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Introduction

The answers to questions related to the biological effects of radiofrequency radiation 

exposure on organisms are pending. In bioelectromagnetic experiments, one of the main 

difficulties is that the results found in the literature, even those obtained with equivalent 

models, are poorly reproducible. This poor reproducibility may be due to the use of various 

biological material and exposure systems, varying exposure durations and, most of the time, 

varying frequencies. For instance, focusing on the impact of the electromagnetic field on gene 

expression, we found that the 8 most recent publications used microarrays based on 5 

different models (mouse, rat, human, Drosophila, and chicken models); 8 different 

frequencies, from intermediary frequencies to radiofrequencies; and 3 data processing 

methods (no statistical tests, simple tests, and false discovery rate (FDR) statistical test) 

[Andocs et al., 2016; Fragopoulou et al., 2018; Habauzit et al., 2020; Kim et al., 2016; 

Lamkowski et al., 2018; Manta et al., 2017; Woelders et al., 2017; Yeh et al., 2015]. Together, 

the differences in these parameters make it difficult not only to compare individual 

experiments but also to replicate them.

For decades, evaluations of the potential effects of electromagnetic waves have focused on 

several pathways that could be involved in cancer promotion, such as DNA damage and 

oxidative stress pathways [Saliev et al., 2019; Vijayalaxmi and Prihoda, 2012]. The research 
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performed to date has intensively explored whole-genome gene expression modification 

under radiofrequency exposure [Leszczynski et al., 2012; Leszczynski, 2014]. In particular, 

genomic high-throughput approaches have enabled whole-genome gene expression to be 

screened under both exposure and control conditions, but such approaches have failed to 

produce clear agreements.

Our group has performed several microarray experiments to evaluate the effects of millimeter 

waves (MMWs) at approximately 60 GHz on gene expression [Habauzit et al., 2014; Le 

Quément et al., 2012; Soubere Mahamoud et al., 2016]. We have used microarray approaches 

with primary cultures of human keratinocytes as the main targets of MMWs. First, we have 

found that when MMWs are applied alone in athermic conditions and when microarrays are 

analyzed with a false discovery rate (FDR) filter, the MMWs have no effect on gene expression 

[Habauzit et al., 2014; Le Quément et al., 2012; Soubere Mahamoud et al., 2016]. However, 

when MMWs are applied at an incident power density (IPD) of 20 mW/cm² (the current 

International Commission on Non-Ionizing Radiation Protection (ICNIRP) upper limit for local 

exposure of the general public [Ahlbom et al., 1998]) in association with other stressors (heat 

or metabolic stresses, for instance), the results from the same analysis (with FDR-filtered data) 

reveal a slight effect of the MMWs on gene expression with 7 and 6 modified genes [Habauzit 

et al., 2014; Soubere Mahamoud et al., 2016]. Among the modified genes, 3 genes exhibit 

changes sufficiently reproducible for study: ADAMTS6, IL7R, and NOG. The aim of this study 

was to evaluate the universality of the expression modifications of these genes in other 

primary cultures of keratinocytes and a cell line.

Materials and methods
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Cell cultures

Four cell types were used. The first cell type corresponded to a pool of primary human 

keratinocytes isolated from 3 neonatal foreskins and was called HEK_3N (Invitrogen, Saint-

Aubin, France). The second cell type, called HEK_1N, consisted of primary human 

keratinocytes from a single donor of neonatal foreskin (Invitrogen, Saint-Aubin, France). The 

third primary culture (NHEK_3N) was derived from 3 pools of donated neonatal foreskin 

(Lonza, Levallois-Perret, France). All primary keratinocytes were cultured and exposed as 

previously described [Habauzit et al., 2014] and were used when they were between passages 

4 and 9. Briefly, cells were cultured onto collagen IV-coated plates (Becton Dickinson, Franklin 

Lakes, NJ) in supplemented keratinocyte serum-free medium (SFM) (Gibco, Carlsbad, CA) with 

antibiotics (Invitrogen, Saint-Aubin, France). The derived keratinocyte cell line (HaCaT) was 

used and maintained in culture in Dulbecco's modified Eagle medium (Gibco/Life 

Technologies, Saint-Aubin, France) supplemented with 10% fetal calf serum (FCS), 1% 

antibiotics, and 1% L-glutamine as previously described [Le Quément et al., 2014]. The HaCaT 

cells were used when they were between passages 5 and 10.

