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One dimensional study of the depressurization process.

Bertrand Mercier Sept 4

Introduction

In pressurized water reactors, depressurization occurs when there is a breach on the primary circuit, this is also called flash evaporation although it takes some time, as we shall see. We shall study this phenomenon numerically. Then we shall need an adequate equation of state. We shall use 1D Lagrangian hydrodynamics and compare the Wilkins scheme [START_REF] Wilkins | Finite difference scheme for calculating problems in two space dimensions and time[END_REF] with the acoustic solver scheme [START_REF] Corot | A new nodal solver for the two dimensional Lagrangian hydrodynamics[END_REF]. We add a complement on the steam explosion. ݏ = ݕ * ݏ ሺܶ ሻ + ሺ1 -ݕ * ሻ ݏ ௩ ሺ ܶሻ∎ Method to compute , ܶ and ߝ, when ߬ and ݏ are given : In the same way, we solve ݕ ఛ ሺܶሻ = ݕ ௦ ሺܶሻ = ݕ * ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ௦ ሺܶሻ = ൫ݏ -ݏ ௩ ሺܶሻ൯ ቀݏ ሺܶሻ -ݏ ௩ ሺܶሻቁ ൗ

The details are left to the reader. ∎

Test of our equation of state.

We let ߝ = ݂ሺ߬, ݏሻ : a well-known result in thermodynamics (see e.g. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF]) is that we should have

(1)

డ డఛ = -
To check that this is the case, we have selected ݏ = 4.4957 and 5.81494≤ ߬ ≤ 10.46689.

We compute the derivative of ߝ w.r.t ߬ both by forward and backward difference. The results given in Fig. 1 show a rather good agreement that make us confident with the validity of our equation of state.

Fig.1 pressure p vs -߲ߝ ߲߬ ⁄

Sound speed

When we select ߬, ݏ as the primitive thermodynamic variables, we have

(2) ܿ = ߬ ඥ-߲ ߲߬ ⁄ provided we use international units for each variable. When we select ߬, ߝ as the primitive thermodynamic variables, we shall see in §2 that [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ also in international units. In the following test we replace partial derivatives by finite differences, and we get the results given in Fig 2 .   We notice that the sound speed in a diphasic mixture is much lower than in the liquid phase, where it is of the order of 1800 m/s. This result is well known. 2) or [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] as a function of the steam mass fraction x §2 The Wilkins scheme In Lagrangian coordinates, in 1D, the gas dynamics system can be written ( see e.g. B. Després [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] formula (2.21) page 20) :

(4) డఛ డ௧ -ܵ డ௨ డ = 0 (5) డ௨ డ௧ + ܵ డ డ = 0 (6) డா డ௧ + ܵ డ డ ሺݑሻ = 0
Where ߬ = 1 ߩ ⁄ and ݉ denotes the mass variable such that = ߩ. ܵ ݔ݀ , ߩ = ߩሺݔሻ is the volumic mass, ܵ denotes the tube section, and ݔ is the space variable. Moreover ܧ = ߝ + ݑ ଶ 2 ⁄ Is the total energy per unit mass. In §2 and §3 we shall assume that the flow is isentropic, so we don't need the energy equation (6) which, for smooth solutions, is equivalent to

(7) డ௦ డ௧ = 0 Proof When the solution is differentiable (6) implies డఌ డ௧ + ݑ డ௨ డ௧ + ܵ  డ௨ డ + ܵ ݑ డ డ = 0 so that, using (5), we get (6b) డఌ డ௧ + ܵ  డ௨ డ = 0
Using (4), we finally get :

డఌ డ௧ +  డఛ డ௧ = 0
Which proves (7) since ݏ݀ܶ = ݀ߝ +  ݀߬ from the second law of thermodynamics ∎ Remark 1 : 1. With (6b) we see that our system of equations is an hyperbolic system : with  = ሺ߬, ߝሻ we have 

