, t > 0,

for some constants C > 0 and ε > 0 small enough, controlling a weighted norm of P0; see [8]. The

main difficulty here stems from that the fact that the inhomogeneous source term

H(t, x) :=

∫
R
G12(t, x, y)v0(y) dy,

is not bounded in time when multiplied with the weight ω(x). In fact, H(t, x) we will decompose

H(t, x) =: ω(x)h(t, x) + E(t, x),

where E(t, x) vanishes for small time E(t, x) ≡ 0 for t ≤ 1, has weak spatial decay, in the sense

that ω−1E cannot be controlled in time, but has exponential temporal decay, uniformly in space.

It then follows that

P (t, x)− E(t, x) =

∫
R
G11(t, x, y)P0(y) dy + ωh(x) +

∫ t

0

∫
R
G11(t− s, x, y)N (P )(s, y) dy ds.

We can therefore redefine our weighted perturbation P (t, x)− E(t, x) =: ω(x)p(t, x), solving

p(t, x) =

∫
R
G̃11(t, x, y)p0(y) dy + h(t, x) +

∫ t

0

∫
R
G̃11(t− s, x, y)ω(y)−1N (ωp+ E)(s, y) dy ds.

We now sketch how each term in the above equality can be estimated for t > 1, ignoring the less

pertinent difficulties for small times for now. Recall from [8], that∣∣∣∣∫
R
G̃11(t, x, y)p0(y) dy

∣∣∣∣ . 1 + |x|
(1 + t)3/2

∫
R

(1 + |y|)|p0(y)|dy, t > 1, x ∈ R, (3.4)

for any p0. With these estimates, we can easily obtain stability following the analysis in [8].

The key ingredient to the analysis here is then to show that h(t, x) satisfies an estimate similar to

(3.4),

|h(t, x)| . 1 + |x|
(1 + t)3/2

‖v0‖X , t > 1, x ∈ R,

12
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Figure 4: Regions Ω, ΩI and ΩL from (3.7), (3.6), and (3.5), respectively, showing the ball {|λ| ≤ Ml}
(yellow), the boundary between ΩL and ΩI (yellow solid), Ση∗ess(Lv) (purple and red) separating Ω and ΩI

(purple solid). On the left, Ω is bounded by {Reλ = µ} (dark blue) which bounds the real part of Σess(Lv)
(blue).

which we shall obtain in Lemma 3.16. Establishing such bounds, we rely on pointwise estimates

for G12(t, x, y), which in turn will be deduced from pointwise bounds on G12
λ (x, y), solution to

(Lu − λ)G12
λ (x, y) + βG22

λ (x, y) = 0, ∀(x, y) ∈ R2,

for λ ∈ C to the right of the essential spectrum of Lu and Lv. In the next section, we obtain

estimates on the pointwise Green’s function G12
λ (x, y) and G22

λ (x, y) for small, medium and large

values of λ. Then in Section 3.3, we use these estimates to derive pointwise bounds on G12(t, x, y).

Finally, we prove our main nonlinear stability result in the last section.

3.2 Estimates on the pointwise Green’s function Gλ(x, y)

We obtain estimates on the pointwise Green’s function Gλ(x, y) from (3.2). Estimates will be

divided into three types: “large” λ estimates valid for |λ| sufficiently large, “small” λ estimates

valid for λ near the origin and “intermediate” λ estimates valid in between. Estimates in the

“large” λ regime are obtained in Lemma 3.8 and are obtained by a rescaling of (3.2) following the

approach in [33] and are valid on the following subset of the complex plane,

ΩL =
{
λ ∈ C | |λ| ≥Ml, |arg(λ)| < π

2
+ δ
}
, (3.5)

for some Ml sufficiently large. The intermediate λ regime will consist of λ in the set

ΩI = {λ ∈ C | |λ| ≤Ml, λ to the right of Ση∗
ess(Lv)} . (3.6)

The majority of our effort will be towards estimates for the small λ regime, concerned with λ ∈
Ω ⊂ C defined through

Ω = {λ ∈ C| |arg(λ)| < π, Re(λ) ≥ µ, |λ| < Ml, λ 6∈ ΩI}. (3.7)

13



In words, Ω contains points to the right of µ, to the left of ΩI , and off the negative real axis. These

regions are depicted in Figure 4. Note that the “small” λ regime will actually encompass a rather

sizable portion of the complex plane, rather than a “small” neighborhood of the origin.

Next, let

− γv = max
λ∈Ω

max
j=1,2

Re(νj(λ)) < 0. (3.8)

Our main result will hold for the following set of parameters.

Definition 3.1 (Region of validity). Let Π ⊂ Rrem ∪ Rabs denote the set of parameters (d, α, µ)

such that the decay rate condition

3γv >
s∗
2d
, (3.9)

holds, where we recall that s∗ = 2
√
dα and γv is defined in (3.8).

Remark 3.2 (Comments on region of validity). Inspecting the proof, this condition is needed to

control nonlinear terms. It is conceivable that a violation of this condition induces faster spreading

speed based on resonant interaction mechanisms studied in [10]. On the other hand, we show in

Section 4.2 that Rrem ∪ Rabs have nonempty interior. The (open) decay rate condition is more

difficult to verify analytically but easy to verify for specific parameter values; see Figure 5. On

the other hand, taking µ ≈ µabs0 , we shall see in Section 4.2 that the decay rate condition holds by

continuity and that therefore so we are guaranteed that the set Π of validity is nonempty.
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0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 5: Checking (3.9) numerically. Left: Values of λ where maxImλ maxj=1,2 Re(νj(λ)) is attained for

fixed −1 < Re(λ) < 0 (dark cyan). Right: Values of −maxImλ maxj=1,2 Re(νj(λ)) (blue), always above

3γv >
s∗
2d (dotted orange) as required in (3.9); parameters fixed at d = α = 1 and µ = −1.

3.2.1 Construction of G11
λ (x, y) in Ω

Recall the two dispersion relations for the u component given by

D0
u(λ, ν) := dν2 + s∗ν + f ′(0)− λ, D1

u(λ, ν) := dν2 + s∗ν + f ′(1)− λ,

with corresponding roots ν0
±(λ) := − s∗

2d ±
√

λ
d and ν1

±(λ) := − s∗
2d ±

√
s2∗−4d(f ′(1)−λ)

2d .
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Lemma 3.3. [8, Lemma 2.2] For λ ∈ Ω, there exists solutions ϕ± and ψ± of Lup = λp with

ϕ+(x) = eν
0
−(λ)x (1 + θ+(x, λ)) , x > 0,

ψ+(x) = eν
0
+(λ)x (1 + κ+(x, λ)) , x > 0,

ϕ−(x) = eν
1
+(λ)x (1 + θ−(x, λ)) , x < 0,

ψ−(x) = eν
1
−(λ)x (1 + κ−(x, λ)) , x < 0,

where θ±(x) and κ±(x) are both O(e−ϑ|x|).

Thus, ϕ±(x) represent bounded solutions of Lp = λp on either half-line while ψ± represent choices

of unbounded (on R−) or weakly decaying (on R+) solutions. The pointwise Green’s function is

then given by

G11
λ (x, y) =

{
ϕ+(x)ϕ−(y)

Wλ(y) x > y
ϕ−(x)ϕ+(y)

Wλ(y) x < y
, (3.10)

where Wλ(y) is the Wronskian of ϕ+(x) and ϕ−(x), known as the Evans function. An impor-

tant ingredient to [8] is the fact that W0(y) 6= 0 reflecting absence of an embedded translational

eigenvalue.

3.2.2 Construction of G22
λ (x, y) to the right of Σess(Lv)

Recall that G22
λ (x, y) satisfies, in the distributional sense, the equation

(Lv − λ)G22
λ (x, y) = −δ(x− y), ∀(x, y) ∈ R2.

For λ ∈ C to the right of Σess(Lv), we have that

G22
λ (x, y) =

{
c1(λ)eν1(λ)(x−y) + c2(λ)eν2(λ)(x−y), x > y,

−c3(λ)eν3(λ)(x−y) − c4(λ)eν4(λ)(x−y), x < y,
(3.11)

where

ci(λ) =
−1∏

j 6=i(νi(λ)− νj(λ))
, Re ν1,2(λ) < 0, Re ν3,4(λ) > 0,

and

Dv(λ, νj(λ)) = 0, Dv(λ, ν) = −(1 + ν2)2 + s∗ν + µ− λ.

3.2.3 Outline of approach for obtaining estimates on G12
λ (x, y) for λ ∈ Ω

The component G12
λ (x, y) obeys the following second order inhomogeneous differential equation(
d∂xx + s∗∂x + f ′(Q∗(x))− λ

)
G12
λ (x, y) = −βG22

λ (x, y), ∀x ∈ R. (3.12)

To motivate our approach, let us first note that we would like to express the solution using the

variation of constants formula using the bounded solutions of the homogeneous equation ϕ±(x)

(see Lemma 3.3) as follows,

G12
λ (x, y) = −βϕ+(x)

∫ x

−∞

ϕ−(τ)

Wλ(τ)
G22
λ (τ, y) dτ + βϕ−(x)

∫ ∞
x

ϕ+(τ)

Wλ(τ)
G22
λ (τ, y) dτ.
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However, for such a representation to be valid we would need G22
λ (x, y) to decay faster than e−

s∗
2d
x

so that the second integral would converge. This condition fails exactly as λ enters the weighted

essential spectrum Ση∗
ess(Lv). We overcome this issue by first extracting a leading order description

of G12
λ (x, y) in which terms with insufficient decay can be isolated. Subsequently, the correction

term can be derived using a variation of constants formula.

To begin this process, we define

L∞u :=

{
L+
u = d∂xx + s∗∂x + f ′(0), x > 0,

L−u = d∂xx + s∗∂x + f ′(1), x < 0,

and then decompose

G12
λ (x, y) = G12,∞

λ (x, y) + G̃12
λ (x, y),

where

(L∞u − λ) G12,∞
λ (x, y) = −βG22

λ (x, y).

The remaining term in the decomposition is then defined by

(Lu − λ) G̃12
λ (x, y) = −

(
f ′(Q∗(x)− f∞(x)

)
G12,∞
λ (x, y).

Comparing this equation to (3.12) we see that the exponential decay is stronger here due to the

prefactor (f ′(Q∗(x)) − f∞(x)). We will show that solutions of this equation can be represented

using the variation of constants formula,

G̃12
λ (x, y) = ϕ+(x)

∫ x

−∞

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ − ϕ−(x)

∫ ∞
x

ϕ+(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ, (3.13)

where

h(x) = −
(
f ′(Q∗(x)− f∞(x)

)
, |h(x)| ≤ Ce−ϑ|x|.

The exponential decay rate of h(x) is in fact equal to that of the traveling front. For the sake of

motivation, assume for the moment that y < x with x > 0. Inspection of the second integral in

(3.13) reveals that it includes terms bounded by

C

∫ ∞
x

e−ν
0
+(λ)τe−ϑτeν1(λ)(τ−y) dτ

for which integrability holds if

Re
(
ν1(λ)− ν0

+(λ)
)
< ϑ

which is the familiar condition from the Gap Lemma; see [14, 24] requiring that the negative spectral

gap of the spatial eigenvalues must not exceed the decay rate of the front.
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3.2.4 The asymptotic Green’s function G12,∞
λ (x, y)

Lemma 3.4. There exists constants bj(λ) and hj(λ), j = 1, 2, 3, 4, such that G12,∞
λ (x, y) admits

the following representation

G12,∞
λ (x, y) =



b1(λ, y)eν
0
−(λ)x −

∑2
j=1

β
D0
u(λ,νj(λ))

cj(λ)eνj(λ)(x−y), x > y > 0,

−b2(λ, y)eν
0
−(λ)x − b3(λ, y)eν

0
+(λ)x +

∑4
j=3

β
D0
u(λ,νj(λ))

cj(λ)eνj(λ)(x−y), y > x > 0,

b4(λ, y)eν
1
+(λ)x +

∑4
j=3

β
D1
u(λ,νj(λ))

cj(λ)eνj(λ)(x−y), x < 0 < y,

h1(λ, y)eν
0
−(λ)x − β

∑2
j=1

cj(λ)
D0
u(λ,νj(λ))

eνj(λ)(x−y), y < 0 < x,

−h2(λ, y)eν
1
−(λ)x − h3(λ, y)eν

1
+(λ)x − β

∑2
j=1

cj(λ)
D1
u(λ,νj(λ))

eνj(λ)(x−y), y < x < 0,

h4(λ, y)eν
1
+(λ)x + β

∑4
j=3

cj(λ)
D1
u(λ,νj(λ))

eνj(λ)(x−y), x < y < 0.

The ordinary differential equation defining G12,∞
λ (x, y) is piecewise constant-coefficient and there-

fore explicit solution formulas are available; we present these calculations in Appendix A. We remark

that the dependence of the various constants on y and λ will be important in the subsequent analysis

and we provide formulas for them in (A.1) and (A.2).

Remark 3.5. To obtain temporal bounds for the asymptotic system ∂tu = L∞u u+ βv, the inverse

Laplace transform of the pointwise Green’s function presented in Lemma 3.4 are required. Here

singularities are paramount. Observe that singularities of G12,∞
λ (x, y) arise in several places. First,

the coefficients cj(λ) have singularities at branch points of Dv(λ, ν). We denote the branch point

as λbp
v (together with its complex conjugate) explicit formulas for which are provided in (4.8).

Additional singularities come from resonance poles. These arise from pinched double roots where

ν1,2(λrp) = ν+
0 (λrp) so that D0

u(λrp, ν1,2(λrp)) = 0 (see the formulas for λ
rp−
± from Section 4.2).

Singularities stemming from non-pinched double roots are removable; see Remark A.1.

Also note that the absolute spectrum, aside from contributions at double roots, does not lead to any

singularities in G12,∞
λ (x, y). In the next lemma, we will show that the absolute spectrum is not seen

in the singularities of the the full Green’s function G12
λ (x, y).

Remark 3.6. In a neighborhood of λbp
v , roots of Dv(λ, ν) = 0 have leading order expansions(

ν − νbp
v

)2
= −2∂λDv(λ

bp
v , ν

bp
v )

∂ννDv(λ
bp
v , ν

bp
v )

(
λ− λbp

v

)
.

Let

ζ := −2∂λDv(λ
bp
v , ν

bp
v )

∂ννDv(λ
bp
v , ν

bp
v )

=
−1

6
(
νbp
v

)2
+ 2

,

and note that Re (ζ) > 0 as λbp
v is the rightmost part of Σabs(L+

v ).

3.2.5 Estimates of G12
λ (x, y) of λ ∈ Ω

With formulas for G12,∞
λ (x, y) in hand, we proceed to derive estimates on G̃12

λ (x, y) using

(Lu − λ) G̃12
λ (x, y) = −

(
f ′(Q∗(x)− f∞(x)

)
G12,∞
λ (x, y).
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In the following lemma, we compile estimates for G12
λ (x, y), demonstrating that the terms coming

from G̃12
λ (x, y) are in fact higher order.

Lemma 3.7. For λ ∈ Ω with Im (λ) ≥ 0, there exists functions Hλ(x, y), Iλ,j(x, y) and Jλ,j(x, y),

bounded uniformly in (x, y) such that the pointwise Green’s function G12
λ (x, y) obeys the following

bounds for each of the six arrangements of x, y and 0;

� y < 0 < x

G12
λ (x, y) =

1√
ζ(λ− λbp

v )
eν

0
−(λ)x−ν1

−(λ)yHλ(x, y)

+
2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )

[
eν

0
−(λ)x−νj(λ)yIλ,j(x, y) + eνj(λ)(x−y)Jλ,j(x, y)

]
,

� 0 < y < x

G12
λ (x, y) =

1

(λ− λrp)

√
ζ(λ− λbp

v )
eν

0
−(λ)(x−y)Hλ(x, y)

+
2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )
eνj(λ)(x−y)Jλ,j(x, y),

� x < y < 0

G12
λ (x, y) =

1√
ζ(λ− λbp

v )
eν

1
+(λ)(x−y)Hλ(x, y)

+

2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )
eν

1
+(λ)x−νj(λ)yIλ,j(x, y)

+
4∑
j=3

1√
ζ(λ− λbp

v )
eνj(λ)(x−y)Jλ,j(x, y),

� y < x < 0

G12
λ (x, y) =

1√
ζ(λ− λbp

v )
eν

1
−(λ)(x−y)Hλ(x, y)

+
2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )
eν

1
+(λ)x−νj(λ)yIλ,j(x, y)

+

2∑
j=1

1√
ζ(λ− λbp

v )
eνj(λ)(x−y)Jλ,j(x, y),
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� x < 0 < y

G12
λ (x, y) =

1

(λ− λrp)

√
ζ(λ− λbp

v )
eν

1
+(λ)x−ν0

+(λ)yHλ(x, y)

+

4∑
j=3

1√
ζ(λ− λbp

v )

[
eν

1
+(λ)x−νj(λ)yIλ,j(x, y) + eνj(λ)(x−y)Jλ,j(x, y)

]
,

� 0 < x < y

G12
λ (x, y) =

1

(λ− λrp)

√
ζ(λ− λbp

v )
eν

0
+(λ)(x−y)Hλ(x, y)

4∑
j=3

1√
ζ(λ− λbp

v )

[
eν

0
−(λ)x−νj(λ)yIλ,j(x, y) + eνj(λ)(x−y)Jλ,j(x, y)

]
,

where ζ is defined in Remark 3.6. For Im (λ) < 0, the same estimates hold but with the complex

conjugates of λbp
v and λrp.