Exposure system and experimental setup

The exposure conditions were optimized numerically to maximize the homogeneity of the 

specific absorption rate (SAR) distribution within the cell monolayer, as detailed previously 

[Zhadobov et al., 2012]. The IPD was determined numerically and then validated by thermal 

measurement. The average and peak SAR over the cell monolayer were 594 W/kg and 1233 

W/kg, respectively, and corresponded in near-field conditions (2.5 cm between the horn 

antenna and the plate bottom) to an average IPD of 20 mW/cm². The exposure system and 
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conditions have been detailed previously [Zhadobov et al., 2012]. Briefly, the 2.105 cells, in 

one well of the 6-well plate, were placed in a MEMMERT UNE400 incubator (Memmert, 

Schwabach, Germany) adapted for electromagnetic exposure. The inside of the incubator was 

covered with absorbent material (ECCOSORB HR-1/2"-MB, Emerson & Cuming, Westerlo, 

Belgium) with a reflectivity below -20 dB around 60 GHz. This limits the maximum reflections 

to less than 1% in respect to the incident field. Due to the properties of MMWs, cell exposures 

were performed from the bottoms of the wells (Fig. S1). The cells were exposed in the 

corresponding culture medium supplemented with 10 mM HEPES for primary keratinocyte 

cultures and 4.6 mM HEPES for HaCaT cells for 3 h. For each experiment 4 ml of medium was 

used. Note that the volume does not influence either the SAR or the IPD [Orlacchio et al., 

2019]. Two exposure conditions (unexposed (Sham) and MMW-exposed (Expo)) were used 

under the same cell culture conditions. All cells were exposed in the same incubator with the 

generator on or off. The experiments were replicated between 3 and 6 times.

RNA extraction and RT-QPCR analysis

RNA was extracted with a NucleoSpin RNA kit (Macherey-Nagel, Hoerdt, France) and then 

quantified by a NanoDrop 8000 spectrophotometer (NanoDrop Technology, Cambridge, UK). 

Five hundred nanograms of RNA was reverse-transcribed with an iScript kit (Bio-Rad, Hercules, 

CA) according to the supplier’s instructions. All primers used are presented in Table 1. Two 

housekeeping genes (TBP and GAPDH) were used for normalization. Quantitative polymerase 

chain reaction (QPCR) was performed on a Bio-Rad CFX 384-well apparatus with SYBR Green 

Supermix (Bio-Rad, Hercules, CA). The results were analyzed using the ΔΔCT method.

Statistical analysis
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Statistical analyses for the comparison of conditions were performed using a one-tailed Mann-

Whitney test on GraphPad Prism software (GraphPad Software, San Diego, CA). A difference 

at p-value ≤ 0.05 was considered statistically significant.

Results

Effect of MMWs on gene expression in keratinocytes

ADAMTS6, IL7, and NOG gene expression in primary keratinocyte cultures was modified by 

treatment with growth factors, especially Interleukin-1 (IL1) and Epidermal Growth Factor 

(EGF). These data confirmed that the expression of these genes was sensitive enough to be 

modulated, as shown in Figure S2 (supplementary data). For the exposure experiments, 4 

cellular models of the exact same cell type, human keratinocytes, were used. Among these 

cell models, 3 primary cultures were obtained from different donors, and one culture was 

based on a keratinocyte-derived cell line (HaCaT). Although the cell sources were different, 

the basal expression of ADAMTS6, IL7R, and NOG was similar in the four keratinocyte models 

(data not shown). Figure 1 shows the variations in ADAMTS6, IL7R, and NOG expression levels. 