డ డ௧ ቆ ߬ ݑ ߝ ቇ + ൭ 0 -ܵ 0 ܵ ߲ ߲߬ ⁄ 0 ܵ ߲ ߲ߝ ⁄ 0 ܵ  0 ൱ డ డ ቆ ߬ ݑ ߝ ቇ = 0
Provided that . ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ > 0 we can define ߙ = ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ , and see that this matrix has 3 real eigenvalues ±ܵߙ and 0. In the ሼ݉, ݐሽ the equation of characteristics is ݀݉ = ±ܵߙ .ݐ݀ Since ݀݉ = ߩܵ ,ݔ݀ we see that ߩ ݔ݀ = ±ߙ ݐ݀ or ݔ݀ = ±ܿ ݐ݀ with ܿ = ߙ ߬ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ Which proves that ܿ is the sound speed. Note that ߙ is the impedance. 2. We could have selected ܵ = 1 as Despres does in [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF]. However if we do that we get ݀݉ = ߩ ݔ݀ which is non homogeneous in terms of units. ∎

The Wilkins scheme [5]:

We introduce a « mesh » for variable ݉ : … ݉ ିଶ < ݉ ିଵ < ݉ < ݉ ାଵ < ݉ ାଶ …. Similarly we discretize time with a timestep ,ݐ∆ so we shall compute the approximate solution at the following discrete times :

0 < ݐ∆ < ݐ∆2 … < ݐ∆݊ < ሺ݊ + 1ሻ∆ݐ < ⋯
Our target is to simulate the depressurization process of a saturated liquid, which is represented by a rarefaction wave and is then isentropic.

In the Wilkins scheme, pressures and volumic masses are cell centered, so we denote  ାଵ/ଶ and ߬ ାଵ/ଶ their values at time ݐ∆݊ on cell ሺ݉ , ݉ ାଵ ሻ However, velocities are defined on a staggered grid : ݑ ାଵ/ଶ denotes the velocity at node ݉ and time ሺ݊ + 1/2ሻ∆.ݐ The discrete analogs of (4) and (5) are :

(7)

ఛ శభ/మ ିఛ శభ/మ షభ ∆௧ -ܵ ௨ శభ షభ/మ ି௨ షభ/మ శభ ି = 0 (8) ௨ శభ/మ ି௨ షభ/మ ∆௧ + ܵ శభ/మ ି షభ/మ శభ/మ ି షభ/మ = 0
For practical purpose, it is useful to come back to the physical space : the mesh in the physical space is updated as follows :

(9) 

௫ శభ ି௫ ∆௧ = ݑ ାଵ/ଶ Such a

Boundary conditions

We shall assume that the depressurization process begins at time t=0, with a breach on the left side of the tube ሺݔ = 0 ݐܽ ݐ = 0ሻ. The pressure  * is given on the left boundary ݔ = ݔ .

On the right side we assume that there is a wall so that we set ݑ ே ାଵ/ଶ = 0.

The numerical results obtained with the Wilkins scheme are given in §3. §3 The acoustic solver scheme. [START_REF] Corot | A new nodal solver for the two dimensional Lagrangian hydrodynamics[END_REF][START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] We have seen on Fig. 1 that, if we write  = ݂ሺ߬, ݏሻ, for fixed ,ݏ ݂ሺ߬, ݏሻ is a decreasing function of ߬, so that the sound speed

ܿ = ߬ ඥ-߲݂ ߲߬ ⁄ exists.
In this section, we shall assume the flow to be isentropic which means that ݏ is constant. Let ݃ሺߩሻ = ݂ሺ߬, ݏሻ , with ߬ = 1 ߩ ⁄ , we have

݃ ᇱ ሺߩሻ = ߲݂ ߲߬ ݀߬ ݀ߩ = - 1 ߩ ଶ ߲݂ ߲߬ = -߬ ଶ ߲݂ ߲߬ = ܿ ଶ
So that ܿ = ඥ݃ ᇱ ሺߩሻ The acoustic solver uses the following remarks on the linearized problem. We consider a small perturbation ݑ ଵ , ߩ ଵ of a permanent flow ߩ , ݑ .