We present the proof of this lemma in Appendix B.

3.2.6 Large and intermediate λ estimates for G12
λ (x, y)

We now turn our attention to estimates for G12
λ (x, y) for λ in ΩL and ΩI .

Lemma 3.8. There exists Ml > 0 and δ > 0 such that for any λ satisfying |λ| > Ml and for

|arg(λ)| < π
2 + δ the pointwise Green’s functions admit the following bounds for some η > 0,

∣∣G11
λ (x, y)

∣∣ ≤ C√
|λ|

e−
√
|λ|η|x−y|,

∣∣G22
λ (x, y)

∣∣ ≤ C

|λ|3/4
e−|λ|

1/4η|x−y|,∣∣G12
λ (x, y)

∣∣ ≤ C

|λ|7/4
e−|λ|

1/4η|x−y|.

Proof. The estimate for G11
λ (x, y) was stated in [8] and obtained by rescaling of the spatial variable

when |λ| is large following [33]. A similar argument works for G22
λ (x, y), although we note that since

the linearized operator for v is constant coefficient the expression for G22
λ (x, y) is exact and the

estimate can be obtained directly from (3.11). For G12
λ (x, y) we recall the inhomogenous relation

(Lu − λ)G12
λ (x, y) = −βG22

λ (x, y).

Note that as |λ| becomes large the homogeneous equation has spatial eigenvalues with asymptotics

±
√
λ while the νj(λ) scale as | − λ|1/4. Therefore as the modulus of λ becomes large, the decay of

the solution is dominated by the inhomogeneous terms and the estimate follows.
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Lemma 3.9. Consider ΩI , the region of the complex plane to the right of Σ
− s∗

2d
ess (Lv) with |λ| ≤Ml

and with |arg(λ)| < π
2 + δ. The pointwise Green’s functions obey the following bounds∣∣G11
λ (x, y)

∣∣ ≤ Cω(x)

ω(y)
,
∣∣G22

λ (x, y)
∣∣ ≤ C, ∣∣G12

λ (x, y)
∣∣ ≤ Cω(x)

ω(y)
(3.14)

Proof. The estimate for G11
λ (x, y) again follows as in [8]. The estimate for G22

λ (x, y) holds since

λ-values considered are contained in a compact set to the right of Σess(Lv). Finally, for G12
λ (x, y)

we observe that, since λ lies in a compact set, the definitions of ϕ±(x) can be extended to this set

as we can write the bounded solution satisfying (Lu − λ)G12
λ (x, y) = −βG22

λ (x, y) as

G12
λ (x, y) = −βϕ+(x)

∫ x

−∞

ϕ−(τ)

Wλ(τ)
G22
λ (τ, y) dτ − βϕ−(x)

∫ ∞
x

ϕ+(τ)

Wλ(τ)
G22,∞
λ (τ, y) dτ,

In contrast to the case of λ ∈ Ω, here the set of λ under consideration excludes curves of absolute

spectrum. Thus, the integrals converge. Inspecting formulas for ϕ±(x), we see that ω(x) can be

factored from the solution.

3.3 Estimates on the temporal Green’s function G(t, x, y)

In this section, we derive estimates on the temporal Green’s function as the inverse Laplace Trans-

form of the pointwise Green’s function,

G(t, x, y) =
1

2πi

∫
Γ

eλtGλ(x, y) dλ

for a suitable contour Γ ⊂ C. We recall estimates on G11(t, x, y) from [8].

Lemma 3.10. [8, Prop. 4.1] There exists constants κu > 0, r > 0 and C > 0, such that the

Green’s function G11(t, x, y) satisfies the following estimates.

(i) For |x− y| ≥ Kt or 0 < t < 1, with K sufficiently large,

|G11(t, x, y)| ≤ C 1

t1/2
ω(x)

ω(y)
e−
|x−y|2
κut .

(ii) For |x− y| ≤ Kt and t ≥ 1, with K as above,

|G11(t, x, y)| ≤ Cω(x)

ω(y)

(
1 + |x− y|

t3/2
e−
|x−y|2
κut + e−rt

)
.

The estimates not sharp but sufficient for our purpose here. We next give estimates on G22(t, x, y).

Lemma 3.11. There exists positive constants C, θ, κv, γv and δv such that

|G22(t, x, y)| ≤

{
Ce−θte−γv(x−y), x > y,

Ce−θteδv(x−y), x < y,
t ≥ 1,

|G22(t, x, y)| ≤ C 1

t1/4
e
− |x−y|

4/3

κvt
1/3 , 0 < t < 1.
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Proof. Recall the explicit expression for G22
λ (x, y) in (3.11) valid to the right of Σess(Lv). Note

that Lv is a sectorial operator and generates an analytic semigroup. The steps required to obtain

estimates on the resolvent kernel G22
λ (x, y) mimic those required for estimates of the semigroup;

see [26]. We reproduce those estimates to prepare for the adaptation to estimates on G12
λ (x, y).

Consider the sectorial contour in the upper half plane,

Γ = −θ + eiη`,
π

2
< η < π, ` > 0

Singularities of G22
λ (x, y) occur at double roots of the dispersion relation, none of which are located

in Ω. As a result, this contour can be chosen such that it is contained in the left half of the complex

plane but to the right of Σess(Lv). Along Γ, there are constants γv > 0 and δv > 0 such that

Re(ν1(λ)) < −γv, Re(ν2(λ)) < −γv, Re(ν3(λ)) > δv, Re(ν4(λ)) > δv.

Changing the integration variable to `, we consider the case of x > y and focus on the term in

(3.11) involving ν1(λ) where∣∣∣∣ 1

2πi

∫
Γ

eλtc1(λ)eν1(λ)(x−y) dλ

∣∣∣∣ ≤ Ce−θt
∫ ∞

0
ecos(η)`te−γ1(x−y) d` ≤ C

t
e−θte−γv(x−y),

which yields the desired estimate when t ≥ 1. The case for x < y is analogous.

The estimates for t < 1 are dominated by the large λ behavior and closely resembles the analysis

in [22, Sec. 5.1] for the Cahn-Hilliard equation. We omit details here.

We now turn our attention to G12(t, x, y) with small-time, |x−y|t large, estimates in Proposition 3.12

and with large time, |x−y|t bounded, estimates in Proposition 3.13, our key ingredient.

Proposition 3.12. There exists positive constants K > 0, C > 0 and κ̃ > 0 such that for |x−y| ≥
Kt or 0 < t < 1 we have

|G12(t, x, y)| ≤ C 1

t1/4
ω(x)

ω(y)
e
− |x−y|

4/3

κ̃t1/3 .

Proof. We first with the case |x− y| ≥ Kt, where K sufficiently large which will be chosen in the

proof. Recall the large λ estimate for G12
λ (x, y):∣∣G12

λ (x, y)
∣∣ ≤ C

|λ|7/4
e−|λ|

1/4η|x−y|, ∀(x, y) ∈ R2,

valid for all |λ| > Ml. Possibly restricting to larger values of λ, we may assume∣∣G12
λ (x, y)

∣∣ ≤ C

|λ|7/4
ω(x)

ω(y)
e−|λ|

1/4η|x−y|, ∀(x, y) ∈ R2.

We now consider a contour that consists of two parts:

� a polynomial contour Γp parametrized by

λp(`) = (ρ+ z`)4, ` ∈ R, z := ei
π
4

which lies outside the ball of radius ρ4 > Ml for some ρ > 0 which will be chosen later;
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� a linear contour Γl parametrized by

λl(`) = −δ|`|+ i`, ` ∈ R, for some δ > 0.

We first focus on Γp and write Ip = {`| |λp(`)| ≥ ρ4} ⊂ R. Assume for now that ρ4 > Ml such that

large λ estimates hold. We also note that |λ′p(`)| = 4|λ(`)|3/4 so that∣∣∣∣∣
∫

Γp

eλtG12
λ (x, y) dλ

∣∣∣∣∣ . ω(x)

ω(y)
e−ρη|x−y|

∫
Ip

eRe (λp(`))t d`

|λp(`)|
.

We next use the fact that

Re (λp(`)) = ρ4 − `4 + 2
√

2(ρ3`− ρ`3) ≤ 2ρ4, ` ∈ R,

which ensures the existence of c0 > 0 such that

Re (λp(`))− 3ρ4 ≤ −c0`
4.

As a consequence, ∣∣∣∣∣
∫

Γp

eλtG12
λ (x, y) dλ

∣∣∣∣∣ . ω(x)

ω(y)
e3ρ4t−ρη|x−y|

∫
Ip

e−c0`
4t d`,

where we also used the fact that
1

|λp(`)|
≤ 1

Ml
, ` ∈ Ip.

Notice that the remaining integral can easily be estimated as∫
Ip

e−c0`
4t d` ≤

∫
R

e−c0`
4t d` .

1

t1/4
.

We now choose ρ as

ρ :=
1

L

(
|x− y|
t

)1/3

,

where the constant L > 0 is chosen such that

3ρ4t− ρη|x− y| = |x− y|
3/4

t1/3

(
3

L4
− η

L

)
= − η

2L

|x− y|3/4

t1/3
,

that is, L := (6/η)1/3. Then the condition ρ4 ≥Ml becomes

|x− y|
t

≥M3/4
l L3.

As a consequence, K := M
3/4
l L3 and our assumption that |x− y| ≥ Kt guarantees ρ4 ≥Ml.

Next, for the contour Γl we denote by `∗ > 0 the largest value for which λp(`∗) = λl(`∗). We define

Il := (−∞,−`∗) ∪ (`∗,+∞) such that

Γl = {λl(`) | ` ∈ Il} ,
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and we have for all ` ∈ Il

|λl(`)| = |`|
√

1 + δ2, |λl(`)| ≥ |λl(`∗)| = |λp(`∗)| ≥ ρ4 > Ml.

As a consequence, using the symmetry of Γl, we obtain∣∣∣∣∫
Γl

eλtG12
λ (x, y) dλ

∣∣∣∣ . ω(x)

ω(y)
e−ρη|x−y|

∫
Il

eRe (λl(`))t
d`

|λl(`)|7/4
,

.
ω(x)

ω(y)
e
− η
L
|x−y|4/3

t1/3

∫ +∞

`∗

e−δ`t
d`

`

.
ω(x)

ω(y)
e
− η
L
|x−y|4/3

t1/3 e−δ`∗t.

Finally, combining our estimates along Γp and Γl, we have proved that for all |x− y| ≥ Kt,

|G12(t, x, y)| ≤ C 1

t1/4
ω(x)

ω(y)
e
− η

2L
|x−y|4/3

κ̃t1/3 .

We now turn our attention to the small time estimate where 0 < t < 1. We first remark that if

|x − y| ≥ Kt then the previous pointwise bound holds, and we are done. As a consequence, from

now on we assume that 0 < t < 1 and |x− y| < Kt. In that case, we consider a contour composed

of two parts:

� a portion of a circle Γc of radius R > Ml parametrized by

λc(θ) = Reiθ, θ ∈ [−θ∗, θ∗], for some π/2 < θ∗ < π/2 + ε with ε > 0;

� a linear contour Γl parametrized by

λl(`) = −δ|`|+ i`, ` ∈ R, for some δ > 0.

Note that both contours intersect at λ∗ and λ∗ with

λ∗ = Reiθ∗ = −δ`∗ + i`∗, `∗ =
√

1 + δ2/R.

Along the contour Γc, we have that∣∣∣∣∫
Γc

eλtG12
λ (x, y) dλ

∣∣∣∣ . ω(x)

ω(y)
e−Rη|x−y|

∫
Γc

eRe (λ)t dλ

|λ|7/4
.

As 0 < t < 1, the above integral is bounded by some fixed constant which depends on R. On the

other hand, we have that |x− y| < Kt so that

Rη

K1/3

|x− y|1/3

t1/3
|x− y| < Rη|x− y|,

and ∣∣∣∣∫
Γc

eλtG12
λ (x, y) dλ

∣∣∣∣ . ω(x)

ω(y)
e
− Rη

K1/3
|x−y|4/3

t1/3 ≤ 1

t1/4
ω(x)

ω(y)
e
− Rη

K1/3
|x−y|4/3

t1/3 .
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Figure 6: Left: The contours Γp and Γl used in the proof of Proposition 3.12 in the regime |x − y| ≥ Kt.

Right: Contours used in the proof of Proposition 3.13 in the regime |x− y| ≤ Kt and t ≥ 1.

Along Γl, we obtain a slightly better estimate which can be subsumed into the previous one.

We finally note that

K1/3

R
=
M

1/4
l L

R
<

L

M
3/4
l

< 2L,

provided that Ml is large enough and so we let κ̃ := 2L/η. This concludes the proof of the

proposition.

We now turn our attention to the crucial case |x−y|t ≤ K, where we decompose the Green’s function

into a part that is well behaved in the weighted space and one induced by the inhomogenous

coupling with weak spatial but strong temporal decay.

Proposition 3.13. Let K be as in Proposition 3.12. There exists constants C, κ, θ > 0 such that

for t > 1 and |x− y| ≤ Kt, the temporal Green’s function G12(t, x, y) has the decomposition

G12(t, x, y) = G12
ω (t, x, y) + G̃12(t, x, y)

with estimates ∣∣G12
ω (t, x, y)

∣∣ ≤ Cω(x)

ω(y)

(
1 + |x− y|

t3/2
e−
|x−y|2
κt + e−θt

)
,

∣∣∣G̃12(t, x, y)
∣∣∣ ≤ { Ce−θte−γv(x−y), x > y,

Ce−θteδv(x−y), x < y.

Proof. Recall that G12(t, x, y) is obtained via the following inverse Laplace transform formula

G12(t, x, y) =
1

2πi

∫
Γ

eλtG12
λ (x, y) dλ, (3.15)

for some well-chosen contour Γ in the complex plane that may depend on the relative position

between x and y; see Figure 6 for a typical contour. Our contour integral will be decomposed using
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� large λ estimates: this corresponds to the part of λ ∈ Γ for which λ ∈ ΩL where we will use

our large λ estimate from Lemma 3.8;

� intermediate λ estimates: this corresponds to the part of λ ∈ Γ for which λ ∈ ΩI where we

will use our intermediate λ estimate from Lemma 3.9;

� small λ estimates: this corresponds to the part of λ ∈ Γ for which λ ∈ Ω where we will use

our small λ estimate from Lemma 3.7.

We first decompose Γ = Γout∪ΓΩ, with Γ ⊂ Ω and Γout ⊂ ΩI ∪ΩL. For constants δ0,1 > 0, `l,i > 0,

specified later, we decompose further Γout = Γl ∪ Γi with

Γl := {λ(`) = −δ0 − δ1|`|+ i` | |`| > `l} and Γi := {λ(`) = −δ0 − δ1|`|+ i` | `i < |`| < `l} .

We also define Γi,l := Γ+
i,l ∪ Γ−i,l with Γ±i,j located in Im (λ) > 0 and Im (λ) < 0, respectively. The

contour ΓΩ which joins the two points λ(`i) and λ(`i) will be chosen later in the proof.

Now decomposing (3.15),

G12(t, x, y) =
1

2πi

∫
ΓΩ

eλtG12
λ (x, y) dλ+

1

2πi

∫
Γout

eλtG12
λ (x, y) dλ.

we can easily estimate the second integral using Lemma 3.8 and Lemma 3.9 as follows.

Integral along Γl. Along Γl, we use the large λ estimate

∣∣G12
λ (x, y)

∣∣ ≤ C

|λ|7/4
ω(x)

ω(y)
e−|λ|

1/4η|x−y|, ∀(x, y) ∈ R2.

and obtain, in a similar fashion as in the proof of Proposition 3.12,∣∣∣∣ 1

2πi

∫
Γl

eλtG12
λ (x, y) dλ

∣∣∣∣ ≤ C0
ω(x)

ω(y)
e−M

1/4
l η|x−y|e−δ0t

∫ ∞
`l

e−δ1`t d`,

where we used the fact that for λ(`) ∈ ΩL we have that

1

|λ(`)|7/4
≤ C1,

for some constant C1 > 0. As a consequence, we obtain an estimate of the form∣∣∣∣ 1

2πi

∫
Γl

eλtG12
λ (x, y) dλ

∣∣∣∣ . ω(x)

ω(y)
e−η̃|x−y|e−θt,

with positive constants η̃ > 0 and θ > 0.