Three different expression profiles were observed after MMW exposure. The first profile 

indicated that ADAMTS6 expression was downregulated in HEK_3N cells, with a fold change 

of 0.5 with associated p-value of 0.057 (Fig. 1A). The second profile did not show any 

treatment effects, as illustrated by lack of differences in ADAMTS6 expression levels in the 

sham and expo cells (similarly, no differences were found for IL7R and NOG expression; Fig. 

1B-C) in the HEK_1N cells. The third ADAMTS6 profile was characterized by upregulated gene 

expression in the expo NHEK_3N primary culture cells and the HaCaT cells with associated p-
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value of 0.1, findings that corresponded to data previously obtained. Together, these three 

profiles indicate that each biological material shows a specific sensitivity, even when the 

exposure treatment and conditions are exactly the same. This finding was obtained regardless 

of whether ADAMTS6 expression was downregulated, not affected, or upregulated. The same 

expression patterns were also observed for IL7R and NOG (Fig. 1B-C). Among these profiles, 

no significant differences were found.

Discussion

In our previous microarray experiments, 3 differentially expressed genes were identified, and 

one year later, the findings were confirmed by results from independent experiments based 

on the same cellular model [Habauzit et al., 2014]. These data indicated that MMWs 

significantly upregulate ADAMTS6, ILR7, and NOG expression. These previously published data 

[Habauzit et al., 2014] indicated a specific MMW effect independent of a heat-associated 

MMW response. In this study, we aimed to determine whether the gene regulation observed 

was specific to the type of cell used or whether it reflected a more general regulation that 

could be found regardless of the cell type. Therefore, experiments were replicated with three 

different primary cultures and one cell line. We first tested several growth factors to ensure 

that these genes could be modulated. These controls validated the RT-QPCR method used to 

evaluate the MMWs’ effects on gene expression. Then, the duplicated experiments in the 

keratinocyte models showed 3 different expression patterns (downregulation, no effect, and 

upregulation after both treatments), suggesting that the specific sensitivity observed may 

depend more on the model used than on the general cell sensitivity to MMW exposure. This 
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observation raises two problems of paramount importance in the field of 

bioelectromagnetism: the reproducibility of the results and impact of the biological model.

Findings of bioelectromagnetic studies are difficult to compare because of the 

multiplicity of exposure systems, frequencies, treatment durations, models, and technologies 

required for biological assessment and statistical analysis. Attention is often concentrated on 

the variations in exposure conditions and wavelengths to explain differences between 

bioelectromagnetic studies. Consequently, the impact of the biological material is often 

underestimated. This problem and related problems linked to biological models have started 

to be illustrated by more general studies in published papers [Lai, 2018; Yakymenko et al., 

2016].

The present study shows that the biological model exerts a strong influence on the 

data obtained, which may at least partly explain the heterogeneity of the reported results in 

the field. It is important to emphasize that these experiments were conducted at the same 

frequency (60.4 GHz), in the same exposure system, and for the same exposure duration. In 

addition, we used 4 cellular models that were all presumed to represent the same biological 

entity (human keratinocytes) and therefore were expected to react in a similar manner. 

Surprisingly, we found 3 different expression profiles despite using identical exposure 

conditions. The statistically significant effect in our first study (based on one primary culture 

pool) was not reproduced when the biological material was changed, although all the models 

were composed of keratinocytes (primary cultures sourced from one to three donors 

randomly obtained from suppliers and a cell line). We conclude that the biological material 

caused great variability in the cellular response. Two possibilities that are not mutually 

exclusive may explain such observations. First, it cannot be ruled out that the observed 
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variations were reflective of random fluctuations not related to the treatment. Considering 

their cost, most in vitro studies are repeated a limited number of times. In these cases, the 

limits of the statistical tests are reached, and false positives can sometimes emerge; for 

instance, a p-value of 0.05 indicates a 5% probability of the data representing a false positive. 

