
HAL Id: hal-02930120
https://hal.science/hal-02930120

Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous parallel multi-splitting mixed methods
Pierre Spitéri, Liane Ziane-Khodja, Raphaël Couturier

To cite this version:
Pierre Spitéri, Liane Ziane-Khodja, Raphaël Couturier. Asynchronous parallel multi-splitting mixed
methods. 6th International Conference on Parallel, Distributed, GPU and Cloud Computing for
Engineering (PARENG 2019), Jun 2019, Pécs, Hungary. pp.1-11, �10.4203/ccp.112.15�. �hal-02930120�

https://hal.science/hal-02930120
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.4203/ccp.112.15

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26166

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Spitéri, Pierre and Ziane-Khodja, Liane

and Couturier, Raphaël Asynchronous parallel multi-splitting

mixed methods. (2019) In: 6th International Conference on Parallel,

Distributed, GPU and Cloud Computing for Engineering

(PARENG 2019), 4 June 2019 - 5 June 2019 (Pécs, Hungary).

Asynchronous parallel multi-splitting mixed methods

P. SPITERI1, L. ZIANE-KHODJA2, R. COUTURIER2

1IRIT- INPT, University of Toulouse, Toulouse, France
2FEMTO – ST Institute, University of Bourgogne Franche Comté, Belfort, France

Abstract

The present study deals with the solution of univalued pseudo - linear problems using par-

allel asynchronous multisplitting methods . With appropriate and realistic assumptions, the

behavior of such parallel iterative algorithms will be analyzed by contraction techniques. An

application to a discretized boundary value problem is presented and the parallel experiments

are analyzed.

Keywords: asynchronous parallel algoritm, high performance computing, multisplitting meth-

ods, Krylov method, Newton method, discretized pseudo-linear problem, large scale systems,

nonlinear boundary value problems

1 Introduction

The present study focuses on the analysis and application of mixed multisplitting methods to

solve pseudo - linear stationary problems. These problems are stationary either intrinsically

or as the result of the discretization of time evolution problems by implicit or semi-implicit

time marching schemes. The considered problems are defined as an affine application AU−F

perturbed by an increasing diagonal operator Φ as follows

AU − F +Φ(U) = 0, (1)

where in the sequel A has the property of being a large scale M-matrix, F a vector, U is the
unknown vector. Note that this type of problem occurs when solving elliptic, parabolic or
hyperbolic second order boundaries values problems and that the M-matrix property is well
verified after discretization by classical finite differences scheme, finite volumes scheme or
finite elements method provided that, in this last case, the angle condition is verified. In the
present paper, the operator U → Φ(U) in problem (1) is considered as a strongly non-linear
univalued operator.

In such a case, problem (1) will be solved by a specific method resulting from a local
linearization corresponding to the implementation of the iterative Newton method. Thus the
calculation method consists in solving a large sparse linear system. This linear system is then
associated with a fixed point problem which will be solved by asynchronous parallel itera-
tions [1]-[5]. Taking into account the properties of the matrix A and the operator’s monotony

property of the perturbed diagonal operator, it can be seen in the sequel that the fixed point

application is contractive with respect to a uniform weighted norm [6], which ensures on the

one hand the existence and uniqueness of the solution of the algebraic system to be solved and

on the other hand the convergence of parallel iterations asynchronous towards the solution of

the target problem.

In addition, in order to unify the presentation and analysis of algorithm behavior, we con-

sider multisplitting methods that unify the presentation of subdomain methods, either to model

subdomain methods without overlap, or to model subdomain methods with overlap such as

Schwarz’s alternating method. The multisplitting method was introduced by O’Learry and

White and also White (see [7]-[8]) in order to give a unified presentation of subdomain meth-

ods. Several contributions have been developed by many authors such as J. Arnal, ZZ bai, R.

Bru, A. Frommer, V. Migalon, J. Penades. D. Szyld, ... etc ... in collaboration with several co-

authors (see [9]-[20]) for the solution of linear and nonlinear problems. Nevertheless, it should

be noted that these previous works do not concern solution of multivalued problem excepts for

the work of J. Bahi et al. [21] developed in an hilbertian context. So in the sequel, this last

study is extended to the case of the non hilbertian context. These multisplitting methods are

then applied to solve the target problem (1), the convergence analysis being still carried out

by contraction techniques with respect to a weighted uniform norm. To effectively solve the

model problems, efficient methods are used to solve each of the subproblems handled by each

processor. More precisely, a coupling between asynchronous parallel methods and Krylov

methods [22] is considered, since each diagonal subproblem obtained by the decomposition

of problem (1) is solved by this last type of algorithm.