Integral along Γi. Along Γi we use the intermediate λ estimate

∣∣G12
λ (x, y)

∣∣ ≤ Cω(x)

ω(y)
,

to find ∣∣∣∣ 1

2πi

∫
Γi

eλtG12
λ (x, y) dλ

∣∣∣∣ ≤ C0
ω(x)

ω(y)
e−δ0t

∫ `l

`i

e−δ1`t d` .
ω(x)

ω(y)
e−θt.
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Summarizing, we have obtained the estimate∣∣∣∣ 1

2πi

∫
Γout

eλtG12
λ (x, y) dλ

∣∣∣∣ . ω(x)

ω(y)
e−θt.

Integral along ΓΩ. In this case, we distinguish several cases depending on the location of x and

y, detailing only one and outlining the differences for the other cases.

Case 1: y < 0 < x. From Lemma 3.7, we have the decomposition of G12
λ (x, y), for λ ∈ Ω,

G12
λ (x, y) =

1√
ζ(λ− λbp

v )
eν

0
−(λ)x−ν1

−(λ)yHλ(x, y)

+

2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )

[
eν

0
−(λ)x−νj(λ)yIλ,j(x, y) + eνj(λ)(x−y)Jλ,j(x, y)

]
.

Within the region Ω, we use different contours when handling the first and second terms in the

expansion involving Hλ(x, y) and Iλ,j(x, y) versus handling the third term involving Jλ,j(x, y). We

first treat the integral involving Hλ(x, y). We decompose ΓΩ into

� a parabolic contour Γp near the origin depending on ρ > 0 to be specified later,

Γp =

{
λ ∈ C |

√
λ(k)

d
= ρ+ ik for − kp ≤ k ≤ kp

}
⊂ Ω.

� two straight, symmetric contours Γ±s , continuations of the rays coming from Γout,

Γs := Γ+
s ∪ Γ−s = {λ(`) = −δ0 − δ1|`|+ i` | `p < |`| < `i} .

The constants kp > 0 and `p > 0 are defined according to

kp = δ1ρ+

√
(δ1ρ)2 + ρ2 +

δ0

d
and `p = 2dρkp,

such that

d(ρ2 − k2
p) + 2dρkpi = −δ0 − δ1`p + i`p.

Along the parabolic contour, we note that

1√
ζ(λ− λbp

v )
eν

0
−(λ)x−ν1

−(λ)yHλ(x, y) = e
− s∗

2d
(x−y)−

√
λ
d

(x−y)
e

(√
s2∗−4d(f ′(1)−λ)

2d
−
√
λ
d

)
y Hλ(x, y)√

ζ(λ− λbp
v )

,

and we select

ρ =
|x− y|
Lt

,

with L > d sufficiently large so that the parabolic contour lies within Ω and the region for which

Re

(√
s2
∗ − 4d(f ′(1)− λ)

2d
−
√
λ

d

)
> 0.
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As a consequence, along Γp, the function

H̃λ(x, y) := e

(√
s2∗−4d(f ′(1)−λ)

2d
−
√
λ
d

)
y Hλ(x, y)√

ζ(λ− λbp
v )

,

is uniformly bounded in (x, y) and analytic in
√
λ, and we have the identity

1

2πi

∫
Γp

eλt
1√

ζ(λ− λbp
v )

eν
0
−(λ)x−ν1

−(λ)yHλ(x, y) dλ =
1

2πi
e−

s∗
2d

(x−y)

∫
Γp

eλte
−
√
λ
d

(x−y)
H̃λ(x, y) dλ.

From there, we proceed along similar lines as in [8]. We have that

dλ(k) = 2di (ρ+ ik) dk,
λ(k)

d
= ρ2 − k2 + 2ρik,

such that∫
Γp

eλte
−
√
λ
d

(x−y)
H̃λ(x, y) dλ = 2diedρ

2t−ρ(x−y)

∫ kp

−kp
e−dk

2te2dρikt−ik(x−y)H̃λ(k)(x, y)(ρ+ ik) dk.

Next, we separate e2dρikt−ik(x−y)H̃λ(k)(x, y) into its real and imaginary parts as

e2dρikt−ik(x−y)H̃λ(k)(x, y) := Hr(x, y, k) + iHi(x, y, k),

and note that Hr(x, y, k) is even in k while Hi(x, y, k) is odd in k. As a consequence, we obtain∫
Γp

eλte
−
√
λ
d

(x−y)
H̃λ(x, y) dλ = 2di

∫ kp

−kp
e−dk

2t (ρHr(x, y, k)− kHi(x, y, k)) dk.

Boundedness of Hr(x, y, k) implies that∣∣∣∣∣
∫ kp

−kp
e−dk

2tHr(x, y, k) dk

∣∣∣∣∣ ≤ C√
t
,

while oddness of Hi(x, y, k) leads to∣∣∣∣∣
∫ kp

−kp
e−dk

2tkHi(x, y, k) dk

∣∣∣∣∣ ≤ C

t3/2
.

Combining all the above estimates and recalling that ρ = |x−y|
Lt , we arrive at∣∣∣∣∣

∫
Γp

eλte
−
√
λ
d

(x−y)
H̃λ(x, y) dλ

∣∣∣∣∣ . 1 + |x− y|
t3/2

e−
|x−y|2
κt ,

with κ = max
(

L2

L−d ,
L2

2dδ2
1

)
> 0. To complete this part of the analysis, we need to obtain estimates

along the remaining contour Γs. For this, we note that∣∣∣∣∫
Γs

eλte
−
√
λ
d

(x−y)
H̃λ(x, y) dλ

∣∣∣∣ ≤ Ce−δ0t
∫ `i

`p

e−δ1`te
−Re

(√
λ(`)
d

)
(x−y)

d` ≤ Ce−δ0t
e−δ1`pt

t
.
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Next, note that `p = 2dρkp > 2dδ1ρ
2 such that∣∣∣∣∫

Γs

eλte
−
√
λ
d

(x−y)
H̃λ(x, y) dλ

∣∣∣∣ ≤ C

t3/2
e−
|x−y|2
κt .

In summary, we have have shown that∣∣∣∣∣∣ 1

2πi

∫
ΓΩ

eλt
1√

ζ(λ− λbp
v )

eν
0
−(λ)x−ν1

−(λ)yHλ(x, y) dλ

∣∣∣∣∣∣ . 1 + |x− y|
t3/2

e−
s∗
2d

(x−y)e−
|x−y|2
κt .

We next address the integral term involving Iλ,j(x, y) using the same contour ΓΩ = Γs ∪ Γp. Since

Re (λrp) < 0, we can choose δ0,1 small enough and L large such that the contour ΓΩ is located to

the right of the resonance pole λrp and its complex conjugate. Along the parabolic contour,

eν
0
−(λ)x−νj(λ)y = e

− s∗
2d
x+γvy−

√
λ
d

(x−y)
e

(
−γv−νj(λ)−

√
λ
d

)
y
, j = 1, 2,

and we choose ρ = |x− y|/(Lt) with L > d sufficiently large such that Γp ⊂ Ω and

Γp ⊂
{
λ
∣∣∣Re

(
−γv − νj(λ)−

√
λ/d

)
> 0, j = 1, 2

}
,

which is always possible with our definition of γv > 0 in (3.8). As a consequence, along Γp,

Ĩλ,j(x, y) := e

(
−γv−νj(λ)−

√
λ
d

)
y Iλ,j(x, y)

(λ− λrp)

√
ζ(λ− λbp

v )
, j = 1, 2,

is uniformly bounded in (x, y) and analytic in
√
λ. An analysis analogous to the case of Hλ(x, y),

gives∣∣∣∣∣∣ 1

2πi

∫
ΓΩ

eλt
2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )
eν

0
−(λ)x−νj(λ)yIλ,j(x, y) dλ

∣∣∣∣∣∣ . 1 + |x− y|
t3/2

e−
s∗
2d
x+γvye−

|x−y|2
κt .

To complete this case, we address the term involving Jλ,j(x, y). Since there is no singularity at the

origin and we may choose the contour

ΓΩ = {λ(`) = −δ0 − δ1|`|+ i` | 0 ≤ |`| < `i} ,

with δ0,1 > 0 small such that ΓΩ is to the right of potential resonance poles. Next, notice that∣∣∣∣∣∣ 1

(λ− λrp)

√
ζ(λ− λbp

v )
eνj(λ)(x−y)Jλ,j(x, y)

∣∣∣∣∣∣ ≤ Ce−γv(x−y), j = 1, 2,

for all λ ∈ ΓΩ uniformly in (x, y). Altogether, this yields∣∣∣∣∣∣ 1

2πi

∫
ΓΩ

eλt
2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )
eνj(λ)(x−y)Jλ,j(x, y) dλ

∣∣∣∣∣∣ . e−θte−γv(x−y).

28



Returning to the definition of G12(t, x, y) we established that the decomposition

G12(t, x, y) = G12
ω (t, x, y) + G̃12(t, x, y), G12

ω (t, x, y) := G12(t, x, y)− G̃12(t, x, y),

with

G̃12(t, x, y) :=
1

2πi

∫
ΓΩ

eλt
2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )
eνj(λ)(x−y)Jλ,j(x, y) dλ,

gives estimates

∣∣G12
ω (t, x, y)

∣∣ ≤ Ce−
s∗
2d
x−δy

(
1 + |x− y|

t3/2
e−
|x−y|2
κt + e−θt

)
, and

∣∣∣G̃12(t, x, y)
∣∣∣ ≤ Ce−θte−γv(x−y).

The remaining cases can be handled in a similar fashion.

Case 2: 0 < y < x. Estimates for the term involving Hλ(x, y) are obtained as in Case 1. Note

again that the resonance poles occurring in this term are of no concern since all contour integrations

can take place to the right of them. Treating the second term involving Jλ,j(x, y), we follow the

reasoning in above. Since y > 0, we find

∣∣G12
ω (t, x, y)

∣∣ ≤ Ce−
s∗
2d

(x−y)

(
1 + |x− y|

t3/2
e−
|x−y|2
κt + e−θt

)
, and

∣∣∣G̃12(t, x, y)
∣∣∣ ≤ Ce−θte−γv(x−y).

Case 3: 0 < x < y. The terms involving Hλ(x, y) and Iλ,j(x, y) are analogous to Case 2. For

the term involving Jλ,j(x, y) note the lack of a resonance pole. Therefore, the analysis is similar to

that of Lemma 3.11 for the case x < y. We thus obtain

∣∣G12
ω (t, x, y)

∣∣ ≤ Ce−
s∗
2d

(x−y)

(
1 + |x− y|

t3/2
e−
|x−y|2
κt + e−θt

)
,

together with ∣∣∣G̃12(t, x, y)
∣∣∣ ≤ Ce−θteδv(x−y).

We now turn our attention to the cases where x < 0.

Case 4: x < y < 0. Estimates for the term involving Hλ(x, y) can be obtained by writing

eν
1
+(λ)(x−y) = eδ(x−y)e

√
λ
d

(x−y)
e

(
ν1
+(λ)−δ−

√
λ
d

)
(x−y)

such that along a parabolic contour near the origin one can ensure that

Re

(
ν1

+(λ)− δ −
√
λ

d

)
> 0,

which is always possible since δ > 0 can be chosen arbitrarily small. One finds∣∣∣∣∣∣ 1

2πi

∫
ΓΩ

eλt
1√

ζ(λ− λbp
v )

eν
1
+(λ)(x−y)Hλ(x, y) dλ

∣∣∣∣∣∣ . 1 + |x− y|
t3/2

eδ(x−y)e−
|x−y|2
κt .
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The contribution from Iλ,j(x, y) is handled similarly and we obtain∣∣∣∣∣∣ 1

2πi

∫
ΓΩ

eλt
2∑
j=1

1

(λ− λrp)

√
ζ(λ− λbp

v )
eν

1
+(λ)x−νj(λ)yIλ,j(x, y) dλ

∣∣∣∣∣∣ . 1 + |x− y|
t3/2

eδx+γvye−
|x−y|2
κt .

Finally, the last contribution involving Jλ,j(x, y) is treated as in the proof of Lemma 3.11 to obtain∣∣∣∣∣∣ 1

2πi

∫
ΓΩ

eλt
4∑
j=3

1√
ζ(λ− λbp

v )
eνj(λ)(x−y)Jλ,j(x, y) dλ

∣∣∣∣∣∣ . e−θteδv(x−y).

Case 5: y < x < 0. This case is almost identical to Case 4. We only note that the contribution

from Jλ,j(x, y) gives∣∣∣∣∣∣ 1

2πi

∫
ΓΩ

eλt
2∑
j=1

1√
ζ(λ− λbp

v )
eνj(λ)(x−y)Jλ,j(x, y) dλ

∣∣∣∣∣∣ . e−θte−γv(x−y).

Case 6: x < 0 < y. We only comment on the contribution from Hλ(x, y) as the terms involving

Iλ,j(x, y) and Jλ,j(x, y) do not present new difficulties. For Hλ(x, y), we note that

eν
1
+(λ)x−ν0

+(λ)y = eδx+ s∗
2d
ye

√
λ
d

(x−y)
e

(
ν1
+(λ)−δ−

√
λ
d

)
x
,

and that, along a parabolic contour near the origin, one can always ensure that

Re

(
ν1

+(λ)− δ −
√
λ

d

)
> 0,

which is always possible since δ > 0 is arbitrarily small. Concluding the proof, one finds∣∣∣∣∣∣ 1

2πi

∫
ΓΩ

eλt
1

(λ− λrp)

√
ζ(λ− λbp

v )
eν

1
+(λ)x−ν0

+(λ)yHλ(x, y) dλ

∣∣∣∣∣∣ . 1 + |x− y|
t3/2

eδx+ s∗
2d
ye−

|x−y|2
κt .

3.4 Nonlinear stability

We are now ready to state precisely and prove our main result on nonlinear stability, Theorem 1.

Consider the smooth and bounded weight function wv > 0

wv(x) :=


e−γvx, x > 1,

1, x = 0,

eδvx, x < −1,

and recall the definition of ω from (1.3) with δ > 0 small enough such that 0 < δ < min
(
ν1

+(0), 2δv
)
.
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Theorem 3 (Main result). For (d, α, µ) ∈ Π as in Definition 3.1 and that β 6= 0, consider (1.1)

with initial condition (u(0, ·), v(0, ·)) = (Q∗(·), 0) + (P0(·), v0(·)). There exist C, ε, θ > 0 such that,

if (P0, v0) satisfies∥∥∥∥P0

ω

∥∥∥∥
∞

+
∥∥∥v0

ω

∥∥∥
∞

+

∫
R

(1 + |y|)
(
|v0(y)|
ω(y)

+
|v0(y)|
ω(y)

)
dy +

∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

< ε, (3.16)

then the solution (u(t, x), v(t, x)) is defined for all time and the critical pulled front is nonlinearly

stable in the sense that the perturbation P (t, x) := u(t, x)−Q∗(x) admits the decomposition

P (t, x) = E(t, x) + ω(x)p(t, x), x ∈ R,

such that for all t ≥ 1,

sup
x∈R

|E(t, x)|
ωv(x)

≤ Ce−θt
(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
,

sup
x∈R

|p(t, x)|
1 + |x|

≤ Cε

(1 + t)3/2
,

sup
x∈R

|v(t, x)|
ωv(x)

≤ Ce−θt
∥∥∥∥ v0

ωv

∥∥∥∥
∞
.

On the other hand, there exists ε0 > 0 such that for any ε > 0 and initial conditions (P0, v0)

satisfying (3.16) with this choice of ε arbitrarily small we have for some t > 0,

sup
x∈R

|P (t, x)|
ω(x)(1 + |x|)

≥ ε,

that is, the decay in p does not hold for E/ω.

The remainder of this section consists of the proof of this theorem. We introduce the decomposition

in Section 3.4.1, and carry out the nonlinear iteration scheme to prove the nonlinear estimates on E

and p in Section 3.4.2. We conclude in Section 3.4.3 demonstrating that stability in a fixed weight

cannot be achieved.