Let ߬ = 1 ߩ ⁄ ,  = ݃ሺߩ ሻ et ܿ = ඥ݃ ᇱ ሺߩ ሻ . We shall have ݃ሺߩ + ߩ ଵ ሻ ≅ ݃ሺߩ ሻ + ݃ ᇱ ሺߩ ሻߩ ଵ =  + ܿ ଶ ߩ ଵ Hence  ≅  + ܿ ଶ ߩ ଵ and  ଵ = ܿ ଶ ߩ ଵ .
In the same way, we have ݀߬ = -݀ߩ ߩ ଶ ⁄ so that

߬ ଵ = -ߩ ଵ ߩ ଶ ⁄ and  ଵ = -ܿ ଶ ߩ ଶ ߬ ଵ
Replacing ݑ by ݑ + ݑ ଵ , ߩ by ߩ + ߩ ଵ in (4) and ( 5)

We get

డ డ௧ ሺ߬ + ߬ ଵ ሻ -ܵ డ డ ሺݑ + ݑ ଵ ሻ = 0 డ డ௧ ሺݑ + ݑ ଵ ሻ + ܵ డ డ ሺ +  ଵ ሻ = 0 and then డ డ௧ ߬ ଵ -ܵ డ డ ݑ ଵ = 0 or డ డ௧  ଵ + ܿ ଶ ߩ ଶ ܵ డ డ ݑ ଵ = 0 డ డ௧ ݑ ଵ -ܿ ଶ ߩ ଶ ܵ డ డ ߬ ଵ = 0 or డ డ௧ ݑ ଵ + ܵ డ డ  ଵ = 0
which is nothing but the linear wave equation, which can be solved by the method of characteristics : we have

డ డ௧ ሺ ଵ + ߩ ܿ ݑ ଵ ሻ + ߩ ܿ ܵ డ డ ሺ ଵ + ߩ ܿ ݑ ଵ ሻ = 0 డ డ௧ ሺ ଵ -ߩ ܿ ݑ ଵ ሻ -ߩ ܿ ܵ డ డ ሺ ଵ -ߩ ܿ ݑ ଵ ሻ = 0
There are two Riemann invariants : let ߙ = ߩ ܿ :

ܨ =  ଵ -ߙ ݑ ଵ which satisfies డ డ௧ ܨ -ߙ ܵ డ డ ܨ = 0 and ܩ =  ଵ + ߙ ݑ ଵ which satisfies డ డ௧ ܩ + ߙ ܵ డ డ ܩ = 0
Let ݔ = ݉/ሺߩ ܵሻ we also have

డ డ௧ ܨ -ܿ డ డ௫ ܨ = 0 so that
,ݔ‪ሺܨ ݐሻ = ݔ‪ሺܪ + ܿ ݐሻ In the same way ,ݔ‪ሺܩ ݐሻ = ݔ‪ሺܬ -ܿ ݐሻ The solution is the sum of two parts : the first one propagates at speed -ܿ ; the other one at speed + ܿ .

Remark 2:

Assume that we have an interface in ݉ = 0 such that

ߩ ሺ݉ሻ = ൜ ߩ ݂݅ ݉ < 0 ߩ ோ ݂݅ ݉ > 0 ൠ We shall have  ሺ݉ሻ = ൜  ݂݅ ݉ < 0  ோ ݂݅ ݉ > 0 ൠ with  = ݃ ሺߩ ሻ et  ோ = ݃ ோ ሺߩ ோ ሻ
Since there is no shock, we must have continuity of the pressure, and the velocity, so that in particular

݃ ሺߩ ሻ = ݃ ோ ሺߩ ோ ሻ However, it is possible that ܿ ≠ ܿ ோ and ߙ = ߩ ܿ ≠ ߙ ோ = ߩ ோ ܿ ோ Now, let ܪ ோ , ܬ ோ (resp. ܪ , ܬ
) denote the Riemann invariants on the right side ݉ > 0 (resp. on the left side ݉ < 0 ) we have