As application, we consider a diffusion-convection problem perturbed by an increasing di-

agonal operator [23], the problem being solved by a mixed Newton - multisplitting method,

each linearized subsystem being solved by the generalized minimal residual method (GM-

RES). Thus we present and discuss the results of parallel simulation achieved on a cluster.

The present paper is organized as follows. In section 2 the formulation of synchronous

and, more generally, asynchronous parallel algorithms is presented and some results allowing

to analyze the convergence by contraction techniques are given. In the next section the paral-

lel asynchronous multisplitting algorithms applied to pseudo – linear problems are detailled.

Section 4 is devoted to the presentation of boundary value problems, which, after appropri-

ate discretization lead to solve pseudo – linear algebraic systems. Thus the following section

is devoted to the presentation of implementation of the studied parallel numerical methods.

Section 6 presents the results of parallel experiments achieved on a local cluster. Finally a

conclusion and some future studies conclude the paper.

2 Parallel asynchronous algorithms associated to pseudo linear

problems

Consider problem (1) and let us transform such problem into a fixed point problem as follows

U = F (V) (2)

where F is a fixed point mapping defined in an implicit way; in the case of problem (1) such
fixed point mapping is naturally defined as follows by considering a block decomposition in α
blocks

Ai,iUi +Φi(Ui) = Fi −
α
∑

j=1j 6=i

Ai,jVj , j = 1, . . . , α, (3)

whereA = (Ai,j) corresponds to the block decomposition,Ui and Fi are the block components

of the vectors U and F.

Using the fixed point equation (2), the parallel iterative asynchronous algorithms are then

classically defined in [1] for the solution of large linear algebraic systems and [2] for large

algebraic systems. In such a computational method, to make the most of computing power

by eliminating idle times due to blocking expectations, synchronizations are not necessarily

required which avoids waiting for the communication of the values computed by the other

processors; thus each processor performs its own calculations using available data calculated

by other processors. Then each processor advances its own calculations at its own pace, with

communications taking place in no pre-established order. The choice of the relaxed compo-

nents is performed using a component selection strategy at each step of the calculation; this

strategy is in fact a non-empty subset of the set {1, 2, . . . , α} which models parallelism be-

tween the processes, since each element of the strategy is not limited to a single element. In

addition, theoretically, each block component of the iterate vector is continuously updated; but

in practice the parallel iterative method is ended by a stopping criterion, which in the asyn-

chronous context, is very hard to perform. For a fixed process, the asynchronism between

updates is modelled by the introduction of delayed components calculated by other processors

to take into account the necessary coupling between the various processes. During the first

work on asynchronous parallel iterations, delays were bounded (see [1] and [2]); in fact in

[3] G. Baudet has extended the framework of the study to cover cases in which delays are

no longer bounded, allowing for cases of failure of one or more processors to be taken into

account.

The formulation of the parallel asynchronous method is general. Indeed when the val-

ues of the components of the iterate vector, representing the interactions between the parallel

processes, are not delayed, the corresponding algorithm is in fact the parallel synchronous

method; such a situation is in fact the parallel method of successive iteration and corresponds

to the parallel block Jacobi matrix. Moreover, in the context of parallel synchronous methods,

for particular choice of strategy we find the block Jacobi method, or the block Gauss – Seidel

method and the Alternating Direction Implicit (A.D.I.) method.

Assuming the following assumptions

A is an M-matrix, (4)

the mapping U → Φ(U) is a diagonal monotone operator, (5)

then, thanks to the use of a result in [24]-[25] we know that, for any block decomposition

the fixed point mapping is contractive with respect to a uniform weighted norm; thus this

result allows us to state that on the one hand the solution of pseudo – linear problem (1) exists

and is unique and on the other hand that the parallel synchronous and asynchronous methods

applied to the parallel solution of problem (1) are convergent toward U⋆ solution of problem

(1) whatever the initial guess is.