3.4.1 Identification of E(t, x) and h(t, x)

Following the outline of the proof in Section 3.1, we wish to separate terms whose spatial decay

is too weak to yield temporal decay in the exponentially weighted space required for the stability

proof of the front, but who nevertheless decay exponentially in time. For t > 0 and x ∈ R, we set

H(t, x) :=

∫
R
G12(t, x, y)v0(y) dy. (3.17)

We first note that for 0 < t ≤ 1, Proposition 3.12 shows that∣∣∣∣∫
R
G12(t, x, y)v0(y) dy

∣∣∣∣ ≤ Cω(x)
∥∥∥v0

ω

∥∥∥
∞
.

We then therefore find short-time bounds on h(t, x) := H(t, x)/ω(x), x ∈ R.
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Lemma 3.14. There exists C > 0 such that for all 0 < t ≤ 1 we have

‖h(t, ·)‖∞ ≤ C
∥∥∥v0

ω

∥∥∥
∞
, x ∈ R.

For t > 1, we decompose

H(t, x) =

∫ x−Kt

−∞
G12(t, x, y)v0(y) dy +

∫ x+Kt

x−Kt
G12(t, x, y)v0(y) dy +

∫ +∞

x+Kt
G12(t, x, y)v0(y) dy,

(3.18)

and further split the second integral using Proposition 3.13,∫ x+Kt

x−Kt
G12(t, x, y)v0(y) dy =

∫ x+Kt

x−Kt
G12
ω (t, x, y)v0(y) dy +

∫ x+Kt

x−Kt
G̃12(t, x, y)v0(y) dy.

The next result gives bounds on the second term E(t, x) in this splitting,

E(t, x) :=

∫ x+Kt

x−Kt
G̃12(t, x, y)v0(y) dy, x ∈ R.

Lemma 3.15. There exists C > 0 such that for all t ≥ 1 and all x ∈ R we have

|E(t, x)| ≤ Ce−θtωv(x)

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
. (3.19)

Proof. We use the estimate on G̃12(t, x, y) from Proposition 3.13, valid for t ≥ 1 and |x− y| ≤ Kt∣∣∣∣∫ x+Kt

x−Kt
G̃12(t, x, y)v0(y) dy

∣∣∣∣ ≤ ∫ x

x−Kt

∣∣∣G̃12(t, x, y)
∣∣∣ |v0(y)| dy +

∫ x+Kt

x

∣∣∣G̃12(t, x, y)
∣∣∣ |v0(y)| dy

≤ Ce−θt
(

e−γvx
∫ x

x−Kt
eγvy |v0(y)| dy + eδvx

∫ x+Kt

x
e−δvy |v0(y)| dy

)
.

For x ≥ 0, the second integral is bounded by∫ x+Kt

x
e−δvy |v0(y)| dy ≤

∫ +∞

x
e−δvy |v0(y)| dy ≤ Ce−(δv+γv)x

∥∥∥∥ v0

ωv

∥∥∥∥
∞
.

On the other hand, the first integral can be evaluated as∫ x

x−Kt
eγvy |v0(y)| dy ≤

∫ 0

−∞
e(γv+δv)ye−δvy |v0(y)| dy +

∫ ∞
0

eγvy |v0(y)| dy

≤ C
(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
.

Similar arguments for x ≤ 0 yield∣∣∣∣∫ x+Kt

x−Kt
G̃12(t, x, y)v0(y) dy

∣∣∣∣ ≤ Ce−θteδvx
(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
,

which concludes the proof.
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Returning to the definition of H(t, x) in (3.17), we now define

h(t, x) :=
1

ω(x)

(∫ x−Kt

−∞
G12(t, x, y)v0(y) dy +

∫ x+Kt

x−Kt
G12
ω (t, x, y)v0(y) dy

+

∫ +∞

x+Kt
G12(t, x, y)v0(y) dy

)
, (3.20)

for all x ∈ R and t ≥ 1. We then have the following estimates on h(t, x).

Lemma 3.16. There exists C > 0 such that for all t ≥ 1 and x ∈ R

|h(t, x)| ≤ C 1 + |x|
(1 + t)3/2

∫
R

(1 + |y|) |v0(y)|
ω(y)

dy. (3.21)

Proof. The first and third integral in (3.20) are estimated using Proposition 3.12 such that

1

ω(x)

∣∣∣∣∫ x−Kt

−∞
G12(t, x, y)v0(y) dy

∣∣∣∣ ≤ C

t1/4

∫ x−Kt

−∞
e
− |x−y|

4/3

κ̃t1/3
|v0(y)|
ω(y)

dy ≤ C

t1/4
e−

K4/3

κ̃
t
∥∥∥v0

ω

∥∥∥
1
,

1

ω(x)

∣∣∣∣∫ +∞

x+Kt
G12(t, x, y)v0(y) dy

∣∣∣∣ ≤ C

t1/4

∫ +∞

x+Kt
e
− |x−y|

4/3

κ̃t1/3
|v0(y)|
ω(y)

dy ≤ C

t1/4
e−

K4/3

κ̃
t
∥∥∥v0

ω

∥∥∥
1
,

where we noticed that e
− |x−y|

4/3

κ̃t1/3 is maximized at the boundary. Estimates on the second integral

in (3.20) use Proposition 3.13 such that

1

ω(x)

∣∣∣∣∫ x+Kt

x−Kt
G12
ω (t, x, y)v0(y) dy

∣∣∣∣ ≤ Ce−θt
∥∥∥v0

ω

∥∥∥
1

+ C
1 + |x|

(1 + t)3/2

∫
R

(1 + |y|) |v0(y)|
ω(y)

dy,

where we used 1 + |x − y| ≤ 1 + |x| + |y| + |x||y| and sent the limits of integration to infinity.

Combining the above estimates gives (3.21).

We may impose that E(t, x) = 0 for all 0 < t ≤ 1 and x ∈ R such that we have

H(t, x) = ω(x)h(t, x) + E(t, x), t > 0, x ∈ R.

3.4.2 Nonlinear decay estimates

We recall from the discussion in Section 3.1 that we look for solutions of (1.1) that can be decom-

posed (u(t, x), v(t, x)) = (Q∗(x) + P (t, x), v(t, x)) where P (t, x) stands for a perturbation around

the critical front such that{
∂tP = LuP + βv +N (P ),

∂tv = Lvv,
t > 0, x ∈ R. (3.22)

We introduce another smooth bounded weight functions ρv > 0 through

ρv(x) :=


e−

s∗
2d
x, x > 1,

1, x = 0,

eδvx, x < −1,
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For brevity, we write Lqρ(R) :=
{
u ∈ Lqloc(R) | uρ ∈ L

q(R)
}

for any 1 ≤ q ≤ +∞ for any given

positive function ρ > 0. The Cauchy problem associated to (3.22) with initial condition (P0, v0)

such that P0 ∈ L1
ω(R) ∩ L∞ω (R) and v0 ∈ L1

ρv(R) ∩ L∞ρv(R) with∫
R
|y| |P0(y)|

ω(y)
+ |y| |v0(y)|

ω(y)
dy < +∞, (3.23)

is locally well-posed in L∞ω (R) × L∞ρv(R). We also remark that if v0 ∈ L1
ρv(R) ∩ L∞ρv(R) then it

actually belongs to both L1
ωv(R)∩L∞ωv(R) and L1

ω(R)∩L∞ω (R). As a consequence, we let T∗ > 0 be

the maximal time of existence of a solution (P, v) ∈ L∞ω (R)×L∞ρv(R) with initial condition (P0, v0)

such that P0 ∈ L1
ω(R) ∩ L∞ω (R) and v0 ∈ L1

ωv(R) ∩ L∞ρv(R) further satisfying (3.23). Solutions of

this nonlinear system with initial condition (P0, v0) can be expressed using Duhamel’s formula,

P (t, x) =

∫
R
G11(t, x, y)P0(y) dy +

∫
R
G12(t, x, y)v0(y) dy +

∫ t

0

∫
R
G11(t− s, x, y)N (P )(s, y) dy ds,

together with

v(t, x) =

∫
R
G22(t, x, y)v0(y) dy.

Actually, one can easily check that the solution v is globally well-posed in L∞ωv(R) and a direct

application of Lemma 3.11 gives us the global in time bound∥∥∥∥v(t)

ωv

∥∥∥∥
∞
≤ Ce−θt

∥∥∥∥ v0

ωv

∥∥∥∥
∞
, t > 0. (3.24)

We now concentrate on P (t, x). From the previous section, we know that

H(t, x) =

∫
R
G12(t, x, y)v0(y) dy = ω(x)h(t, x) + E(t, x), t > 0, x ∈ R.

It then follows that

P (t, x)− E(t, x) =

∫
R
G11(t, x, y)P0(y) dy + ω(x)h(t, x) +

∫ t

0

∫
R
G11(t− s, x, y)N (P )(s, y) dy ds,

and so we define P (t, x)− E(t, x) = ω(x)p(t, x) which solves

p(t, x) =

∫
R
G̃11(t, x, y)p0(y) dy+h(t, x)+

∫ t

0

∫
R
G̃11(t−s, x, y)ω(y)−1N (ωp+E)(s, y) dy ds, (3.25)

with p(0, x) = p0(x) = P0(x)
ω(x) as we have set E(t, x) = 0 for 0 ≤ t ≤ 1. For t ∈ [0, T∗), we define

Θ(t) := sup
0≤s≤t

sup
x∈R

(1 + s)3/2 |p(s, x)|
1 + |x|

,

well-defined since p ∈ L∞(R). We now bound all terms in (3.25) for 0 < t ≤ 1 and for t > 1.
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Short time bound 0 < t ≤ 1. For the short time bound, we use Proposition 3.10 to obtain∣∣∣∣∫
R
G̃11(t, x, y)p0(y) dy

∣∣∣∣ ≤ C‖p0‖∞ = C

∥∥∥∥P0

ω

∥∥∥∥
∞
,

and Lemma 3.14 to obtain

|h(t, x)| ≤ C
∥∥∥v0

ω

∥∥∥
∞
, x ∈ R.

For the last term in (3.25), we recall that

1

ω
N (ωp+ E) = −αE

2

ω
(3Q∗ + E)− 3α (2Q∗ + E) pE − 3α (Q∗ + E)ωp2 − αω2p3,

and that E(t, x) = 0 for all 0 < t ≤ 1 such that for all 0 ≤ s ≤ t ≤ 1,∣∣∣∣ 1

ω(y)
N (ω(y)p(s, y) + E(s, y))

∣∣∣∣ ≤ C (Θ(t)2(1 + |y|)2ω(y) + Θ(t)3(1 + |y|)3ω(y)2
)
, y ∈ R.

As a consequence, we have∣∣∣∣∫
R
G̃11(t− s, x, y)ω(y)−1N (ωp+ E)(s, y) dy

∣∣∣∣ ≤ C

(t− s)1/2
Θ(t)2

∫
R

e
− |x−y|

2

κu(t−s) (1 + |y|)2ω(y) dy

+
C

(t− s)1/2
Θ(t)3

∫
R

e
− |x−y|

2

κu(t−s) (1 + |y|)3ω(y)2 dy,

which finally gives

Θ(t) ≤ C
(∥∥∥∥P0

ω

∥∥∥∥
∞

+
∥∥∥v0

ω

∥∥∥
∞

)
+ CΘ(t)2

∫
R

(1 + |y|)2ω(y) dy + CΘ(t)3

∫
R

(1 + |y|)3ω(y)2 dy.

Large time bound t > 1. For the large time bound we use Proposition 3.10 to obtain∣∣∣∣∫
R
G̃11(t, x, y)p0(y) dy

∣∣∣∣ ≤ C 1 + |x|
(1 + t)3/2

∫
R

(1 + |y|) |P0(y)|
ω(y)

dy,

and Lemma 3.16 then gives

|h(t, x)| ≤ C 1 + |x|
(1 + t)3/2

∫
R

(1 + |y|) |v0(y)|
ω(y)

dy.

To derive bounds for the last term in (3.25), we use estimate (3.19) from Lemma 3.15

|E(t, x)| ≤ Ce−θtωv(x)

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
,

and find∣∣∣∣∫
R
G̃11(t− s, x, y)Q∗(y)

|E(s, y)|2

ω(y)
dy

∣∣∣∣ . (1 + |x|)e−2θs

(1 + t− s)3/2

(∫
R

(1 + |y|)Q∗(y)
ω2
v(y)

ω(y)
dy

)
·
(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)2

,
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∣∣∣∣∫
R
G̃11(t− s, x, y)

|E(s, y)|3

ω(y)
dy

∣∣∣∣ . (1 + |x|)e−3θs

(1 + t− s)3/2

(∫
R

(1 + |y|)ω
3
v(y)

ω(y)
dy

)(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)3

,

where ∫
R

(1 + |y|)Q∗(y)
ω2
v(y)

ω(y)
dy <∞ and

∫
R

(1 + |y|)ω
3
v(y)

ω(y)
dy <∞,

thanks to our assumption that s∗
2d < 3γv and the fact that the critical front satisfies Q∗(x)

ω(x) ∼ x as

x→ +∞. As a consequence, we obtain the following bounds∣∣∣∣∫ t

0

∫
R
G̃11(t− s, x, y)Q∗(y)

|E(s, y)|2

ω(y)
dy ds

∣∣∣∣ . 1 + |x|
(1 + t)3/2

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)2

,∣∣∣∣∫ t

0

∫
R
G̃11(t− s, x, y)

|E(s, y)|3

ω(y)
dy ds

∣∣∣∣ . 1 + |x|
(1 + t)3/2

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)3

.

We now treat the term −3α(Q∗ + E)pE in the nonlinearity. Using the fact that both Q∗ and E

are bounded one only needs estimates for pE. We have∣∣∣∣∫
R
G̃11(t− s, x, y)|p(s, y)|E(s, y)|dy

∣∣∣∣ ≤ CΘ(t)
(1 + |x|)

(∫
R(1 + |y|)ωv(y) dy

)
(1 + t− s)3/2(1 + s)3/2

e−θs

·
(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
,

such that∣∣∣∣∫ t

0

∫
R
G̃11(t− s, x, y)|p(s, y)|E(s, y)|dy ds

∣∣∣∣ . 1 + |x|
(1 + t)3/2

Θ(t)

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
.

Finally nonlinear terms in p are handled similarly,∣∣∣∣∫
R
G̃11(t− s, x, y)ω(y)|p(s, y)|2 dy

∣∣∣∣ ≤ CΘ(t)2 1 + |x|
(1 + t− s)3/2(1 + s)3

(∫
R

(1 + |y|)2ω(y) dy

)
,∣∣∣∣∫

R
G̃11(t− s, x, y)ω(y)2|p(s, y)|3 dy

∣∣∣∣ ≤ CΘ(t)3 1 + |x|
(1 + t− s)3/2(1 + s)9/2

(∫
R

(1 + |y|)3ω2(y) dy

)
,

which leads to ∣∣∣∣∫ t

0

∫
R
G̃11(t− s, x, y)ω(y)|p(s, y)|2 dy ds

∣∣∣∣ . Θ(t)2 1 + |x|
(1 + t)3/2

,∣∣∣∣∫ t

0

∫
R
G̃11(t− s, x, y)ω(y)2|p(s, y)|3 dy ds

∣∣∣∣ . Θ(t)3 1 + |x|
(1 + t)3/2

.

Combining all the above estimates, we obtain the bound

Θ(t) ≤ C
∫
R

(1 + |y|)
(
|v0(y)|
ω(y)

+
|v0(y)|
ω(y)

)
dy + C

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)2

+ C

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)3

+ CΘ(t)

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
+ CΘ(t)2 + CΘ(t)3.
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Conclusion of the proof. We can now combine our small and large time bound to deduce that

for all t ∈ [0, T∗)

Θ(t) ≤ C0Ω0 + C1Θ(t)

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
+ C2Θ(t)2 + C3Θ(t)3,

for some positive constants Cj > 0 and

Ω0 :=

∥∥∥∥P0

ω

∥∥∥∥
∞

+
∥∥∥v0

ω

∥∥∥
∞

+

∫
R

(1 + |y|)
(
|v0(y)|
ω(y)

+
|v0(y)|
ω(y)

)
dy +

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)2

+

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)3

which only depends on the initial condition (P0, v0). Therefore, assuming that (P0, v0) satisfies

C1

(∥∥∥∥ v0

ωv

∥∥∥∥
∞

+

∥∥∥∥ v0

ωv

∥∥∥∥
1

)
<

1

2
, 4C0Ω0 < 1, and 16C0C2Ω0 + 64C2

0C3Ω2
0 < 1,

we claim that

Θ(t) ≤ 4C0Ω0 < 1, t ∈ [0, T∗).