 ଵ ሺ݉, ݐሻ + ߙ ݑ ଵ ሺ݉, ݐሻ = ܬ ሺ݉ -ߙ ݐሻ  ଵ ሺ݉, ݐሻ -ߙ ݑ ଵ ሺ݉, ݐሻ = ܪ ሺ݉ + ߙ ݐሻ So that  ଵ ሺ݉, ݐሻ = ܬ ሺ݉ -ߙ ݐሻ + ܪ ሺ݉ + ߙ ݐሻ ݑ ଵ ሺ݉, ݐሻ = ሺܬ ሺ݉ -ߙ ݐሻ -ܪ ሺ݉ + ߙ ݐሻሻ/ߙ Similarly, on the leftside ݉ < 0 we find  ோ ଵ ሺ݉, ݐሻ + ߙ ோ ݑ ோ ଵ ሺ݉, ݐሻ = ܬ ோ ሺ݉ -ߙ ோ ݐሻ  ோ ଵ ሺ݉, ݐሻ -ߙ ோ ݑ ோ ଵ ሺ݉, ݐሻ = ܪ ோ ሺ݉ + ߙ ோ ݐሻ  ோ ଵ ሺ݉, ݐሻ = ܬ ோ ሺ݉ -ߙ ோ ݐሻ + ܪ ோ ሺ݉ + ߙ ோ ݐሻ ݑ ோ ଵ ሺ݉, ݐሻ = ሺܬ ோ ሺ݉ -ߙ ோ ݐሻ -ܪ ோ ሺ݉ + ߙ ோ ݐሻሻ/ߙ ோ
To match both sides we apply velocity and pressure continuity in

݉ = 0) ܬ ሺ-ߙ ݐሻ + ܪ ሺߙ ݐሻ = ܬ ோ ሺ-ߙ ோ ݐሻ + ܪ ோ ሺߙ ோ ݐሻ ൫ܬ ሺ-ߙ ݐሻ -ܪ ሺߙ ݐሻ൯ ߙ ⁄ = ሺܬ ோ ሺ-ߙ ோ ݐሻ -ܪ ோ ሺߙ ோ ݐሻሻ ߙ ோ ⁄
Which gives a relation between incident and reflected waves at the interface. Note that in the particular case ߙ = ߙ ோ we have ܬ ோ = ܬ and ܪ ோ = ܪ .∎

Definition of the « acoustic » scheme :

Its purpose is to solve the system (4) (5) namely

డఛ డ௧ -ܵ డ௨ డ = 0 డ௨ డ௧ + ܵ డ డ = 0
with a finite difference method. Like for the Wilkins scheme, we introduce a mesh for ݉ and a time discretization with a time step .ݐ∆ Integrating (4) and ( 5) pour ݉ ≤ ݉ ≤ ݉ ାଵ and for ݐ∆݊ ≤ ݐ ≤ ሺ݊ + 1ሻ∆ݐ we get (12)

ఛ శభ/మ శభ ିఛ శభ/మ ∆௧ -ܵ ௨ శభ శభ/మ ି௨ శభ/మ శభ ି = 0 (13) ௨ శభ/మ శభ ି௨ శభ/మ ∆௧ + ܵ శభ శభ/మ ି శభ/మ శభ ି = 0
where ߬ ାଵ/ଶ denotes the (assumed to be constant) value of ߬ at time ݐ∆݊ on the cell ݉ ≤ ݉ ≤ ݉ ାଵ and the same for ݑ ାଵ/ଶ . There is no staggered grid here. However, we have to evaluate some values ݑ ାଵ/ଶ or  ାଵ/ଶ at the interface between two cells.

We shall use Riemann invariants.

