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the user’s query (i.e. precision of 0.33) can be either a good

or a poor result, depending on the context, the ambiguity of

the query, etc.

Furthermore, from the definition of the notion of query

difficulty can depend the evaluation of the accuracy of an

automatic query difficulty prediction.

This paper investigates the query difficulty definition. More

precisely, it focuses on how much the definition of query

difficulty impacts the query difficulty prediction accuracy.

To answer this hard problem, after reviewing the related

work (Section II), we suggest several ways of defining query

difficulty (Section III) and we measure the quality of query

difficulty prediction according to these definitions (Section V),

before drawing some conclusions (Section VI).

II. RELATED WORK

Grivolla et al. introduced a binary classification of query

difficulty [9]. They classify queries into difficult and non-

difficult queries. They use the median value of the average

precision over the set of queries to define the two classes.

Moreover, the authors used a set of features to represent the

queries and a SVM-based classifier; they show that this model

allows to classify the 50 TREC8 topics with about 80% of

classification accuracy. Although this work did not follow-up

and the model was not evaluated on other collections, nor on

larger sets of queries, it provides an interesting definition of

query difficulty which is class-based.

Most of the related work does not need a precise definition

of difficulty, since it rather aims at predicting the performance

that is to say the effectiveness of the system on a query.

Query performance prediction (QPP) indeed aims at estimating

system effectiveness for a given query [2], [13], [21]; the

prediction is evaluated by the means of ¨Pearson correlation

between the predicted system effectiveness and the real system

effectiveness [2], [16].

The usefulness of QPP is not demonstrated while there are

concrete applications of query difficulty prediction.

Indeed, if the difficulty of a query could be predicted,

this knowledge could be used to enhance the system query-

document matching one those only queries, by adding some

processes such as query disambiguation [4], [6], [17], selective

query expansion [8], [20], or matching parameter selection [7].

Abstract—While it exists information on about any topic on 
the web, we know from information retrieval (IR) evaluation 
programs that search systems fail to answer to some queries in an 
effective manner. System failure is associated to query difficulty 
in the IR literature. However, there is no clear definition of query 
difficulty. This paper investigates several ways of defining query 
difficulty and analyses the impact of these definitions on query 
difficulty prediction results. Our experiments show that the most 
stable definition across collections is a threshold-based definition 
of query difficulty classes.

Index Terms—Information retrieval, Query difficulty predic-
tion, Query features

I. INTRODUCTION

Information Retrieval (IR) aims at providing a user with 
documents that fulfill an information need that is expressed 
generally through a query. In textual IR, search models are 
mainly based on matching bags of words from the query and 
from the documents, allowing search engines to retrieve 
documents for almost any query submitted by a user.

However, system effectiveness which measures the ability 
of the system to retrieve relevant documents and only relevant 
ones, is not the same for all the queries the system treats. 
For example, TREC evaluation campaigns1 have shown that 
a system can perform well on a given query, but poorly on 
another one, while another system will perform reversely [10],

[15].

In IR literature, query difficulty is mainly associated with 
system failure and, as a consequence, a difficult query is a 
query for which the system gets poor performance in terms of 
system effectiveness measures [1]. One very active research 
topic in IR related to query difficulty is query difficulty 
prediction and query performance prediction.

There is no precise definition of what a difficult query is. Yet, 
a query can be difficult for a given system (just one system fails 
but other systems succeed) or for systems in general (all 
systems fail in retrieving relevant documents). Moreover, 
getting a third of the retrieved documents actually relevant to

1http://trec.nist.gov: the TREC Conference series supports “research within 
the information retrieval community by providing the infrastructure necessary 
for large-scale evaluation of text retrieval methodologies”



Alternatively, the system could also start a conversational

interaction to better answer a difficult query; such a (time

consuming) conversation would be acceptable for the user if

it was applied to difficult queries only.

However, predicting query difficulty implies precisely defin-

ing the difficulty.

III. QUERY DIFFICULTY DEFINITIONS

There is no consensual definition of query difficulty in the

literature. Most of the existing studies consider the correlation

between predicted and actual effectiveness, which does not

require a clear definition of query difficulty.

When considering query difficulty prediction as a classifica-

tion problem, a definition needs to be provided. Classification

can be binary (a query is difficult or not), or graded (e.g. a

query can be very easy, easy, difficult or very difficult for a

system). If q is a query, M a given effectiveness measure such

as AP (average precision) obtained by a system S, then a poor

effectiveness corresponds to a low value of M .

We consider three kinds of strategies to define the difficulty

of a query q, based on the value mS of an effectiveness

measure M obtained for a given system S. Our objective is

to analyse the impact of the definition on the results in order

to suggest the most stable definition as the best definition.