To see this, note that C1

(∥∥∥ v0
ωv

∥∥∥
∞

+
∥∥∥ v0
ωv

∥∥∥
1

)
< 1

2 implies

Θ(t) < 2C0Ω0 + 2C2Θ(t)2 + 2C3Θ(t)3. (3.26)

Next, by eventually taking C0 larger, we can always assume that

Θ(0) = sup
x∈R

p0(x)

1 + |x|
≤
∥∥∥∥P0

ω

∥∥∥∥
∞
< Ω0 < 4C0Ω0,

such that the continuity of Θ(t) implies that, for small times, we have Θ(t) < 4C0Ω0. Suppose now

that there exists T > 0 such that Θ(T ) = 4C0Ω0 for the first time, then from (3.26) we obtain

Θ(T ) ≤ 2C0Ω0 + 2C2(4C0Ω0)2 + 2C3(4C0Ω0)3 = 2C0Ω0

(
1 + 16C0C2Ω0 + 64C2

0C3Ω2
0

)
< 4C0Ω,

a contradiction, which proves the claim. As a consequence, the maximal time of existence is

T∗ = +∞ and the perturbation p satisfies

sup
t≥0

sup
x∈R

(1 + t)3/2 |p(t, x)|
1 + |x|

< 4C0Ω0.

Decay of the v-component was established in (3.24), which concludes the proof of the decay esti-

mates in our main result.

3.4.3 Instability in fixed weights

We show the last statement of Theorem 3. We argue by contradiction and assume P is small,

bounded in the weighted L∞ space, with vanishing initial conditions. We then find that P solves

the inhomogeneous convection-diffusion equation

∂tP = d∂xxP + s∗∂xP + gp + v,

37



where gp incorporates all remainder terms depending on P and is hence uniformly bounded and

small in the weighted space. On the other hand, we know that v grows exponentially in the weighted

space, with explicit expressions in Fourier space. One therefore easily constructs solutions to the

modified equation

∂tP̃ = d∂xxP̃ + s∗∂xP̃ + v,

that grow exponentially in the weighted space, solving again explicitly in Fourier space. Since gp

was bounded and small, the solution to

∂tP̂ = d∂xxP̂ + s∗∂xP̂ + gp,

is bounded in time, contradicting the assumption that P = P̃ + P̂ is small, bounded.

4 Absolute Spectra

In order to characterize regions Rrem and Rabs further, and prepare for the discussion of numerical

simulations and Conjecture 1, we discuss the absolute spectrum associated with Σabs(L+), the

linearization at the unstable state. We start with a brief review of absolute spectra, in Section 4.1,

including a characterization of absolute spectra for the u- and v-component and conclude the proof

of Theorem 2 in Section 4.2.

4.1 Absolute spectra and double roots — review and the case of KPP and SH

Recall from Section 2 the dispersion relation (2.1), given as a product of dispersion relations for

u- and v-components, separately. Associated with the dispersion relation is the Morse index i∞,

the number of roots ν to D(λ, ν) = 0, with Re ν > 0 for a fixed Reλ � 1, to the right of the

essential spectrum. In our case, one quickly sees i∞ = 3, while for the u-component alone iu∞ = 1

and for the v-component iv∞ = 2. We may also, allowing for discontinuities of the labeling in λ and

some ambiguities, order all roots ν = ν̃j(λ) by increasing real part, repeating by multiplicity when

necessary,

Re ν̃1(λ) ≤ Re ν̃2(λ) ≤ . . .

Following [29], we say

λ ∈ Σabs ⇐⇒ Re ν̃i∞(λ) = Re ν̃i∞+1(λ). (4.1)

It is crucial to recognize that this ordering and labeling depends in our case on whether the u-

and v-component are considered separately, or together. In fact, we previously ordered roots from

the v-equation alone as Re ρ1(λ) ≤ Re ρ2(λ) ≤ Re ρ3(λ) ≤ Re ρ4(λ) (see (2.4)), and roots from the

u-equation Re ν0
+(λ) ≥ Re ν0

−(λ). The ordering in (4.1) refers to the combined ordering, and we

used ν̃j , 1 ≤ j ≤ 6, to distinguish this ordering from the ordering ρj , 1 ≤ j ≤ 4, to distinguish

from earlier notation for the roots in the v-equation. A key example of a subtlety related to this

combined ordering, which will appear later, is that, considering the v-component alone, we may

see Re ρ1 = Re ρ2, which would not contribute to the absolute spectrum of the v-equation since
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iv∞ = 2. If however the roots ν0
± from the u-equation lie to the left, Re ν0

− ≤ Re ν0
+ ≤ Re ρ1 =

Re ρ2 < Re ρ3 ≤ Re ρ4, then λ would belong to the absolute spectrum of the combined u-v-system.

It turns out that Σabs(L+) consists of parameterized curves, solving

D(λ, ν) = 0, D(λ, ν + ik) = 0, λ, ν ∈ C, (4.2)

with parameter k ∈ R and for which (4.1) holds. Note that Σabs is to the left of Ση
ess for any η

in the sense that any curve from Σabs to λ = +∞ needs to cross Σess. We remark in passing that

the absolute spectrum was originally introduced as the continuous part of the limit of spectra in

bounded domains in the limit of infinite domain size [29], but we will not rely on this property,

here.

Generic singularities of these parameterized curves are double roots, where k = 0, and triple points,

where Re ν̃`−1 = Re ν̃` = Re ν̃`+1, and ` = i∞ or `− 1 = i∞; see [28].

At double roots, curves of absolute spectrum typically end: continuing in k through 0 simply

interchanges the two roots ν(λ) solving (4.2). Interestingly, curves of absolute spectrum simply

pass smoothly through resonance poles, where individual roots ν can be continued analytically. We

discussed double roots in Section 2.3. Loosely speaking, double roots at rightmost points of the

absolute spectrum automatically satisfy the pinching condition whenever they satisfy the Morse

index condition.

Near a triple point, we can continue the equal real part condition between any of the three possible

pairs of roots that have equal real part at the triple point to find 3 curves that cross in the triple

point. Following such a curve, the Morse index of the pair with equal real part changes [28] and

only the part of the curve to one side of the triple point belongs to the absolute spectrum.

Absolute spectra of KPP. Here, D(λ, ν) = dν2 + sν +α− λ, i∞ = 1, and Σabs(L+
u ) = {λ|λ ≤

α − s2/(4d)}, that is, when the discriminant is negative. Notice that the rightmost point in the

absolute spectrum is the double root α − s2/(4d), which vanishes precisely at the KPP spreading

speed. In this sense, the concept of remnant instabilities, instabilities of the absolute spectrum,

and pointwise instabilities coincide for this problem.

Absolute spectra of SH. Here, D(λ, ν) = −(ν2 + 1)2 + sν + µ − λ. Solutions to (4.2) are

explicit but rather intractable. In fact, it is not immediately clear that in this case the rightmost

points of the absolute spectrum are pinched double roots. However, since the essential spectrum

has negative real part, so does the absolute spectrum. Although the exact form of the absolute

spectrum is therefore not relevant to our analysis, we present a quick summary of the structure

and refer to the appendix for more detailed formulas.

Lemma 4.1 (Absolute spectrum of SH). For any s > 0 and µ < 0, the absolute spectrum of SH

consists of three curves emanating from a triple point located at

λtr
v = µ− 1 +

s
(
−4 3
√

225 + 3
√

15C2
1

)
30C1

−
(
−4 3
√

225 + 3
√

15C2
1

)2
450C2

1

−
(
−4 3
√

225 + 3
√

15C2
1

)4
810000C4

1

, (4.3)
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Figure 7: Essential (blue solid), weighted essential with weight η = ηtrv (orange dotted), and absolute spectrum

(red solid) of L+
v for parameters d = 1, α = 1, µ = −1/2, and s = s∗/4, s∗, 5s∗ (left to right) with s∗ =

2
√
αd = 2; also shown pinched double roots in the absolute spectrum (dark red diamonds) and the non-

pinched double root, not part of the absolute spectrum (cyan dot). The triple point is located at λvtr =

−1.586,−2.447,−9.863 with corresponding weight ηtrv = −0.117,−0.326,−0.7101. Note the different scales

on the coordinate axes.

where C1 := (−45s +
√

960 + 2025s2)1/3. The first curve is real and consists of the unbounded

interval λ ∈ (−∞, λtr
v ]. The other two curves are complex conjugate and connect the triple point to

the two pinched double roots

λdr
v = µ− 1

3
± (27s2 − 8)(i

√
3− 1)

6C2
+

1

48
(1± i

√
3)C2, (4.4)

with

C2 :=
(

512 + 4320s2 − 729s4 + 3
√

3
√
s2(64 + 27s2)3

) 1
3
,

which also maximize the real part of the absolute spectrum. Moreover, remnant instabilities imply

pointwise instabilities, that is, values of µ such that we have a remnant instability, unstable absolute

spectrum, or and unstable pinched double root coincide.

We refer to the appendix, Section C, for a proof of this lemma and to Figure 7 for an illustra-

tion. The result also motivates the model system under consideration here as an extension of the

Swift-Hohenberg equation necessary to find remnant instabilities that are not caused by pointwise

instabilities.

4.2 Remnant instabilities, absolute spectra, and pointwise instabilities in the

full system

We next study the absolute spectrum, also in relation to remnant and pointwise instabilities, for

D(λ, ν) = (dν2 + sν + α− λ) · (−ν4 − 2ν2 + sν − 1 + µ− λ),

The following three results will together conclude the proof of Theorem 2.
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Proposition 4.2 (Rrem 6= ∅). For µ− µrem(α, d) > 0, sufficiently small, the origin has a remnant

instability but the real part of the absolute spectrum is negative.

Proposition 4.3 (Lower bound on Rabs). The absolute spectrum is unstable when µabs
0 < µ < 0,

where we recall the formula for µabs
0 that was defined in (1.5),

µabs
0 (α, d) =

d2

4
− 4α

d
− 4α2

d2
.

Remark 4.4 (Boundary between Rrem and Rabs). We computed the onset of absolute instability

through actual numerical computation of the absolute spectra and illustrated results in Figure 1.

We found that the onset actually agrees with µabs
0 , such that the lower bound in Proposition 4.3

is actually sharp. In fact the real triple point appears to coincide with the rightmost point of the

absolute spectrum. Out of the three branches of the absolute spectrum is real and to the left of the

triple point, the two others emerge vertically, with a negative tangency; see for instance Figure 8,

(a).

Proposition 4.5 (Boundary of Rpw). There exists a resonance pole in the unstable complex half

plane precisely when α− d− d2/2 > 0 and µpw(α, d) < µ < 0, where

µpw(α, d) = α− α2

4d2
− d2(2 + d)4

64α2
+

1

8
(4− 4d− d2). (4.5)

Moreover, when α− d− d2/2 > 0 it holds that µabs
0 (α, d) < µpw(α, d) so that Rabs 6= ∅.

The remainder of this section is occupied by the proofs of these statements.

Proof of Proposition 4.2. We claim that for µ = µrem(α, d), the absolute spectrum on the

imaginary axis consists of precisely a simple double root at the origin. Continuity of the absolute

spectrum [28] together with the fact that the simple double root at the origin remains at the origin

for all nearby parameter values then implies that the absolute spectrum possesses non-negative

real part for nearby values of µ, thus proving the claim. Recall that the absolute spectrum is to

the left of the weighted essential spectrum, which at µ = µrem is to the left of the imaginary axis

except for λ = 0 and λrem = σv(
√

3η2
∗ + 1; η∗)). Since in the η∗-weight, the essential spectrum of

the v-component is strictly to the left of the origin and stable, the double root from the u-equation

locally gives rise to a simple curve of absolute spectrum on the negative real line, also for nearby

values of µ. It remains to verify that λrem does not belong to the absolute spectrum for µ = µrem.

At this value of λ, the roots νj from the v-component satisfy Re ν1 > Re ν2 = η∗ > Re ν3 > Re ν4,

as a quick calculation shows. On the other hand, Re ν1 > η∗ > Re ν2 for the two roots of the

u-component, hence excluding absolute spectrum.

Proof of Proposition 4.3. We label roots of the dispersion relation as Re ν0
+(λ) > Re ν0

−(λ) for

the u-component and ρ1,2,3,4(λ) for the v-component, ordered by increasing real part Re ρ1(λ) ≤
Re ρ2(λ) ≤ Re ρ3(λ) ≤ Re ρ4(λ). The proof proceeds in two main steps.
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Step 1: 0 ∈ Σabs(L+). We claim that for any d, α > 0, and s = s∗ if µ = µabs
0 (α, d) < 0 then

Re(ν0
±(0)) = Re(ρ1,2(0)). To see this, recall that ν0

±(0) = −
√

α
d and η∗ = −

√
α
d . We claim that

Dv(0, η∗ + ik) = 0 for some k > 0. Since 0 is to the right of Σess(L+
v ) and η∗ < 0 this implies that

η∗ ± ik are precisely the roots ν1,2(0) and thereby yields our claim. To find k, we write explicitly

Dv(0, η∗+ ik) = −η4
∗ + 6η2

∗k
2− k4− 2η2

∗ + 2k2− 1 +µ+ s∗η∗+ i
(
−4η3

∗k + 4η∗k
3 − 4η∗k + s∗k

)
= 0.

The imaginary part of this equation gives k2 = 1
4η∗

(
4η3
∗ + 4η∗ − s∗

)
, which when substituted into

the real part, with the explicit expression for η∗, gives

−α
2

d2
+ (6

α

d
+ 2)

(
α

d
+ 1 +

d

2

)
−
(
α

d
+ 1 +

d

2

)2

− 1 + µ− 2α = 0,

which is true precisely when µ = µabs
0 (α, d), as claimed.

We note that

µabs
0 =

d2

4
− 4α

d
− 4α2

d2
< 0 ⇔ α > −d/2 + d/4

√
d2 + 4 > 0. (4.6)

Step 2: µabs
0 (α, d) < µ < 0 implies Σabs(L+) is unstable. The idea is to find a value λtr > 0

so that Re(ν0
+(λtr)) = Re(ρ1,2(λtr)). Such a triple point is automatically an element of Σabs(L+).

We will locate this triple point through intersections of the weighted essential spectra for u and v

components, which in turn are explicit parameterized curves σu/v, respectively,

σu(k; η) = −dk2 + 2idηk + dη2 + 2i
√
αdk + 2

√
αdη + α,

σv(k; η) = −k4 + 4iηk3 + (2 + 6η2)k2 + i(2
√
αd− 4η − 4η3)k − η4 − 2η2 + 2

√
αdη − 1 + µ.

Note that σu(0, η) = (
√
dη +

√
α)2 such that ν0

+((
√
dη +

√
α)2) = η. We therefore consider η∗ <

η < 0. Moreover,

Im (σv(k; η)) = 0 ⇐⇒ k0
v = 0, k±v = ±

√
η2 + 1−

√
αd

2η
.

We disregard the zero solution, since this occurs for λ in the left half of the complex plane. We now

obtain that there exists a triple point, if there exists a (real) weight η∗ < η < 0 (recall s = s∗ > 0)

such that

Ψ(η) := σv(k
+
v ; η)− σu(0; η) = 4η4 + (4− d)η2 − 2

√
αdη + µ− α− αd

4η2
= 0.

We see that Ψ(η) is continuous for all η < 0 with limη→0− Ψ(η) = −∞. We also see that

Ψ(η∗) = −µabs
0 (α, d) + µ

and is therefore positive for µabs
0 (α, d) < µ < 0. Finally, since Ψ′(η) < 0 for all η∗ < η < 0 we

obtain the existence of a unique ηtr for which Ψ(ηtr) = 0 which in turn establishes the existence of

λtr = σu(0, ηtr) > 0, which concludes the proof.

42



Proof of Proposition 4.5. One can find all double roots explicitly, and we list the results below

after setting s = s∗:

λdr
1 = 0, (4.7)

λdr
2,3 = µ− 1

3
± (i
√

3∓ 1)(27αd− 2)

3C3
+

1

24
(1± i

√
3)C3, (4.8)

λdr
4 = µ− 1

3
+

2(27αd− 2)

3C3
− 1

12
C3, (4.9)

λ
rp−
± = α− d− d2

2
± dC4 − 2

√
αd(±C4 − 1− d/2), (4.10)

λ
rp+
± = α− d− d2

2
± dC4 + 2

√
αd(±C4 − 1− d/2). (4.11)

where

C3 :=
(

64 + 54αd(40− 27αd) + 6
√

3
√
αd(16 + 27αd)3

)1/3
> 0, C4 :=

√
µ+ d− α+ d2/4.

Double roots to the u- and the v-equation, (4.7) and (4.8), respectively, are always stable with

µ < 0. This is clear for λdr
1 and for λdr

2,3 (see Lemma 4.1). The roots λdr
2,3,4 are induced by the

v-equation, alone. Since pinched double roots necessarily lie to the left of the essential spectrum,

these double root are either located in the stable complex half plane or are not pinched. Since λdr
2,3

are complex conjugate and involve all 4 roots of the v-equation with equal real part, they are in

fact pinched and lie to the left of the essential spectrum.