In practice we do not have as many processors as the blocks in matrix A. Let β << α the

number of processors. So, from an algorithmic point of view we gather several adjacent blocks

of the matrix A in β large blocks and we consider large blocks decomposition of U , F and Φ

accordingly, such decomposition corresponding in fact to a subdomain method without over-

lapping. Now, using the result stated in [24]-[25], since assumptions (4) and (5) are satisfied,

due to the fact that any fixed point mapping associated to any decomposition of the problem to

solve is contractive, the parallel synchronous and asynchronous subdomain methods without

overlapping converge toward U⋆ solution of problem (1) whatever the initial guess is.

Moreover we can also solve the considered pseudo – linear problems by subdomain meth-

ods with overlapping, like the Schwarz’s alternating method; in this case, due to the augmenta-

tion process of the Schwarz’s method, the pseudo-linear problems (1) are respectively written

as follows

ĀŪ − F̄ + Φ̄(Ū) = 0. (6)

Using a result of D.J. Evans and Van Deren (see [26]), if A is an M-matrix, then Ā is also an

M-matrix. Moreover, by applying the augmentation process, the diagonal operator Φ̄ is still

diagonal monotone operator. So we are in the framework of the study of [24]-[25] and can

still apply the results of this paper concerning the convergence of parallel synchronous and

asynchronous subdomain methods without overlapping.

3 The multisplitting method

Consider now the solution of problem (1) by the parallel synchronous or, more generally,

asynchronous multisplitting method. In our case, due to the fact that a pseudo – linear problem

has to be solved by the Newton method, for the solution of the linearized system derived from

this last method ĈδU = F̂ , where Ĉ is an M-matrix, we consider m regular splittings [27] of

the matrix A, such that

Ĉ = Ml −N l, l = 1, . . . ,m,

where Ml, l = 1, . . . ,m, are M-matrices and in the general case the system ĈδU = F̂

needs to be solved. For that we associate m fixed point mappings in a similar way than the

one considered in (3). Moreover, for the efficient application of the parallel asynchronous

multisplitting method, it is usually necessary that each of the m fixed point mappings asso-

ciated with the problem to solve, are contracting; in our case, since Ĉ is an M-matrix, such

condition is not restrictive thanks to the use of the results previously obtained in [24]-[25].

Indeed, as precised in section 2, that under assumptions (4) and (5), using the result of this

latter reference, any fixed point mapping associated with any decomposition of the problem

was contracting; since Ĉ is an M-matrix, the results of the two latter references can also be

applied. Consequently, under assumptions (4) and (5), there are guarantees that asynchronous

parallel multisplitting methods can be used successfully (see [21]).

Interested readers can refer to the work presented in [7] - [21] for a detailed presentation

of asychronous parallel multisplitting methods and, mainly to [21] for target applications.

The algorithmic principle of this type of method can be defined as follows. Let us denote

by F l, l = 1, . . . ,m, each of the fixed point applications associated with the problem to be

solved; then the numerical algorithm consists in computing them following vectors

U l = F l(
m
∑

k=1

Wl,kV
k), l = 1, . . . ,m, (7)

where V 1, . . . , V m arem vectors of the space RN , whereN is the dimension of the matrix A,

or Ĉ andWl,k are nonnegative diagonal weighting matices satisfying for all l ∈ {1, . . . ,m}

m
∑

k=1

Wl,k = Idl, l = 1, . . . ,m,

where, for l = 1, . . . ,m, Idl is the identity.

Note that (7) allows to define an extended fixed point mapping F and since each of the fixed

point mapping F l associated with the problem to be solved is contracting, then using a similar

result to the one stated in [21], the extended fixed point mapping F is also contracting with

respect to an adapted uniform weighted norm. As a consequence the parallel asynchronous

multisplitting methods applied to the solution of the linear problem converge.

Note also that considerable saving in computational work may be possible by using such

numerical methods, since a component of V k needs not be used if the corresponding diagonal

entry of the weighting matrices are zero; then, in parallel computing, the role of such matri-

ces Wl,k may be regarded as determining the distribution of the computational work of the

individual processors.

Note finally that according to the weighting matrices Wl,k we can obtain various iterative

methods and particularly on the one hand a subdomain method without overlapping and on

the other hand the classical Schwarz alternating method. According to [21] the block Jacobi

method corresponds then to the following choice ofMl

Ml = diag(Id, .., Id, Ĉl,l , Id, .., Id) (8)

and to the choice ofWl,k ≡ W̃l given by

W̃l = diag(0, .., 0, Id, 0, .., 0) (9)

which means that the entries of the weighting matrices are equal to one or zero.