We have seen that  -ݑߙ propagates from right to left and that  + ݑߙ propagates from left to right. To simplify notations we let

ݑ ோ = ݑ ାଵ/ଶ , ݑ = ݑ ିଵ/ଶ and ݑ * = ݑ ାଵ/ଶ  ோ =  ାଵ/ଶ ,  =  ିଵ/ଶ and  * =  ାଵ/ଶ
We shall ask that

 * ߙ ݑ * =  + ߙ ݑ  * -ߙ ோ ݑ * =  ோ -ߙ ோ ݑ ோ By linear combination we get that (14) ሺߙ ோ + ߙ ሻ * = ߙ ோ  + ߙ  ோ + ߙ ோ ߙ ሺݑ -ݑ ோ ሻ (15) ሺߙ ோ + ߙ ሻݑ * = ሺ - ோ ሻ + ߙ ݑ + ߙ ோ ݑ ோ In annex 2,
the stability of this scheme is studied in the linear case it shows that we must have CFL ≤ 1 where CFL is the Courant-Friedrichs-Lewy number.

Boundary conditions

In our depressurization problem we know that pressure  * on the left side is given. We then ask  * -ߙ ோ ݑ * =  ோ -ߙ ோ ݑ ோ So this gives a way to evaluate ݑ * . On the right side we have seen that there is a wall so that we can fix ݑ * = 0, and determine  * through  * + ߙ ݑ * =  + ߙ ݑ Note that we have determined ݑ ାଵ/ଶ and  ାଵ/ଶ inside and at the boundaries, we can make a forward step in time both for ߬ and ݑ by using (12) and (13).

Finally we use the EOS to determine  ାଵ/ଶ ାଵ in all cells.

Results

On Fig 3 we show the result of our depressurization process at time t=10ms both by the Wilkins scheme and by the acoustic solver scheme. The initial pressure is p=8.1 MPa. The external pressure is p=0.15 MPa. Note that these data match more with a RBMK reactor than a PWR. But we are also interested in RBMK.

At time t=0 the fluid is purely liquid at saturation temperature T = 569 K. The initial length of the tube is 1.4 m and we chose a mesh of 140 cells so that ݔ∆ = 1 ܿ݉.

We can see that in 10 ms, only half of the tube has been depressurized. We also see that there is a significant expansion of the Lagrangian mesh on the left side where depressurization occurs. Note that the time step was 0.1 ms so that we had a CFL = 0.4

Fig 3 . Wilkins scheme vs Acoustic solver scheme for the depressurization process §4 Conservative scheme

We shall know explain how to define a conservative scheme based on the acoustic scheme.

To be able to handle shocks we need to apply conservation of energy (see (6))

డா డ௧ + ܵ డ డ ሺݑሻ = 0
For its discretization, we proceed as follows :

(16)

ா శభ/మ శభ ିா శభ/మ ∆௧ + ܵ ሺ௨ሻ శభ శభ/మ ିሺ௨ሻ శభ/మ శభ ି = 0
To get ሺݑሻ ାଵ/ଶ and ሺݑሻ ାଵ ାଵ/ଶ we use ( 14) and (15). Then we get ܧ ାଵ/ଶ ାଵ .

We evaluate the internal energy by using :

ߝ ାଵ/ଶ ାଵ = ܧ ାଵ/ଶ ାଵ -൫ݑ ାଵ/ଶ ାଵ ൯ ଶ 2 ⁄
Finally, from ߬ ାଵ/ଶ ାଵ and ߝ ାଵ/ଶ ାଵ we can evaluate the new pressure  ାଵ/ଶ ାଵ by using the equation of state as explained in §1.

Results for the depressurization problem

On Fig 4 we show the results obtained with the conservative scheme compared with the Wilkins scheme.

We observe that the results are very similar, which is good. Some post processing calculations show that the entropy is almost constant. For example if we look at cell nb 12 initially the entropy s=3.216 kJ/kg/° and after 10ms s = 3.22267 kJ/kg/° (note that the entropy increase is due to the numerical dissipation). 

Simulation of the "steam" explosion

What we call a "steam" explosion is actually the propagation of a shock generated by a large energy deposition somewhere in the fluid. The energy is supposed to come from an increase of fission energy in the fuel. The shock is stronger when the fluid is purely liquid and this is what we shall consider.

From general results in thermodynamics the fluid will remain liquid behind the shock so that we shall not use the diphasic equation of state that we have described in §1.