The double roots λ
rp±
± are in fact resonance poles, involving a root from the SH and one from

the KPP subsystem. We first focus on λ
rp−
± . We distinguish two cases depending on the sign of

µ− α+ d+ d2/4.

First, assume that µ− α+ d+ d2/4 > 0. Then

0 < C4 =
√

(1 + d/2)2 + µ− α− 1 < 1 + d/2,

such that

Re
(
λ

rp−
−

)
≤ Re

(
λ

rp−
+

)
= µ− (C4 − d/2)2 < 0.

Next, suppose that µ− α+ d+ d2/4 < 0, then C4 = i
√
−(µ− α+ d+ d2/4), and thus

Re
(
λ

rp−
±

)
= α− d− d2

2
− 2
√
αdRe

(√
−1− d/2± i

√
−(µ− α+ d+ d2/4)

)
= α− d− d2

2
−
√

2αd

√
−1− d/2 +

√
1− µ+ α, (4.12)

after a short calculation. We claim that
(
ν

rp−
± , λ

rp−
±

)
is pinched whenever Re

(
λ

rp−
±

)
≥ 0, where,

explicitly,

ν
rp−
± = −

√
−1− d/2±

√
C4 = −

√
−1− d/2± i

√
−(µ− α+ d+ d2/4).
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Clearly, λ
rp−
± is to the right of the essential spectrum in the v-component and

Re
(
ν

rp−
±

)
= −
√

2

2

√
−1− d/2 +

√
1− µ+ α < 0.

As a consequence, the double root
(
ν

rp−
± , λ

rp−
±

)
is pinched in case we can prove that ν

rp−
± =

ν0
+(λ

rp−
± ). For this, it suffices to verify

Re
(
ν

rp−
±

)
> η∗ = −

√
α

d
,

or, after some simplifications,

−µ < 4α2

d2
+

4α

d
+
d2

4
+ α+ d = −µabs

0 +
d2

2
+ α+ d.

This last inequality is a consequence of µabs
0 < µ < 0 and therefore

(
λ

rp−
±

)
is pinched when located

in the right half plane. To determine conditions leading to instability of this resonance pole, we

consult (4.12) and note that α − d − d2/2 must be positive. If this condition holds, then we

may compute that the resonance pole becomes unstable at µpw(α, d) given in (4.5). It is a short

calculation to verify that α− d− d2/2 > 0 implies that µabs
0 (α, d) < µpw(α, d).

Next, we turn to λ
rp+
± ,starting with the case µ− α+ d+ d2/4 > 0. Again, C4 > 0 and

Re
(
λ

rp+
−

)
≤ Re

(
λ

rp+
+

)
= µ− (C4 − d/2)2 < 0.

In case µ− α+ d+ d2/4 < 0, we find

Re
(
λ

rp+
±

)
= α− d− d2

2
+
√

2αd

√
−1− d/2 +

√
1− µ+ α.

Note that
(
ν

rp+
± , λ

rp+
±

)
is not pinched whenever Re

(
λ

rp+
±

)
≥ 0, where, explicitly,

ν
rp+
± =

√
−1− d/2±

√
C4 =

√
−1− d/2± i

√
−(µ− α+ d+ d2/4), Re

(
ν

rp+
±

)
> 0.

Since Re
(
λ

rp+
±

)
≥ 0, then λ

rp+
± is to the right of the v-essential spectrum and Re

(
ν

rp+
±

)
> 0

ensures that it cannot be pinched.

5 Numerical simulations and the appearance of faster invasion

modes

In Theorem 3, we have established the stability of the critical Fisher-KPP front in the presence of

inhomogeneous coupling to a secondary equation (the linearized Swift-Hohenberg equation). This

result holds for parameters in Rrem and Rabs in the case when the system has a remnant instability

but lacks unstable resonance poles (with the caveat of an additional condition excluding possible
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(a) (d, α, µ) = (1, 1,−2). (b) (d, α, µ) = (1, 1,−0.75). (c) (d, α, µ) = (1, 1,−0.4). (d) (d, α, µ) = (0.5, 2,−1).

Figure 8: Spectra of L+ at s = s∗ = 2
√
αd for various parameter values: essential spectra of L±u (light blue)

and L±v (dark blue); absolute spectrum of L+ (dark red) from numerical continuation; double root λdr1 (pink

dot), λdr2,3, (orange diamonds), and λdr4 (dark cyan dot); resonance poles λ
rp+

± , λ
rp−
± (green squares, filled if

pinched. In cases (a) and (b), the resonance poles in the absolute spectrum are stable, the other two are not

pinched. In case (c) resonance poles do not belong to the absolute spectrum and are not pinched; in case (d),

two resonance poles unstable, pinched and elements of Σabs(L+), while the other two are not pinched.

resonances). The main takeaway of this result is that the inability to stabilize essential spectrum

using exponential weights does not preclude stability of the traveling front.

In this final section, we investigate front stability and speed selection in numerical simulations,

distinguishing in particular between regions Rrem and Rabs. For parameters in Rrem, the absolute

spectrum is stable and we observe stability of the front in numerical simulations. For parameters

in Rabs, we observe stability of the front over large periods of time, thereby corroborating our

analytical result. Eventually, however, the front appears to be overtaken by an incoherent invasion

mode traveling with a faster, approximately constant, average speed. Below, we explain this even-

tual acceleration and offer a prediction faster ensuing speed. In summary, the faster invasion speed

is mediated by a resonance caused by small couplings between modes due to numerical round off

errors. The strongest such resonance enables propagation at a speed given by marginal stability

of the absolute spectrum of the zero state rather than marginal stability of resonance poles as

identified in our result. Numerical evidence supports our prediction of invasion at this faster speed

which we will refer to as the absolute spreading speed,

sabs := sup{s|Σabs is unstable}. (5.1)

Numerical simulations — confirmation of stability and absolute spreading speeds. We

carried out numerical simulations of (1.1) in a frame moving with speed s = s∗ =
√
αd based on a

semi-implicit finite difference scheme, with localized initial conditions in both u- and v-components,

varying parameters d, α, and µ. Figure 9 shows spectra and a space-time plot of the u-component

for a parameter choice in Rrem, where the front, stationary in the comoving frame, is stable as

predicted. The subtle stabilization mechanism is visible in a log plot of the solution, shown in

Figure 10. Clearly the v-component induces a weak, oscillatory decay in the u-component, which
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Figure 9: Essential and absolute spectra for d = α = 1, µ = −9, showing stability of the absolute spectrum

(left, see Figure 8 for explanation); instability of the weighted v-essential spectrum with weight η∗, showing

a remnant instability (center) and space time plot (right), demonstrating front stability in Rrem

travels at a larger speed to the right and decreases in overall amplitude. A u-front with such

monotone weaker decay would travel faster in the KPP equation. For parameter values in Rabs,
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Figure 10: Snapshots of the logarithms of u- and v-components at t ∈ {10, 20, 50, 100, 120, 150} with

(d, α, µ) = (1, 1,−1) and β = 10−4. The envelope of the v-equation follows a parabola, v(t, x) =
eµt

4
√
πt

cos(x+ s∗t)e
− (x+s∗t)2

16t , and induces weak decay in the u-equation, which however is not supported in the

absence of the v-component.

our main result predicts stability, but simulations demonstrate instability after a long stable initial

transient. Figure 11 shows simulations in this parameter regime, demonstrating the acceleration

and comparing a fit of the observed accelerated speed to the absolute spreading speed from (5.1).

In the steady laboratory frame, s = 0, we observe the transient stability followed by acceleration;

see Figure 12.

In the remainder we offer an explanation of the eventual faster invasion speed sabs. Our explanation

is inspired by recent studies of resonant (or anomalous) invasion speeds [10, 17, 18, 20]. We first

study a linear, scalar equation toy model with (complex) exponential forcing and then derive

predictions for the original system (1.1).

A motivating example. We consider

ut = duxx + sux + αu+ β(1 + σ(x))eνx, (5.2)

for ν ∈ C with Re(ν) < 0 and where for simplicity, we assume that σ(x) is 2π periodic with Fourier

Series expansion

σ(x) =
∑
`∈Z

c`e
i`x.
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Figure 11: Spectra and simulations in Rabs: Essential spectra of L±u (light blue), L±v (dark blue), and

absolute spectra of Σabs(L+) (dark red) computed via continuation, computed with s = s∗ (left) and s = sabs

(middle; see (5.1)), for parameters (d, α, µ) = (1, 1,−1) (top row), (d, α, µ) = (1, 1,−1/2) (middle row),

and (d, α, µ) = (1/2, 2,−1) (bottom row). The right column shows space-time plots of the u-component with

best fits for the accelerated measured speed sm = 2.27, 2.35, 3.3 (top to bottom), which compare well with the

theoretically computed sabs = 2.2762, 2.3547, 3.3382.

(a) (d, α, µ) = (1, 1,−9). (b) (d, α, µ) = (1, 1,−1/2). (c) (d, α, µ) = (1/2, 2,−1).

Figure 12: Space-time plots of the u-component in a steady frame s = 0; parameters as in Figure 9 and

Figure 11, middle and bottom row, that is, showing Rrem, Rabs, and Rpw (left to right). Line fits are initial

speed s∗ (blue) and, after an initial transient, sabs (magenta, center and right).
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The solution to this equation following a Laplace transform takes the form,

uλ(x) = c(λ)eν
−
0 (λ)x +

β

D0
u(λ, ν)

eνx +
∑
`∈Z

βc`
D0
u(λ, ν + i`)

e(ν+i`)x, x > 0.

Resonance poles arise at values of λ for which ν+
0 (λ) = ν + i`, for any ` ∈ Z. In fact, poles where

ν−0 (λ) = ν + i`, are not relevant in the sense of [17, 20]. The most unstable modes are those

with pure exponential decay, so the value of l for which the imaginary part of ν + i` is smallest in

magnitude has the singularity with the largest real part and hence the dominant temporal growth

rate. Taking the inverse Laplace transform and using the theory of residues, the inhomogeneous

terms contribute as∑
`∈Z

βc`Res

(
1

D0
u(λ, ν + i`)

, λ`

)
eλ`te(ν+i`)x, λ` = d(ν + i`)2 + s(ν + i`) + α.

Each term in the sum spreads at its envelope speed

senv(`) = −Re(λ`)

Re(ν)
,

where we recall that Re(ν) < 0. We expect the fastest mode to be observed which in this case

is the one with largest temporal growth rate λ`. It is important to note that this prediction is

independent of the magnitude of c`, provided that it is non-zero. To observe this, write

eln(|c`|)+Re(ν)x+Re(λ`)t = e
Re(ν)

(
x+

ln(|c`|)
Re(ν)

+
Re(λ`)

Re(ν)
t
)

= e
Re(ν)

(
x+

Re(λl)

Re(ν)

(
t+

ln(|c`|)
Re(λ`)

))
, (5.3)

from which we predict a O
(
− ln(|c`|)

Re(λ`)

)
transient before the mode appears.

The absolute spreading speed. Now consider the case where it is no longer a fixed mode

eνx that forms the inhomogeneous forcing term in (5.2) but rather a secondary partial differential

equation as is the case in (1.1). Then, after applying the Laplace transform, the forcing term is

comprised of complex exponentials of the form eνv(λ)x where, crucially, the mode νv now depends

on λ. Repeating the calcuations above, we now find that singularities arise whenever,

D0
λ(λ, νv(λ) + i`) = 0.

We thus require values of λ for which ν+
0 (λ) = νv(λ) + i`. In other words, we would seek values

of λ for which two modes (one from the homogeneous u equation and one from the coupled v

equation) have the same real part but whose imaginary parts may differ. From the discussion in

Section 4.2, we note that this is equivalent to asking for λ ∈ Σabs(L+). Based upon this discussion,

we would expect that any invasion front with unstable absolute spectrum would be unstable when

inhomogeneous coupling is introduced. A prediction for the speed of the invasion front would

be the speed at which there are marginally stable singularities, but no unstable singularities. In

other words, we expect the invasion speed to be the absolute spreading speed, defined in (5.1);

see also [16]. The analysis presented thus far presents the basis of our Conjecture 1 stated in the

introduction.

48



Of course, this faster invasion speed is predicated on the existence of the inhomgeneity σ(x) which

couples modes with the same exponential decay rate; a coupling which is notably absent in (1.1).

Yet, we did observe this faster speed in numerical simulations! We attribute this to numerical

effects, in particular round-off errors, that effectively couple these modes in numerical simulations.

We will not embark on a full study of the numerical aspects of this phenomenon, here, but point

to some evidence corroborating the relevance of the above calculations, beyond the fact that nu-

merically observed accelerated speeds and theoretical predictions of sabs agree well; see Figure 11.

We simulated ∂tu = d∂xxu+ s∂xu+ f(u) + β cos(`∗x)v,

∂tv = −(∂xx + 1)2v + s∂xv + µv,
(5.4)

where the key difference to (1.1) is the cos(`∗x)-term in the coupling. We choose `∗ as follows. Let

λmax be the λ value corresponding to the most unstable part of the absolute spectrum. Then there

exist a mode of the v component (assume it is ν2(λ)) such that ν+
0 (λmax) = ν2(λmax) + i`∗. Thus,

the coupling term in (5.4) should produce an unstable singularity which is (marginally) stabilized

in a frame of reference moving with speed sabs. Results of simulations are presented in Figure 13

for a variety of β values. For β = 1, the faster invasion mode appears immediately, but for smaller

values, the appearance of the faster invasion mode is delayed in a fashion consistent with formal

calculation in (5.3).

-15 -10 -5 0
0

50

100

150

200

Figure 13: Left: Superimposed grayscale space-time plots of ∂xu to indicate the front location for (5.4) with

s = s∗ for values β ∈
{

1, 10−8, 10−16
}

while other parameters are fixed to (d, α, µ) = (1, 1,−1/2). In that

case `∗ = 1.4872 and ν = −0.5456. The right panel shows the delay D of appearance of the faster invasion

mode as a function of log10 β. The measured slope is found to be −11.6348 which compares well with the

prediction − ln(10)
Re(λ0)

= −11.1516 from (5.3).

49



A Proof of Lemma 3.4

We proof Lemma 3.4. We first consider the case y > 0. Continuity of G12,∞
λ (x, y) at both x = 0

and x = y implies

b2 + b3 + b4 = β
4∑
j=3

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)e−νj(λ)y,

b1eν
0
−(λ)y + b2eν

0
−(λ)y + b3eν

0
+(λ)y = β

4∑
j=1

cj(λ)

D0
u(λ, νj(λ))

.

Continuity of ∂xG
12,∞
λ (x, y) at both x = 0 and x = y then implies

b2ν
0
−(λ) + b3ν

0
+(λ) + b4ν

1
+(λ) = β

4∑
j=3

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
· cj(λ)νj(λ)e−νj(λ)y,

b1ν
0
−(λ)eν

0
−(λ)y + b2ν

0
−(λ)eν

0
−(λ)y + b3ν

0
+(λ)eν

0
+(λ)y = β

4∑
j=1

cj(λ)νj(λ)

D0
u(λ, νj(λ))

.

We thus arrive at
eν

0
−(λ)y eν

0
−(λ)y eν

0
+(λ)y 0

ν0
−(λ)eν

0
−(λ)y ν0

−(λ)eν
0
−(λ)y ν0

+(λ)eν
0
+(λ)y 0

0 1 1 1

0 ν0
−(λ) ν0

+(λ) ν1
+(λ)


︸ ︷︷ ︸

:=A1(λ)


b1

b2

b3

b4

 = βV,

where the right-hand side is given by

V =

4∑
j=1

cj(λ)

D0
u(λ, νj(λ))


1

νj(λ)

0

0

+

4∑
j=3

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)e−νj(λ)y


0

0

1

νj(λ)

 .