For the additive Schwarz alternating method more than one processor computes updated

values of the same component and the weighting diagonal matrices have positive entries

smaller than one. The reader is referred to [7] and to other various references for other choices

of weighting diagonal matrices and splittings for the definition of various multisplitting meth-

ods.

For each splitting l, l = 1, . . . ,m, starting with an initial guess U l,(0) we have to solve

AU l +Φ(U l)− F = 0,

by the Newton method; then, globally, at step i of the Newton method we have to solve

(A+
∂Φ(U l,(i))

∂U
)δU l,(i) = F −AU l,(i) − Φ(U l,(i))

and then

U l,(i+1) = U l,(i) + δU l,(i), (10)

until the convergence of the iterative method.

Let Ĉ(U l,(i)) = A+ ∂Φ(U l,(i))
∂U

and according to the choice of the weighting matrices Wl,k

let us consider a block decomposition of the matrix Ĉ(U l,(i)) such that

Ĉl,l(U
l,(i)) = (A+

∂Φ(U l,(i))

∂U
)l,l (11)

denotes the block diagonal of the matrix Ĉ(U l,(i)), and since the operator U → Φ(U) is

diagonal increasing, then the Jacobian matrix of Φ, given by ∂Φ(U l,(i))
∂U

, is a positive diagonal

matrix; for the same reason, due to the fact that Φ(U) is diagonal the off-diagonal blocks of
Ĉ(U l,(i)), denoted Âl,k, are reduced to the blocksAl,k of the matrixA.Consequently Ĉ(U l,(i))
is an M-matrix.

So the implementation of the Newton method requires the solution of the following linear

system

Ĉ(U l)δU l = F̂ (U l),

which will therefore be solved by a multi-splitting method; since the matrix Ĉ(U l) is an M-

matrix, the multi-splitting method will converge (see [21]).

For the solution of problem (1) by the Newton method, by considering for example the

block Jacobi method obtained by choosing Ml and W̃l given by (8)-(9), the implemented

multisplitting method associated to the iteration number i of the Newton method leads to solve

iteratively in parallel for l = 1, . . . ,m, the algebraic sub-systems

Ĉl,l(U
l,(i))δU

l,(i)
l = Bl, (12)

where Bl is given by

Bl = F̂l(U
l,(i))−

∑

k 6=l

Âl,kδU
k,(j(k))
k (13)

F̂ (U l,(i)) is the right hand side resulting from the Newton process, i.e.

F̂ (U l,(i)) = F − Φ(U l,(i))−AU l,(i), (14)

and the values of the components of the vectors δU
k,(j(k))
k come from the computation per-

formed on the splitting number k, k 6= l, and performed by other processors by using the

iterate number j(k) of an iterative method.

Then, each sub-system (12) is solved independently by a processor or a set of processors

and communications are required to update the right-hand side of each sub-system, such that

the vectors updated by the other processors represent the data dependencies between the dif-

ferent blocks. For the target applications, in the implemented multi-splitting method, we have

in fact a two level iteration; an external parallel iteration and an inner iteration due to the fact

that, since the matrices Ĉl,l are also sparse, it is highly recommended to solve the subsys-

tems (12) by an iterative method. In our implementation a Krylov method has been chosen

for the solution of each sub-problem (12). It should be noted that for the external parallel

iteration, the considered computing method fits well within the formulation of general parallel

asynchronous methods described in section 2, since inter-processors communications can be

synchronous or asynchronous.

4 Application to the numerical solution of non-linear boundary

value problem

There are several kinds of partial differential equations which, after discretization, lead to
the solution of pseudo-linear algebraic systems such as the one found in (1). In the sequel
we will denote by Ω an open domain included in R3, ∂Ω the boundary of Ω, f a sommable

square function and u → φ(u) a diagonal monotone increasing, convex and continuously

differentiable nonlinear operator. So the following nonlinear convection – diffusion problems

can be considered

{

−ν∆u+ a∂u
∂x

+ b∂u
∂y

+ c∂u
∂z

+ du+ φ(u) = f, everywhere in Ω,

u = 0, everywhere in ∂Ω,
(15)

where ν, a, b, c, d are some constant coefficients, ν > 0, d ≥ 0.