A. Percentile-based strategies.

In the binary case, a query q is considered as difficult for

a system S if the value of the effectiveness measure is lower

than the xth percentile px, which means that x% of queries

have a mS value lower than

px : difficulty(q) = 1{mS≤px} (1)

In the graded difficulty case, the N difficulty classes can be

defined thanks to N − 1 percentiles.

Let Di, i = 1, . . . , N be the ith difficulty class and Pj ,

j = 1, . . . , N − 1, be the jth percentile value. Then, we have

q ∈







D1 if mS ≤ P1

Di, ∀i = 2, . . . , N − 2 if Pi−1 < mS ≤ Pi

DN if mS > PN−1

(2)

where D1 (resp. DN ) is the class of the most difficult (resp.

easiest) queries.

B. Threshold-based strategies.

In the binary case, a query q is considered difficult for a

system S if the value of the effectiveness measure M is lower

than a given threshold

T : difficultyq = 1{mS≤T} (3)

Graded relevance is defined in a similar way as for the

percentile-based strategy, replacing the percentiles values by

the thresholds values pi, i = 1, . . . , N − 1, where N is the

number of difficulty classes.

C. Combined strategies.

In the binary case, a query q is considered as difficult

for a system S if it is judged as difficult regarding both the

threshold-based and the percentile-based definitions:

difficulty(q) = 1{mS≤T&mS≤px} (4)

In the graded difficulty case, let consider DT
i (resp. DP

i ,

the ith difficulty class for the threshold (resp percentile)-based

strategy. Then q belongs to the ith difficulty class for the

combined strategy if q ∈ DT
i and q ∈ DP

i .

In this paper, we consider a system-centered approach,

which means that we define the difficulty regarding one given

system instead of a set of systems. Nevertheless, the definitions

we consider are generic enough to be used to define query

difficulty regarding a set of systems S = {S1, . . . , Sn}. One

can just replace mS , the value of the effectiveness measure

M for the system S, by m̄ = 1
n

∑n

i=1 mSi
, the average of the

effectiveness measure values over all the systems.

IV. QUERY DIFFICULTY PREDICTION AND

EXPERIMENTAL SETTINGS

The main objective of this work is to evaluate how the

different definitions impact the performance of the query

difficulty. Our methodology and experimental settings are now

described.

A. Methodology

Let C be a collection associated to a set of queries Q and

S a system. The difficulty of each query q ∈ Q for S can be

assessed by using the definitions presented in section III.

Let yd = [yd1 , . . . , y
d
|Q|] the difficulty labels for each q ∈ Q

according to the definition d. We proceed as follows. Given a

set of difficulty predictors P , for each vector y(.) of difficulty

labels, we learn a model to predict the query difficulty by

using a machine learning algorithm A.

We thus evaluate the learned model based on some per-

formance metrics and analyse the results we obtain when

considering different definitions for query difficulty.

As mentioned in the introduction, we focus on the queries

that are the most difficult for a system, since there are the

most crucial with regard to user engagement.

The experimental settings are detailed in the next sections.

B. Query difficulty predictors

We consider both pre-retrieval and post-retrieval features

from the literature. Pre-retrieval features can be calculated

prior the system runs the query while post-retrieval features

implies to use initially-retrieved documents.

As pre-retrieval features, we used

• 2 variants of the linguistic feature SynSet: max and mean

number of synonyms of the query term synonyms in

WordNet [14];

• 2 variants of IDF: the maximum and mean of the query

terms Inverse Document Frequency in the entire docu-

ment collection.



As post-retrieval features, we considered :

• Query Feedback (QF) which measures the overlap of

documents between initially retrieved documents and the

retrieved documents after query expansion [22];

• Weighted Information Gain (WIG) [22] which measures

the divergence between the average score of the top

retrieved documents and the score of the entire corpus;

• Normalized Query Commitment (NQC) which is based

on the standard deviation of the retrieved document scores

normalized by the score of the whole collection [18];

• Clarity score which measures the divergence between the

mean of the top-retrieved document scores and the mean

of the entire set of document scores [5].

C. Machine learning algorithm

We use Random Forest as the learning algorithm since it has

been shown to provide the best results in related work and in

our preliminary studies. We performed 10-fold cross validation

on the train set to tune the parameters. We used the rf package

for Random Forest in R software in our experiments.

Since the number of queries is rather small per collection,

we use leave-one-out cross validation in our experiments.

D. Collections and effectiveness measures

We consider two TREC collections from the ad hoc and web

tasks: Robust [19] and WT10G ( [11], [12]), respectively. The

TREC tasks allow researchers to investigate the performance

of systems that search a static set of documents using new

information needs (called topics). These collections are very

popular in the literature and having two types of benchmarks,

ad hoc and web, involves a wider evaluation perspective.

We use the topic title as the query and the provided qrels

(document relevance judgements) with trec_eval in order

to compute system effectiveness.