The inverse of the matrix A1(λ) reads

A−1
1 (λ) =



ν0
−(λ)p1(λ)e

−ν0
+(λ)y−ν0

+(λ)e
−ν0
−(λ)y

ν0
−(λ)−ν0

+(λ)
−p1(λ)e

−ν0
+(λ)y

+e
−ν0
−(λ)y

ν0
−(λ)−ν0

+(λ)
− ν1

+(λ)

ν1
+(λ)−ν0

−(λ)
1

ν1
+(λ)−ν0

−(λ)

−ν0
−(λ)p1(λ)e

−ν0
+(λ)y

ν0
−(λ)−ν0

+(λ)
p1(λ)e

−ν0
+(λ)y

ν0
−(λ)−ν0

+(λ)

ν1
+(λ)

ν1
+(λ)−ν0

−(λ)
− 1
ν1
+(λ)−ν0

−(λ)

ν0
−(λ)e

−ν0
+(λ)y

ν0
−(λ)−ν0

+(λ)
− e

−ν0
+(λ)y

ν0
−(λ)−ν0

+(λ)
0 0

−ν0
−(λ)e

−ν0
+(λ)y

ν0
−(λ)−ν1

+(λ)
e
−ν0

+(λ)y

ν0
−(λ)−ν1

+(λ)
− ν0

−(λ)

ν1
+(λ)−ν0

−(λ)
1

ν1
+(λ)−ν0

−(λ)


where we denoted

p1(λ) =
ν0

+(λ)− ν1
+(λ)

ν0
−(λ)− ν1

+(λ)
.
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As a consequence, we get the following expressions for the bj(λ, y):

b1(λ, y)

β
=

p1(λ)

ν0
−(λ)− ν0

+(λ)

4∑
j=1

cj(λ)(ν0
−(λ)− νj(λ))

D0
u(λ, νj(λ))

e−ν
0
+(λ)y

− 1

ν0
−(λ)− ν0

+(λ)

4∑
j=1

cj(λ)(ν0
+(λ)− νj(λ))

D0
u(λ, νj(λ))

e−ν
0
−(λ)y

− 1

ν1
+(λ)− ν0

−(λ)

4∑
j=3

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)(ν1

+(λ)− νj(λ))e−νj(λ)y

b2(λ, y)

β
= − p1(λ)

ν0
−(λ)− ν0

+(λ)

4∑
j=1

cj(λ)(ν0
−(λ)− νj(λ))

D0
u(λ, νj(λ))

e−ν
0
+(λ)y

+
1

ν1
+(λ)− ν0

−(λ)

4∑
j=3

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)(ν1

+(λ)− νj(λ))e−νj(λ)y

b3(λ, y)

β
=

1

ν0
−(λ)− ν0

+(λ)

4∑
j=1

cj(λ)(ν0
−(λ)− νj(λ))

D0
u(λ, νj(λ))

e−ν
0
+(λ)y

b4(λ, y)

β
= − 1

ν0
−(λ)− ν1

+(λ)

4∑
j=1

cj(λ)(ν0
−(λ)− νj(λ))

D0
u(λ, νj(λ))

e−ν
0
+(λ)y

− 1

ν0
−(λ)− ν1

+(λ)

4∑
j=3

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)(ν0

−(λ)− νj(λ))e−νj(λ)y.

For y < 0, we arrive at a system
1 1 1 0

ν0
−(λ) ν1

−(λ) ν1
+(λ) 0

0 eν
1
−(λ)y eν

1
+(λ)y eν

1
+(λ)y

0 ν1
−(λ)eν

1
−(λ)y ν1

+(λ)eν
1
+(λ)y ν1

+(λ)eν
1
+(λ)y


︸ ︷︷ ︸

:=A2(λ)


h1

h2

h3

h4

 = βW,

where

W :=
4∑
j=1

cj(λ)

D1
u(λ, νj(λ))


0

0

1

νj(λ)

+
2∑
j=1

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)e−νj(λ)y


1

νj(λ)

0

0

 .
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The inverse of the matrix A2(λ) reads

A−1
2 (λ) =



− ν1
+(λ)

ν0
−(λ)−ν1

+(λ)
1

ν0
−(λ)−ν1

+(λ)

ν1
+(λ)e

−ν1
−(λ)y

ν0
−(λ)−ν1

+(λ)
− e

−ν1
−(λ)y

ν0
−(λ)−ν1

+(λ)

0 0 −ν1
+(λ)e

−ν1
−(λ)y

ν1
−(λ)−ν1

+(λ)
e
−ν1
−(λ)y

ν1
−(λ)−ν1

+(λ)

ν0
−(λ)

ν0
−(λ)−ν1

+(λ)
− 1
ν0
−(λ)−ν1

+(λ)

p2(λ)ν1
+(λ)e

−ν1
−(λ)y

ν1
−(λ)−ν1

+(λ)
−p2(λ)e

−ν1
−(λ)y

ν1
−(λ)−ν1

+(λ)

− ν0
−(λ)

ν0
−(λ)−ν1

+(λ)
1

ν0
−(λ)−ν1

+(λ)

−p2(λ)ν1
+(λ)e

−ν1
−(λ)y

+ν1
−(λ)e

−ν1
+(λ)y

ν1
−(λ)−ν1

+(λ)
p2(λ)e

−ν1
−(λ)y−e

−ν1
+(λ)y

ν1
−(λ)−ν1

+(λ)


where we denoted

p2(λ) :=
ν0
−(λ)− ν1

−(λ)

ν0
−(λ)− ν1

+(λ)
.

As a consequence, we get the following expressions for the hj(λ, y):

h1(λ, y)

β
=

1

ν0
−(λ)− ν1

+(λ)

4∑
j=1

cj(λ)(ν1
+(λ)− νj(λ))

D1
u(λ, νj(λ))

e−ν
1
−(λ)y

− 1

ν0
−(λ)− ν1

+(λ)

2∑
j=1

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)(ν1

+(λ)− νj(λ))e−νj(λ)y,

h2(λ, y)

β
= − 1

ν1
−(λ)− ν1

+(λ)

4∑
j=1

cj(λ)(ν1
+(λ)− νj(λ))

D1
u(λ, νj(λ))

e−ν
1
−(λ)y,

h3(λ, y)

β
=

p2(λ)

ν1
−(λ)− ν1

+(λ)

4∑
j=1

cj(λ)(ν1
+(λ)− νj(λ))

D1
u(λ, νj(λ))

e−ν
1
−(λ)y

+
1

ν0
−(λ)− ν1

+(λ)

2∑
j=1

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)(ν0

−(λ)− νj(λ))e−νj(λ)y,

h4(λ, y)

β
= − p2(λ)

ν1
−(λ)− ν1

+(λ)

4∑
j=1

cj(λ)(ν1
+(λ)− νj(λ))

D1
u(λ, νj(λ))

e−ν
1
−(λ)y

+
1

ν1
−(λ)− ν1

+(λ)

4∑
j=1

cj(λ)(ν1
−(λ)− νj(λ))

D1
u(λ, νj(λ))

e−ν
1
+(λ)y

− 1

ν0
−(λ)− ν1

+(λ)

2∑
j=1

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)(ν0

−(λ)− νj(λ))e−νj(λ)y

Let us define the following quantities:

D0
±(λ) :=

4∑
j=1

cj(λ)(ν0
±(λ)− νj(λ))

D0
u(λ, νj(λ))

, D1
±(λ) :=

4∑
j=1

cj(λ)(ν1
±(λ)− νj(λ))

D1
u(λ, νj(λ))

,

B1,+
j (λ) :=

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)(ν1

+(λ)− νj(λ)),

B0,−
j (λ) :=

(
1

D0
u(λ, νj(λ))

− 1

D1
u(λ, νj(λ))

)
cj(λ)(ν0

−(λ)− νj(λ)).
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Then we have the condensed expressions for:

h1(λ, y)

β
=

D1
+(λ)

ν0
−(λ)− ν1

+(λ)
e−ν

1
−(λ)y − 1

ν0
−(λ)− ν1

+(λ)

2∑
j=1

B1,+
j (λ)e−νj(λ)y,

h2(λ, y)

β
= −

D1
+(λ)

ν1
−(λ)− ν1

+(λ)
e−ν

1
−(λ)y,

h3(λ, y)

β
=

p2(λ)

ν1
−(λ)− ν1

+(λ)
D1

+(λ)e−ν
1
−(λ)y +

1

ν0
−(λ)− ν1

+(λ)

2∑
j=1

B0,−
j (λ)e−νj(λ)y,

h4(λ, y)

β
= − p2(λ)

ν1
−(λ)− ν1

+(λ)
D1

+(λ)e−ν
1
−(λ)y +

D1
−(λ)

ν1
−(λ)− ν1

+(λ)
e−ν

1
+(λ)y

− 1

ν0
−(λ)− ν1

+(λ)

2∑
j=1

B0,−
j (λ)e−νj(λ)y, (A.1)

together with

b1(λ, y)

β
=

p1(λ)

ν0
−(λ)− ν0

+(λ)
D0
−(λ)e−ν

0
+(λ)y

− 1

ν0
−(λ)− ν0

+(λ)
D0

+(λ)e−ν
0
−(λ)y − 1

ν1
+(λ)− ν0

−(λ)

4∑
j=3

B1,+
j (λ)e−νj(λ)y,

b2(λ, y)

β
= − p1(λ)

ν0
−(λ)− ν0

+(λ)
D0
−(λ)e−ν

0
+(λ)y +

1

ν1
+(λ)− ν0

−(λ)

4∑
j=3

B1,+
j (λ)e−νj(λ)y,

b3(λ, y)

β
=

1

ν0
−(λ)− ν0

+(λ)
D0
−(λ)e−ν

0
+(λ)y,

b4(λ, y)

β
= − 1

ν0
−(λ)− ν1

+(λ)
D0
−(λ)e−ν

0
+(λ)y − 1

ν0
−(λ)− ν1

+(λ)

4∑
j=3

B0,−
j (λ)e−νj(λ)y. (A.2)

Remark A.1. The quantities b1(λ, y), b2(λ, y), and b3(λ, y) all contain
√
λ singularities. Note

that this singularity in b1(λ, y) is removable after consulting the formulas for D0
±(λ). Likewise,

the terms b2(λ, y), and b3(λ, y) appear in tandem in the expression for G12
λ (x, y) where again the

singularity is removable due to cancellation.

B Proof of Lemma 3.7

In this section, we present the proof of Lemma 3.7. Rather than present all six cases, we show the

details for two representative cases. Recall the definition

h(x) = −
(
f ′(Q∗(x))− f∞(x)

)
.

We will also use throughout these estimates the fact that

Wλ(τ) = Wλ(0)e−
s
d
τ , τ ∈ R.
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Case y < 0 < x. For this arrangement the pointwise Green’s function has the following expression

G12
λ (x, y) = h1(λ, y)eν

0
−(λ)x − β

2∑
j=1

cj(λ)

D0
u(λ, νj(λ))

eνj(λ)(x−y)

+ ϕ+(x)

∫ x

−∞

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ + ϕ−(x)

∫ ∞
x

ϕ+(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ.

For the leading order terms the expression for h1(λ, y) shows that the first term can be absorbed

into Hλ(x, y) (after factoring out the singularity at λbp
v ) and Iλ,j(x, y) (after factoring out an

additional singularity at λrp) while the inhomogeneous terms contribute to Jλ,j(x, y). We then

begin our treatment of the integral terms with the second integral where we use the specific form

of G12,∞
λ (τ, y) for y < 0 < τ . Using the decomposition of ϕ−(x) valid for x > 0 and focusing on

the terms proportional to h1(λ, y) the integral then assumes the form,

C(λ)

Wλ(0)
h1(λ, y)eν

0
+(λ)x(1 + κ+(x, λ))

∫ ∞
x

e(ν0
−(λ)−ν0

+(λ))τ (1 + θ+(τ, λ))h(τ) dτ

+
D(λ)

Wλ(0)
h1(λ, y)eν

0
−(λ)x(1 + θ+(x, λ))

∫ ∞
x

(1 + θ+(τ, λ))h(τ) dτ.

Convergence of the integrals then follows and we see that the first integral is O(e(ν0
−(λ)−ν0

+(λ)−ϑ)x)

and after again consulting the formula for h1(λ, y) we see that this term again contributes to

Hλ(x, y). The remaining terms for this integral are of the form

−β
2∑
j=1

C(λ)(1 + κ+(x, λ))

Wλ(0)D0
u(λ, νj(λ))

cj(λ, y)eν
0
+(λ)xe−νj(λ)y

∫ ∞
x

e(−ν0
+(λ)+νj(λ))τ (1 + θ+(τ, λ))h(τ) dτ

−β
2∑
j=1

D(λ)(1 + θ+(x, λ))

Wλ(0)D0
u(λ, νj(λ))

cj(λ, y)eν
0
−(λ)xe−νj(λ)y

∫ ∞
x

e(−ν0
+(λ)+νj(λ))τ (1 + θ+(τ, λ))h(τ) dτ.

The integral terms converge due to the gap lemma condition and are O(e(−ν0
+(λ)+νj(λ)−ϑ)x) and

consequently these terms can be absorbed into Jλ,j(x, y).

We now work out the first integral which must be broken into three pieces:∫ x

−∞

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ =

∫ y

−∞

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ +

∫ 0

y

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ

+

∫ x

0

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ.

For the first of these integrals we have to consider the term

h4(λ, y)

Wλ(0)

∫ y

−∞
e(ν1

+(λ)−ν1
−(λ))τ (1 + θ−(τ, λ))h(τ) dτ,

from which we observe that the integral is bounded and is O(e(ν1
+(λ)−ν1

−(λ)+ϑ)y) and we see that this

contributions can be distributed among Hλ(x, y) and Iλ,j(x, y). The other terms from G12,∞
λ (x, y)

are those proportional to eνj(λ) for j = 3, 4. For these the integral becomes

β

4∑
j=3

cj(λ)

Wλ(0)D1
u(λ, νj(λ))

e−νj(λ)y

∫ y

−∞
e(νj(λ)−ν1

−(λ))τ (1 + θ−(τ, λ))h(τ) dτ,
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for which convergence of the integral is automatic and these terms are incorporated into Hλ(x, y).

We now evaluate the second integral for which we need

G12,∞
λ (τ, y) = −h2(λ, y)eν

1
−(λ)τ − h3(λ, y)eν

1
+(λ)τ − β

2∑
j=1

cj(λ)

D1
u(λ, νj(λ))

eνj(λ)(τ−y), y < τ < 0.

We must estimate the integral,∫ 0

y
e−ν

1
−(λ)τ (1 + θ−(τ, λ))h(τ)G12,∞

λ (τ, y) dτ,

from which we note that the integral is bounded uniformly in y and therefore this term can be

incorporated into Hλ(x, y) and Iλ(x, y) after consulting the formula for h2(λ, y) and h3(λ, y). A

similar decomposition occurs for the inhomogeneous terms proportional to eνj(λ)(τ−y) .

This bring us to the final integral with 0 < τ < x for which we must use the form of G12,∞
λ for

y < 0 < τ . For ϕ−(τ) we must use its representation valid for τ > 0 and we then need to estimate

the integrals

C(λ)

Wλ(0)

∫ x

0
e−ν

0
−(λ)τ (1 + κ+(τ, λ))h(τ)G12,∞

λ (τ, y) dτ

+
D(λ)

Wλ(0)

∫ x

0
e−ν

0
+(λ)τ (1 + θ+(τ, λ))h(τ)G12,∞

λ (τ, y) dτ. (B.1)

On this interval the Green’s function G12,∞
λ (x, y) has one term of the form h1(λ, y)eν

0
−(λ)τ for

which we see that the integrals are uniformly bounded in x and y and the contributions can be

divided among Hλ(x, y) and Iλ,j(x, y) following the dependence of h1(λ, y) on y. The final terms

in G12,∞
λ (x, y) are those proportional to eνj(λ)(τ−y). In this case, the integrals have contribu-

tions of O(e−ν
0
−(λ)xeνj(λ)(x−y)) and O(e−νj(λ)y). Therefore, these terms contribute to Iλ,j(x, y) and

Jλ,j(x, y). This concludes the analysis in this case.

Case 0 < y < x. As before, the pointwise Green’s function for this arrangement can be expressed

as a sum of homogeneous and particular solutions for the asymptotic system plus a correction term

expressed by a variation of constants formula,

G12
λ (x, y) = b1(λ, y)eν

0
−(λ)x − β

2∑
j=1

cj(λ)

D0
u(λ, νj(λ))

eνj(λ)(x−y)

+ ϕ+(x)

∫ x

−∞

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ + ϕ−(x)

∫ ∞
x

ϕ+(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ.

To obtain bounds, the two integrals must once again be decomposed into four integrals depending

on the relative positions of τ , y and zero. The first such integral is

ϕ+(x)

∫ 0

−∞

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ.
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Here we must use the expression for the asymptotic Green’s function valid for τ < 0 < y,

G12,∞
λ (τ, y) = b4(λ, y)eν

1
+(λ)τ +

β

D1
u(λ, ν3(λ))

c3(λ)eν3(λ)(τ−y) +
β

D1
u(λ, ν4(λ))

c4(λ)eν4(λ)(τ−y).

Convergence of the integral is guaranteed since

Re
(
ν + ϑ− ν1

−(λ)
)
> 0, for ν = ν1

+(λ), ν3(λ), and ν4(λ)

and the integral inherits the domain of analyticity of the integrand. Focusing first on the term

involving b4(λ, y) we can write this as

eν
0
−(λ)(x−y)

(
b4(λ, y)

Wλ(0)
eν

0
−(λ)y(1 + θ+(x, λ))

∫ 0

−∞
e−ν

1
−(λ)τ (1 + θ−(τ, λ))h(τ)eν

1
+(λ)τ dτ

)
,

Note that b4(λ, y) has singularities when ν2(λ) = ν3(λ) (i.e. λ = λbp
v ) or ν0

+(λ) = ν2(λ) (i.e.