Problem (15) can occur in plasma physics or to model solar ovens [23]; such a problem

arises from the implicit temporal discretization of parabolic problems that appear in similar

applications modeled as the one modeled below







∂u(t,x)
∂t

− ν∆u(t, x) +Qt∇u+ eru = g(t, x), everywhere in [0, T]× Ω, b > 0,
u(t, x) = 0, everywhere in [0, T]× ∂Ω,

u(0, x) = u0(x), everywhere in Ω,

(16)

where T > 0, u0 : Ω → R is the initial condition, Q is a vector with components (a, b, c).

After temporal discretization the stationary problem associated with the implicit time march-

ing scheme, is defined as follows

{

−ν∆u+Qt∇u+ u
δτ

+ eru = f, everywhere in Ω ⊂ R3,

u = 0, everywhere in ∂Ω,
(17)

where δτ is the time step arising in the implicit scheme.
After spatial discretization the aim is to solve a pseudo-linear algebraic systems similar to

(1) by combining the Newton method with the parallel asynchronous multisplitting method.
Note that, by choosing appropriate finite difference approximation, particularly for the convec-
tion term where according to the sign of the coefficients a, b, c, forward or backward schemes
are considered so that the discretization matrix is an M-matrix; moreover since φ(u) is a diag-
onal monotone increasing nonlinear operator, assumptions (4) and (5) are well verified. Thus
the previous parallel synchronous or asynchronous multisplitting studied method for the par-
allel solution of this problem can be applied.

5 Nonlinear multisplitting method implementation

This section presents the implementation of our multi-splitting method to solve nonlinear sta-
tionary systems like nonlinear convection-diffusion problems presented in Section 4. It should
be noticed that we do not no difference is made between processors or cores.

The focus was put on solving 3D nonlinear systems of equations involving a single variable
which can be formulated as in (1). The well-known Newton iteration method was used to
linearize the nonlinear problem. Then the parallel multi-splitting iteration scheme was applied
to solve each algebraic linear system issued from the linearization, in such a way that each
system is associated to m splittings as shown in (12).

The Newton-multisplitting method was implemented on a simulated parallel platform com-
posed of m blocks that correspond to the m splittings in Formula (12). In this case, each split-
ting was solved in parallel on a group (or a block) of p processors by using the well-known
Krylov iterative method GMRES [29]. The outer iterations of the multi-splitting method (i.e.

Algorithm 1: Parallel Nonlinear multi-splitting method performed on a cluster

Output: Solution Unewt

1 Set initial solution: Unewt = 1.0
2 while ‖Unew

multi‖2 ≥ εNewton do

3 Reset the initial local solution Uold
multi to an arbitrary value

4 Update global right-hand side: Formula (14)

5 Update local sparse matrix Amulti: Formula (11)

6 while ‖Uold
multi − Unew

multi‖∞ ≥ εMultisplitting do

7 Compute local right-hand side: Bmulti: Formula (13)

8 Parallel GMRES to solve: Amulti × Unew
multi = Bmulti: Formula (12)

9 Exchange local shared values of Unew
multi with neighbor blocks

10 Uold
multi = Unew

multi

11 end

12 Compute solution: Unewt = Unewt + Unew
multi: Formula (10)

13 end

intra-blocks communications) are either synchronous or asynchronous, but the inner iterations

(GMRES iterations) are synchronous.

Algorithm 1 presents the main key-points of our multi-splitting method executed in parallel

to solve nonlinear systems. All variables are local to all processors which are gathered in m

blocks of p processors or cores.

The algorithm uses the Newton iteration to linearize the nonlinear system to be solved

(lines from 2 to 13). From line 6 to line 11, each linear subsystem issued from the linear-

lization is solved in parallel using a multi-splitting method. First the local right-hand side

Bmulti, corresponding to Bl involved in the formula (12) and defined by (13) (see line 7) is

computed, then the GMRES method is applied in parallel to solve the subsystem like (12) by

a block of p processors (line 8). The GMRES iteration represents the inner iteration of the

multi-splitting method. At each outer iteration, blocks exchange the data of their local solu-

tion Umulti, corresponding in fact to δU
l,(i)
l involved in the formula (12), shared with their

corresponding neighbors (see line 9). The solution of the nonlinear system is updated at each

Newton iteration (line 12).

The outer iterations of the multi-splitting method can be either synchronous or asynchronous.