Second, the variability in the biological response to exposure could have been associated with 

the state or history of the biological material. It is well known that heterogeneous gene 

expression among cellular subclones can be the result of epigenetic modification or somatic 

mutation. Mutations are very rare events; in contrast, epigenetic modifications are common 

and relatively more sensitive to the environment. These modifications are essential for cell 

adaptation and responses to external variations, and they constitute a form of memory that, 

in turn, may influence how cells respond to environmental stimuli [Park et al., 2014; Veith et 

al., 2016]. Thus, it is possible that the different expression profiles observed reflect epigenetic 

modifications specific to the history/state of each cellular model that we used. If sensitivity to 

the electromagnetic field depends on epigenetic memory, then these results raise questions 

about inter-individual sensitivity to stimulation in the human population.

Although our past and present results are divergent, it is very likely that the 

observations were accurate each time. However, they reflected the situation at the moment 

of the experiment, which depended on the sensitivity and dynamism of the models used. We 

are aware that this study focused on only three genes and that the results may therefore not 

be representative of all expected results in bioelectromagnetism studies. Moreover, whether 

these results can be translated to other radiofrequencies and/or biological models, such as 

brains, remains unclear. This question is valid, and the uncertainties are illustrated by the 

many contradictory results described in the literature. Some publications in the field have 

started to introduce quality criteria [Simkó et al., 2016; Vijayalaxmi, 2016]. Among all the key 
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points considered in these publications, validation of the effects in other cell types (different 

models or equivalent models) should be the main criterion for the identification of clear and 

reproducible effects of radiofrequency exposure.

In conclusion, our data demonstrate that in the four keratinocyte cell types, 3 different 

expression patterns (down regulation, upregulation, and no effect) were observed, despite 

their exposure having been the same in all regards. Additional studies will be necessary to 

identify the molecular and cellular origins of such variability in exposure sensitivity.   

For additional information, see Online Supplementary Materials on the publisher's website.

Legends

Table Legend

Table 1: List of primers used to validate the identified differentially expressed genes

Figure Legends

Fig. 1. ADAMTS6 (A), IL7R (B), and NOG (C) expression in different primary cultures and a cell line. The 
results are expressed as median, and the error bars represent the interquartile range. In Figure 1A, the 
replicate numbers are indicated in brackets. The associated p-value is indicated between each 
comparison.

Fig. S1. Illustration of the exposure system used for all the detailed experiments.

Fig. S2. Gene expression of ADAMTS6 (A), IL7R (B), and NOG (C) under stimulation of Tumor Necrosis 
Factor (TNF-α, 50 ng/ml), Fibroblast Growth Factor (FGF, 10 ng/ml), Leukemia Inhibitory Factor (LIF, 10 
ng/ml), Epidermal Growth Factor (EGF, 10 ng/ml), Interleukin-1 (IL-1, 50 ng/ml), and Transforming 
Growth Factor (TGF-β, 10 ng/ml). The results are the means from two independent experiments ± 
SEMs.
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Table 1: List of primers used to validate the identified differentially expressed genes

Gene 
Symbol

Forward Reverse RefSeq #

ADAMTS6 ACATCAATCCTCTTCCTCTGGG TTCAAGTTCTGCAGTCGAGC NM_197941.4
IL7R GACGCATGTGAATTTATCCAGCAC CATACATTGCTGCCGGTTGGAG NM_002185.5
NOG AAGCAGCGCCTAAGCAAGAAGC AATGTCTGCGACCACAGCCACATC NM_005450.6
GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG NM_002046
TBP TGCACAGGAGCCAAGAGTGAA CACATCACAGCTCCCCACCA NM_003194
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Fig. 1: ADAMTS6 (A), IL7R (B), and NOG (C) expression in different primary cultures and a cell line. The 
results are expressed as median, and the error bars represent the interquartile range. In Fig. 1A, the 

replicate numbers are indicated in brackets. The associated p-value is indicated between each comparison. 
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