λ = λrp). Factoring out these singularities and consulting the expression for b4(λ, y) we observe

that the remaining terms in the parenthesis are uniformly bounded in x and y and contribute to

Hλ(x, y).

Next consider the terms involving νj(λ) with j = 3, 4. In each case we can repeat the argument

above and obtain

eν
0
−(λ)(x−y)

(
β(1 + θ+(x, λ))cj(λ)

Wλ(0)D1
u(λ, νj(λ))

eν
0
−(λ)ye−νj(λ)y

∫ 0

−∞
e−ν

1
−(λ)τ (1 + θ−(τ, λ))h(τ)eνj(λ)τ dτ

)
,

Convergence of the integral follows due to the spectral gap for the asymptotic system at −∞.

Factoring out the singularity at the branch point where ν2(λ) = ν3(λ) we obtain a similar bound.

The second integral is

ϕ+(x)

∫ y

0

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ.

To analyze this integral we must replace ϕ−(τ) by its representation for τ > 0 and use the expression

for the asymptotic Green’s function valid for 0 < τ < y,

G12,∞
λ (τ, y) = −b2(λ, y)eν

0
−(λ)τ − b3(λ, y)eν

0
+(λ)τ + β

4∑
j=3

cj(λ)

D0
u(λ, ν1(λ))

eνj(λ)(x−y).

Recall Remark A.1 which says that the singularity at λ = 0 due to the expressions for b2(λ, y)

and b3(λ, y) is removable in the expression for G12
λ . To obtain estimates, we begin with the terms

involving b3(λ, y) for which we can factor

−eν
0
−(λ)(x−y)

(
C(λ)

Wλ(0)
b3(λ, y)eν

0
−(λ)y(1 + θ+(x, λ))

∫ y

0
e(ν0

+(λ)−ν0
−(λ))τ (1 + κ+(τ, λ))h(τ) dτ

)
−eν

0
−(λ)(x−y)

(
D(λ)

Wλ(0)
b3(λ, y)eν

0
−(λ)y(1 + θ+(x, λ))

∫ y

0
(1 + θ+(τ, λ))h(τ) dτ

)
whereas for b2(λ, y) we have

−eν
0
−(λ)(x−y)

(
C(λ)

Wλ(0)
b2(λ, y)eν

0
−(λ)y(1 + θ+(x, λ))

∫ y

0
(1 + κ+(τ, λ))h(τ) dτ

)
,

−eν
0
−(λ)(x−y)

(
D(λ)

Wλ(0)
b2(λ, y)eν

0
−(λ)y(1 + θ+(x, λ))

∫ y

0
e(ν0
−(λ)−ν0

+(λ))τ (1 + θ+(τ, λ))h(τ) dτ

)
.
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Inspection of the integrands in both cases reveals that the integrals are uniformly bounded in y

and by consulting the formula for b2(λ) we obtain that these terms can be factored into Hλ(x, y).

The remaining terms involving νj(λ) for j = 3, 4 have a similar form

eν
0
−(λ)(x−y)

(
βC(λ)(1 + θ+(x, λ))cj(λ)

Wλ(0)D0
u(λ, νj(λ))

eν
0
−(λ)ye−νj(λ)y

∫ y

0
e(νj(λ)−ν0

−(λ))τ)(1 + κ+(τ, λ))h(τ) dτ

)
,

eν
0
−(λ)(x−y)

(
βD(λ)(1 + θ+(x, λ))cj(λ)

Wλ(0)D0
u(λ, νj(λ))

eν
0
−(λ)ye−νj(λ)y

∫ y

0
e(νj(λ)−ν0

+(λ))τ (1 + θ+(τ, λ))h(τ) dτ

)
.

Since Re(ν3,4(λ) > 0, upon moving the exponentials involving y into the integral we observe once

again that the terms in the parenthesis are bounded and can be absorbed into Hλ(x, y).

The third integral is

ϕ+(x)

∫ x

y

ϕ−(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ.

In this case, we have 0 < y < τ and the asymptotic Green’s function takes the form

G12,∞
λ (τ, y) = b1(λ, y)eν

0
−(λ)τ − β

D0
u(λ, ν1(λ))

c1(λ)eν1(λ)(τ−y) − β

D0
u(λ, ν2(λ))

c2(λ)eν2(λ)(τ−y).

For the terms involving b1(λ, y) we have

eν
0
−(λ)(x−y)

(
C(λ)

Wλ(0)
b1(λ, y)eν

0
−(λ)y(1 + θ+(x, λ))

∫ x

y
(1 + κ+(τ, λ))h(τ) dτ

)
,

+eν
0
−(λ)(x−y)

(
D(λ)

Wλ(0)
b1(λ, y)eν

0
−(λ)y(1 + θ+(x, λ))

∫ x

y
e(ν0
−(λ)−ν0

+(λ))τ (1 + θ+(τ, λ))h(τ) dτ

)
.

The analysis here resembles the previous case and these terms can be incorporated into Hλ(x, y).

On the other hand, the terms involving ν1,2(λ) require a bit more effort. To begin we write

eν
0
−(λ)x(1 + θ+(x))

βC(λ)cj(λ)

Wλ(0)D0
u(λ, νj(λ))

∫ x

y
e−ν

0
−(λ)τ (1 + κ+(τ))h(τ)eνj(λ)(τ−y) dτ,

+eν
0
−(λ)x(1 + θ+(x))

βD(λ)cj(λ)

Wλ(0)D0
u(λ, νj(λ))

∫ x

y
e−ν

0
+(λ)τ (1 + θ+(τ))h(τ)eνj(λ)(τ−y) dτ.

For the first integral, we use that Re(ν1,2(λ)) < 0 while Re(−ν0
−(λ)−ϑ) > 0 and see that these terms

can be incorporated into Hλ(x, y). For the second integral, the gap condition on the eigenvalues

implies that the integral can be bounded by the exponentials evaluated at τ = y from which we see

that these terms can be absorbed into Hλ(x, y).

The final integral is

ϕ−(x)

∫ ∞
x

ϕ+(τ)

Wλ(τ)
h(τ)G12,∞

λ (τ, y) dτ.

The same expression for the asymptotic Green’s function holds here since 0 < y < τ . The terms

involving b1(λ, y) are rather straightforward to handle, so we focus instead on those involving νj(λ).

Once again decomposing ϕ−(x) into an expression valid for x > 0, we find terms including

C(λ)eν
0
+(λ)x(1 + κ+(x))

−βcj(λ)

Wλ(0)D0
u(λ, νj(λ))

∫ ∞
x

e−ν
0
+(λ)τ (1 + θ+(τ))h(τ)eνj(λ)(τ−y) dτ.
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The integral converges provided due to the gamma lemma condition. After re-arranging we obtain

eνj(λ)(x−y)

(
−βC(λ)cj(λ)

Wλ(0)D0
u(λ, νj(λ))

(1 + κ+(x))e(ν0
+(λ)−νj(λ))x

∫ ∞
x

e−ν
0
+(λ)τ (1 + θ+(τ))h(τ)eνj(λ)τ

)
.

The terms in the parenthesis are bounded by Ce−ϑx and analytic aside from singularities occurring

when ν0
+(λ) = ν2(λ) or ν2(λ) = ν3(λ). They contribute to Jλ,j(x, y).

C Absolute spectrum of the Swift-Hohenberg equation

We prove Lemma 4.1 abd provide explicit formulas for the absolute spectrum of the Swift-Hohenberg

equation. We utilize Ση
ess(L+

v ) introduced in Section 2.2 and therefore recap the weighted spectral

curve

σv(k; η) = −k4 + 4iηk3 + (2 + 6η2)k2 + i(s− 4η3 − 4η)k − (1 + η2)2 + sη + µ,

with η < 0. Also, recall the ordering (2.4) as well as the definition (4.1), so that we can write

Σabs(L+
v ) := {λ ∈ C : Dv(λ, ρ(λ)) = 0,Re (ρ2(λ)) = Re (ρ3(λ))}.

The proof of Lemma 4.1 is divided into three parts: (i) computation of the real triple point and

showing that all real points to the left (on the real line) of it are elements of Σabs(L+
v ). (ii)

computation of the two simple and pinched double roots. (iii) deriving an explicit formula for two

curves that connect the triple point and the double roots and which are monotone with respect to

the real part.

Proof of Lemma 4.1.

(i) First, we obtain that a self-intersection of (exactly) three segments of σv for different wavenum-

bers k ∈ R can only occur on the real axis. Second, since we look for a spectral point, later denoted

by λtr
v , for which solving D(λtr

v , ρ) = 0 leads to solutions that satisfy Re (ρj(λ
tr
v )) = Re (ρj+1(λtr

v )) =

Re (ρj+2(λtr
v )) for an index j ∈ {1, 2}, we check that σv(k; η) intersects the real axis for non-zero

wavenumbers at

σv(η) := σv(±
√
η2 + 1− s/(4η); η) = 4η4 + 4η2 + µ− s2

16η2
,

where η2 + 1− s/(4η) > 0 holds for any s > 0 and η < 0. Moreover, the intersection point σv tends

to −∞ for η → 0 and to +∞ for η → −∞.

Since two segments of weighted essential spectrum intersect for different (non-zero) wavenumbers

at σv for any given η < 0, it holds that the real part of (at least) two spatial roots ρj of Dv(σv, ρ)

are equal to η, i.e. it exists an index j ∈ {1, . . . , 3} such that Re (ρj(σv)) = η = Re (ρj+1(σv)).

Next, we find that Im (σv(0; η)) = 0 and obtain

σ0
v(η) := σv(0; η) = −η4 − 2η2 + sη − 1 + µ,

where σ0
v < 0 for η < 0 and any given s > 0 as well as µ < 0.
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Since σv tends from −∞ to +∞ for η from zero to −∞ and at the same time σ0
v < 0 holds, we

expect that there exists a weight η < 0 such that σv = σ0
v . Thus, we compute that σv = σ0

v

whenever ηtr
v is the (unique) real solution to 20η3 + 4η + s = 0. We have ηtr

v < 0 holds for any

s > 0.

The key point is that at λtr
v := σv(η

tr
v ) = σ0

v(η
tr
v ), the spatial roots of Dv(λ

tr
v , ρ) satisfy Re (ρj(λ

tr
v )) =

Re (ρj+1(λtr
v )) = Re (ρj+2(λtr

v )) for an index j ∈ {1, 2} and hence λtr
v is a triple point in Σabs(L+

v )

(recall iv∞ = 2), where we refer to [27, 28] for more information on singularities of the absolute

spectrum.

The explicit formula for the triple point is given by (4.3) via σ0
v(η

tr
v ) and we note that λtr

v < −1 for

any s > 0 and µ < 0. Additionally, since λtr
v lies to the left of the rightmost real point of Σess(L+

v ),

it actually holds that

Re (ρ1(λtr
v )) = Re (ρ2(λtr

v )) = Re (ρ3(λtr
v )) < 0 < Re (ρ4(λtr

v )).

Next, we use [11, Proposition 2.3.1] which states that the (spatial) Morse index increases or de-

creases by one upon crossing σv in the complex plane from left to right depending on its orientation.

The orientations locally around σv for all s > 0 and ηtr
v ≤ η < 0 are

Re (σ′v(−
√
η2 + 1− s/(4η); η) > 0,

Re (σ′v(+
√
η2 + 1− s/(4η); η) < 0,

Im (σ′v(±
√
η2 + 1− s/(4η); η) < 0,

(C.1)

where prime denotes the derivative with respect to the wavenumber k. From this, we obtain that

σv ∈ Σabs(L+
v ) for ηtr

v < η < 0 since in this case it holds that

Re (ρ1(σv)) ≤ Re (ρ2(σv)) = Re (ρ3(σv)) < 0 < Re (ρ4(σv))

and thus the only (purely) real points in Σabs(L+
v ) are elements of the interval (−∞, λtr

v ], with

λtr
v < −1.

(ii) Utilizing the resultant function, we compute that two of the the three (candidates) for double

roots in Σabs(L+
v ) are given by (4.4). Note that the third candidate for a double root is purely real

and always larger than λtr
v . Based on step (i), it is not an element of Σabs(L+

v ) and thus we neglect

it in what follows. We further find λtr
v < Re (λdr

v ) for all s > 0 and µ < 0 and since Im (λtr
v ) = 0

but Im (λdr
v ) 6= 0, we expect the emergence of the two complex conjugated branches from λtr

v .

Next, we show that λdr
v are indeed elements of Σabs(L+

v ) and that they correspond to the rightmost

points. Since Re (σ′v) = 0 for kr±(η) := ±
√

3η2 + 1 and Im (σ′v) = 0 for

ki±(η) := ±
√

4η3 + 4η − s√
12η

,

we obtain from kr± = ki± the real solution

ηdr
v :=

−4 3
√

9 + 3
√

3κ2

12κ
< 0, where κ :=

3

√
−9s+

√
192 + 81s2 > 0.
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Note that the real solution to kr± = ki± is unique due to symmetry and we further define

kr±(ηdr
v ) = ki±(ηdr

v ) = kdr
± := ±

√
1

2
+

3
√

3

κ2
+

κ2

16 3
√

3
.

Therefore, the spectral curve σv possesses two complex conjugated cusps for η = ηdr
v which are

located at σv(k
dr
± ; ηdr

v ) = λdr
v . Using again [11, Proposition 2.3.1], we obtain that the double roots

λdr
v are the rightmost points in Σabs(L+

v ) and thus they are pinched. Moreover, one readily verifies

that these double roots are also simple.

(iii) First, we note that ηtr
v < ηdr

v < 0 for all s > 0 and independent of µ. Next, we obtain

again by [11, Proposition 2.3.1] and [27, Lemma 4.2], where the latter one describes the Morse

index at intersections of two curves in Ση
ess, that further elements of Σabs(L+

v ) apart from the

interval (−∞, λtr
v ] (see step (i)) occur only at self-intersections of σv for ηtr

v ≤ η ≤ ηdr
v . These

intersections are located at points for which for any wavenumbers k1 and k2 with k1 6= k2 it holds

that σv(k1; η̃) = σv(k2; η̃) with ηtr
v ≤ η̃ ≤ ηdr

v . Equating the real and imaginary parts, we obtain

that under the condition ηtr
v ≤ η̃ ≤ ηdr

v the intersections are located at

σ̌v(η̃) := 24η̃4 + 8η̃2 +
7

2
sη̃ + µ+

8sη̃ + s2

16η̃2
± i

(
−4η̃3 − s

2
+

1

2

√
−(8η̃3 + s)(32η̃3 + 8η̃ + s)

)
κ̃,

where

κ̃ :=

√
12η̃2 + 4− 1

η̃

√
−(8η̃3 + s)(32η̃3 + 8η̃ + s).

One further verifies that σ̌v(η
tr
v ) = λtr

v and σ̌v(η
dr
v ) = λdr

v , as expected.

The last step is to show that Re (σ̌′v) > 0 for all ηtr
v < η̃ < ηdr

v . To this end, we first obtain

that
√
−(8η̃3 + s)(32η̃3 + 8η̃ + s) is positive for all ηtr

v < η̃ < ηdr
v , since 8η̃3 + s is positive and

32η̃3 + 8η̃ + s is negative for those weights (recall that ηtr
v is the real root of 20η3 + 4η + s), and

where we note that ηdr
v solves precisely 32η3 + 8η + s = 0. Thus, the real part of σ̌′v reads

Re (σ̌′v(η̃)) = 96η̃3 + 16η̃ +
7

2
s+

s

2η̃2
− 8sη̃ + s2

8η̃3

for which we obtain that it increases monotonically for any η̃ < 0 and that Re (σ̌′v(η
tr
v )) > 0 as well

as Re (σ̌′v(η
dr
v )) > 0.

Summing up, the absolute spectrum of L+
v is given by the real interval (−∞, λtr

v ], where λtr
v < −1,

and the two complex conjugated branches given by σ̌v(η̃) for ηtr
v ≤ η̃ ≤ ηdr

v , connecting λtr
v to the

left and λdr
v to the right, and where the real part of these branches increases strictly from left to

right. This concludes the proof.

We emphasize again that the branch points λdr
v , i.e. the simple and pinched double roots, are

the most unstable elements of Σabs(L+
v ) for any s > 0 and µ. Based on the monotonicity of

σ̌(η̃) with respect to η̃ it follows that remnant, absolute, and pointwise instability coincide in the

Swift-Hohenberg, which is also the case for the KPP equation.
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