Rather, we shall use a stiffened gas equation of state. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF] (17

)  = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬
For the liquid water, we select (see Corot [START_REF] Corot | Numerical simulation of shock waves in a bi-fluid flow: application to steam explosion[END_REF] table 6.1) :

ߛ = 2.35,  ஶ = 1. 9ܧ ܲܽ, ݍ = 3ܧ7611- ݃݇/ܬ
From what we saw in §2, we have With the above values and p=8 MPa and ߩ = 705kg/m 3 , we find ܿ = 1833 ݏ/݉ Our purpose is to estimate the shock wave velocity caused by the energy deposition and to estimate its duration.

ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ From (17) we get ߲ ߲ߝ ⁄ = ሺߛ -1ሻ/߬ ߲ ߲߬ ⁄ = -ሺߛ -1ሻሺߝ -ݍሻ/߬ ଶ ܿ ଶ = ߬ ଶ ሺ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ ሻ = ߬ ଶ ሺ-ߛሺߛ -1ሻ  ஶ ߬ ⁄ + ߛሺߛ -1ሻሺߝ -ݍሻ/߬ ଶ ሻ = ߛ߬ሺ-ߛ ஶ +  ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ሻ = ߛሺ +  ஶ ሻ߬
We shall assume that our tube is 6m long and that the energy deposition takes place in the interval 5.1m ≤ ݔ ≤ 6m. The energy deposition is such that the pressure which was equal to 8 MPa instantaneously increases to 200 MPa without modification of the volumic mass which is ߩ = 705kg/m 3 . As for boundary conditions we choose a wall both at x=0 and x=6m.

We choose a mesh of 600 cells, with ݔ∆ = 1 ܿ݉ initially. On Fig. 5 we show the solution at time t= 1 ms and at a later time 2 ms. We can see that the shock speed is 1890 m/s and its width 1.8 m. It propagates to the left. Annex 2 : linear stability analysis for the acoustic solver We shall take ܵ = 1. We start from

డ డ௧  + ߙ ଶ డ డ ݑ = 0 డ డ௧ ݑ + డ డ  = 0 With  = -ߙ ଶ ߬. We have. డ డ௧ ሺ -ߙݑሻ -ߙ డ డ ሺ -ߙݑሻ = 0 డ డ௧ ሺ + ߙݑሻ + ߙ డ డ ሺ + ߙݑሻ = 0
Then the Riemann invariant  ± ݑߙ is transported at speed ±ߙ in the ሼ݉, ݐሽ space. Using the same notations as in §3, we shall ask that

 * + ݑߙ * =  + ݑߙ  * -ݑߙ * =  ோ -ݑߙ ோ 2 * =  +  ோ + ߙሺݑ -ݑ ோ ሻ ݑߙ2 * = ሺ - ோ ሻ + ߙሺݑ + ݑ ோ ሻ And then ݑ భ = ଵ ଶఈ ൫ ିଵ/ଶ - ାଵ/ଶ ൯ + ଵ ଶ ൫ݑ ିଵ/ଶ + ݑ ାଵ/ଶ ൯  ା భ మ = ଵ ଶ ൫ ିଵ/ଶ +  ାଵ/ଶ ൯ + ఈ ଶ ൫ݑ ିଵ/ଶ -ݑ ାଵ/ଶ ൯ and also (3) శభ/మ శభ ି శభ/మ ∆௧ + ߙ ଶ ௨ శభ శ భ మ ି௨ శ భ మ = 0 (4) 
௨ శభ/మ శభ ି௨ శభ/మ ∆௧ + శభ శ భ మ ି శ భ మ = 0
We now replace i par j and assume (we let ℎ = ∆݉ and assume a uniform mesh) : 