In the synchronous version, the global convergence of the multi-splitting method is detected

when the value of Umulti is stabilized corresponding to the following stopping test

‖Uold
multi − Unew

multi‖∞ < εMultisplitting (18)

where εMultisplitting is the tolerance threshold for the computation of Umulti. However in
the asynchronous version, the global convergence is detected when all blocks have locally
converged. The convergence detection implemented was implemented as in [30].

6 Experiments

In the following, the conducted experiments are described. The problem considered is de-
scribed in section 4. Each dimension of the 3D problem is discretized in 150 elements using

Nb. Proc. Mode Exec. Times (in s) Asyn. Gain

2× 8 Sync 127.9

2× 8 Async 111.86 1.14

2× 16 Sync 61.19

2× 16 Async 48.51 1.26

2× 32 Sync 25.79

2× 32 Async 21.93 1.17

Table 1: Execution times of both synchronous and asynchronous iteration modes of the 3D
problem of size 1503.

a finite difference scheme. So there are 1503 elements to take into consideration. In all the
experiments, the following parameters have been chosen: εMultipsplitting = 1 × 10−8 and
εNewton = 1×10−4. Up to 64 cores were used to conduct our experiments. Experiments have
been achieved on the mesocentre of the University of Franche-Comté. Machines are composed
of Xeon(R) CPU E5-2640 v3 @ 2.60GHz processors. They are linked with an Infiniband net-
work. The code is parallelized with MPI. As the mesocentre is used by many users, jobs are
run automatically by the scheduler and users cannot have any control on the cores used.

In Table 1, execution times of the synchronous version and the asynchronous version are
reported using respectively 16, 32 and 64 cores. The number of blocks was fixed to 2 because
it was observed that this would lead to obtain the best performances possible. So in this
table, 2 × 8 represents a case with 16 cores using 2 blocks with 8 cores. It can be seen
that the asynchronous version is always faster than the synchronous version. Moreover, each
solution computed with the synchronous and asynchronous mode has been compared with the
solution computed with a standard solver in order to be able to compute the error. For all the
experiments, the error with the max norm is between 1 × 10−7 and 1 × 10−8. As the machine
used only enables one to submit parallel jobs with 64 cores, larger scale experiments could not
be run.

7 Conclusion

In the present study, a mixed method combining parallel asynchronous method as an outer it-
eration with the Krylov method for the solution of diagonal subproblems, was presented. Such
a calculation method has been used for the solution of univalued pseudo - linear stationary
problems and implemented in a cluster. In future work we will consider the use of such mixed
methods for the solution of multivalued pseudo - linear stationary problems. These problems
arise in boundary value problems where the solution is subjected to some constraints. We will
also implement the proposed mixed method on grid architecture for the parallel solution of
univalued or multivalued pseudo - linear stationary problems.

Acknowledgment

The authors wish to thank very much Doctor Thierry Garcia for helpful discussions and ex-
changes concerning the present study. Also we would like to thank the Mesocentre of Franche-
Comté for the computing facilities.

References

[1] D. Chazan, W. Miranker, “Chaotic relaxation”, Linear Algebra Appl., 2 , 199-222, 1969.

[2] J.-C. Miellou, “Algorithmes de relaxation chaotique à retards”, RAIRO Analyse

numérique, 1 , 55-82, 1975.

[3] G. Baudet, “Asynchronous iterative methods for multiprocessors”, Journal Assoc. Com-

put. Mach., 25 , 226-244, 1978.

[4] D. Bertsekas, J. Tsitsiklis, “Parallel and Distributed Computation”, Numerical Methods,

Prentice Hall Englewood Cliffs N.J., 1989.

[5] A. Frommer, D. Szyld, “On asynchronous iterations”, Journal of Computational and

Applied Mathematics, 123 , 201-216, 2000.

[6] M. El Tarazi, “Some convergence results for asynchronous algorithms”, Numerische

Mathematik, 39 , 325-340, 1984.

[7] D.P. O’Leary, R.E. White, “Multi-splittings of matrices and parallel solution of linear

systems”, SIAM:Journal on Algebraic Discrete Methods, 6, 630 - 640, 1985.

[8] R. E. White, “Parallel algorithms for nonlinear problems”, SIAM J. Alg. Discrete Meth.,

7, 137 - 149, 1986.