ݑ ାଵ/ଶ = ܷ exp ሺ݅ ቀ݆ + ଵ ଶ ቁ ℎሻ  ାଵ/ଶ = ܲ exp ሺ݅ ቀ݆ + ଵ ଶ ቁ ℎሻ ݑ ା ଵ ଶ = 1 2ߙ ܲ ൬exp ሺ݅ ൬݆ - 1 2 ൰ ℎሻ -exp ሺ݅ ൬݆ + 1 2 ൰ ℎሻ൰ + 1 2 ܷ ൬exp ൬݅ ൬݆ - 1 2 ൰ ℎ൰ + exp ሺ݅ ൬݆ + 1 2 ൰ ℎሻ൰  ା ଵ ଶ = 1 2 ܲ ൬exp ൬݅ ൬݆ - 1 2 ൰ ℎ൰ + exp ሺ݅ ൬݆ + 1 2 ൰ ℎሻ൰ + ߙ 2 ܷ ൬exp ሺ݅ ൬݆ - 1 2 ൰ ℎሻ -exp ሺ݅ ൬݆ + 1 2 ൰ ℎሻ൰ so that ݑ ା ଵ ଶ = 1 2ߙ ܲ exp ሺ݆݅ℎሻ ൬exp ሺ- ݅ 2 ℎሻ -exp ሺ ݅ 2 ℎሻ൰ + 1 2 ܷ exp ሺ݆݅ℎሻ ൬exp ൬- ݅ 2 ℎ൰ + exp ሺ ݅ 2 ℎሻ൰  ା ଵ ଶ = 1 2 ܲ exp ሺ݆݅ℎሻ ൬exp ൬- ݅ 2 ℎ൰ + exp ሺ ݅ 2 ℎሻ൰ + ߙ 2 ܷ exp ሺ݆݅ℎሻ ൬exp ሺ- ݅ 2 ℎሻ -exp ሺ ݅ 2 ℎሻ൰ Let ݑ ା ଵ ଶ = -݅ 2ߙ ܲ expሺ݆݅ℎሻ ݊݅ݏ2 ℎ 2 + 1 2 ܷ exp ሺ݆݅ℎሻ2ܿݏ ℎ 2  ା ଵ ଶ = 1 2 ܲ expሺ݆݅ℎሻ ݏܿ2 ℎ 2 - ݅ߙ 2 ܷ exp ሺ݆݅ℎሻ2݊݅ݏ ℎ 2 ݑ ା ଵ ଶ = expሺ݆݅ℎሻ ൬ -݅ ߙ ܲ ݊݅ݏ ℎ 2 + ܷ ݏܿ ℎ 2 ൰  ା ଵ ଶ = expሺ݆݅ℎሻ ൬ܲ ݏܿ ℎ 2 -݅ߙܷ ݊݅ݏ ℎ 2 ൰ ݑ ାଵ ା ଵ ଶ = expሺ݅ሺ݆ + 1ሻℎሻ ൬ -݅ ߙ ܲ ݊݅ݏ ℎ 2 + ܷ ݏܿ ℎ 2 ൰  ାଵ ା ଵ ଶ = expሺ݅ሺ݆ + 1ሻℎሻ ൬ܲ ݏܿ ℎ 2 -݅ߙܷ ݊݅ݏ ℎ ൰ ାଵ ା ଵ ଶ -ݑ ା ଵ ଶ = ሺexpሺ݅ሺ݆ + 1ሻℎሻ -expሺ݆݅ℎሻሻ ൬ -݅ ߙ ܲ ݊݅ݏ ℎ 2 + ܷ ݏܿ

Fig 2

 2 Fig 2 Sound speed evaluated either with (2) or (3) as a function of the steam mass fraction x

Fig 4 .

 4 Fig 4 . Wilkins scheme vs conservative Acoustic solver scheme for the depressurization process

Fig 5 .Annexe 1 :

 51 Fig 5. Schock propagation in the "steam" explosion.

  We now compute the eigenvalues ߤ of this 2x2 matrix which satisfyተ 1 -2λ ݊݅ݏߙ ଶ ℎ 2 -ߤ -2݅ λ ߙ ଶ ݊݅ݏ get stability, it is necessary (and sufficient) that λ ߙ < 1 i-e ߙ ݐ∆ ℎ ⁄ < 1. Since ߙ = ߩ ܿ and ℎ = ∆݉ = ߩ ݔ∆ we get ܿ ݐ∆ ݔ∆⁄ < 1 which is known as the CFL condition.