[9] J. Arnal, V. Migallón, J. Penadés, “Parallel Newton two-stage multisplitting iterative

methods for nonlinear systems”, BIT Numerical Mathematics, 43, 849 - 861, 2003.

[10] Z.Z. Bai, “Asynchronous multisplitting AOR methods for a class of systems of weakly

nonlinear equations”, Appl. Math. Comp., 98, 49 - 59, 1999.

[11] Z. Z. Bai, D.R. Wang, “Improved comparison theorem for the nonlinear multisplitting

relaxation method”, Computers Math. Appl., 31-8, 23 - 30, 1996.

[12] Z.Z. Bai, V. Migallón, J. Penadés, D.B. Szyld, “Block and asynchronous two-stage meth-

ods for mildly nonlinear systems”, Numerische Mathematik, 82(1), 1 - 20, 1999.

[13] R. Bru, V. Migallón, J. Penadés, D.B. Szyld, “Parallel, synchronous and asynchronous

two-stage multisplitting methods”, Electronic Transactions on Numerical Analysis, 3, 24

- 38, 1995.

[14] R. Couturier, C. Denis, F. Jézéquel, “GREMLINS: a large sparse linear solver for grid

environment”, Parallel Comput 34(6–8), 380 - 391, 2008.

[15] R. Couturier, L. Ziane Khodja, “A scalable multisplitting algorithm to solve large sparse

linear systems”, The Journal of Supercomputing, 69 (1), 200 - 224, 2014.

[16] A. Frommer, “Parallel nonlinear multisplitting methods”, Numerische Mathematik, 56,

269 - 282, 1989.

[17] F. Jézéquel, R. Couturier, C. Denis, “Solving large sparse linear systems in a grid envi-

ronment: the GREMLINS code versus the PETSc library”, Journal of Supercomputing.

59 (3), 1517 - 1532, 2012.

[18] MT Jones, DB. Szyld, “Two-stage multisplitting methods with overlapping blocks”, Nu-

merical Linear Algebra with Applications, 3, 113 - 124, 1996.

[19] P. Spiteri, J.C. Miellou, D. El Baz, “Parallel asynchronous Schwarz and multisplitting

methods for a non linear diffusion problem”, Numerical Algorithms, 33, 461-474, 2003.

[20] D. Szyld, “Different models of parallel asynchronous iterations with overlapping block”,

Computational and Applied Mathematics, 17, 101-115, 1998.

[21] J.M. Bahi, J.C. Miellou, K. Rhofir, “Asynchronous multisplitting methods for nonlinear

fixed point problems”, Numerical Algorithms, 15, 315 - 345, 1997.

[22] Y. Saad, “Iterative methods for sparse linear systems”, SIAM, 2003.

[23] J. Mossino, “Sur certaines inéquations quasi-variationnelles apparaissant en physique”,

CRAS Paris, 282, 187 - 190, 1976.

[24] M. Chau, A. Laouar, T. Garcia, P. Spitéri, “Grid solution of problem with unilateral

constraints”, Numerical Algorithms, Springer-Verlag, 75 - 4, 879 - 908, 2017.

[25] J.-C. Miellou, P. Spiteri, “Un critère de convergence pour des méthodes générales de

point fixe”, M2AN, 19, 645-669, 1985.

[26] D.J. Evans, W. Deren, “An asynchronous parallel algorithm for solving a class of nonlin-

ear simultaneous equations”, Parallel Computing, 17, 165–180, 1991.

[27] J. Ortega, W. Rheinboldt, “Iterative Solution of Nonlinear Equations in Several Vari-

ables”, Academic Press, New York, 1970.

[28] J. Peinado, A.M. Vidal, “A parallel Newton-GMRES algorithm for solving large scale

nonlinear systems”, in Palma J.M.L.M. et all, Vecpar 2002, Lecture Notes in Computer

Science, 2565, 328 - 342, 2002

[29] Y. Saad, M. H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for Solv-

ing Nonsymmetric Linear Systems”, SIAM Journal on Scientific and Statistical Comput-

ing, 7 - 3, 856–869, 1986.

[30] C. E. Ramamonjisoa, L. Ziane Khodja, D. Laiymani, A. Giersch, R. Couturier, “Simu-

lation of Asynchronous Iterative Algorithms Using SimGrid”, In 2014 IEEE Intl Conf

on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on

Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and

Syst (HPCC,CSS,ICESS), 890-895, 2014.