In the case of TREC Robust, the competition provided

approximately 2 gigabytes worth of documents and a set of

250 natural language topic statements (per collection). The

documents were articles from newspapers like the Financial

Times, the Federal Register, the Foreign Broadcast Information

Service and the LA Times. The WT10G collection provided

approximately 10 gigabytes worth of Web/Blog page docu-

ments with its 100 corresponding topics. In Table I we present

a summary of benchmark collections features regarding the

topics, the documents and the disk space required for each set

of documents.

TABLE I: Topic and document features from the data collec-

tions

Collection No. of Topic number No. of Space
topics documents on disk

TREC Robust 250 301-450; 601-700 528,155 2GB
WT10G 100 451-550 1,692,096 10GB

We use precision after 10 retrieved documents (P@10), as

the effectiveness measure to define difficulty classes. We anal-

yse the results of prediction through the confusion matrices,

the true positive rate and the false positive rate for the hard

queries.

E. Systems

We use two different systems:

(1) BM25 with default parameters from Terrier and

(2) the best run for each collection.

To choose the best run, we tried various system configura-

tions by making Terrier parameters varying.

F. Query difficulty instanciations

In our experiments, we consider four instanciations of the

proposed query difficulty definitions.

1) Experiment 1.: In experiment 1, we use the graded,

percentile-based strategy to define four classes of difficulty

(”very hard”, “hard”, “easy” and “very easy”), according to

the first quartile, the median and the third quartile. Our goal

is to evaluate a graded definition of query difficulty with

automatically fixed and quite homogeneous classes in terms

of number of queries.

The three other experiments aim to analyse the impact of

using definitions that focus on the hardest queries.

2) Experiment 2: In experiment 2, we consider the binary

threshold-based strategy to isolate the very hard queries.

We use three different thresholds for P@10: T ∈
{0, 0.1, 0.2}. T = 0 implies that we consider a query to be

very difficult for a system if it fails to retrieve any relevant

document among the ten first documents. For T = 0.1 (resp.

0.2), a query is judged as very difficult if it retrieves only one

(resp. two) relevant documents among the ten first documents.

All other queries are considered as not difficult for the system.

3) Experiment 3: In experiment 3, we established the

very hard queries according to P@10 thresholds such as

T ∈ {0.1, 0.2, 0.3}, but instead of considering all other queries

as not hard, we keep only the easiest queries in the dataset.

Once T is fixed, the threshold used to define the easiest class

is set to 1− T .

Thus, we consider the following (Tveryhard,Tveryeasy) pairs of

P@10 thresholds: (0.1, 0.9), (0.2, 0.8) and (0.3, 0.7).

We do not report the (0,1) pair of P@10 thresholds since it

tends to produce empty difficulty classes on our datasets. The

underlying idea is that, in experiment 2, the discrimination

between the very hard class and all the rest may be hard to

make, due both to the larger number of “not very hard” queries

and to the smooth change when passing through values that

belong to the “very hard” class towards values that belong to

the “not very hard”. We thus want to check whether it is easier

to distinguish between queries from different classes that have

a higher P@10 gap, or not.

4) Experiment 4 : Finally, in experiment 4, we investigate

the combined definition of difficulty in the binary case. We

consider the same P@10 thresholds than in the second exper-

iment, T ∈ {0, 0.1, 0.2}, and the first quartile.



TABLE II: False positive and true positive rates for “very hard” (VH) class, for experiments 2-4, systems BM25 and BestRun

and collections Robust and WT10G using the SMOTE class balancing method [3]. The upper and the middle sub-tables

correspond to the threshold definition with 2 classes of query difficulty, experiments 2 (binary threshold-based) and 3 (easiest-

hardest threshold based), respectively. The bottom sub-table corresponds to the combined definition with 2 classes, experiment

4 (combined-based). The threshold values are indicated in the first line of each sub-table.

EXPERIMENT 2 - BINARY THRESHOLD-BASED DEFINITION (VH/NVH)
TVH = 0 TVH = 0.1 TVH = 0.2

VH False Pos VH True Pos VH False Pos VH True Pos VH False Pos VH True Pos

2*Robust BestRun 79.25% 28.95% 58.70% 55.07% 52.94% 53.09%
BM25 78.26% 35.71% 57.14% 49.09% 52.22% 53.09%

2*WT10G BestRun 61.29% 48.00% 52.17% 62.86% 43.86% 68.09%
BM25 56.67% 54.17% 51.02% 58.54% 32.65% 61.11%

EXPERIMENT 3 - THRESHOLD-BASED DEFINITION WITH P@10 GAP (VH/VE)
(TVeryhard,TVeryeasy) = (0.1,0.9) (TVeryhard,TVeryeasy) = (0.2,0.8) (TVeryhard,TVeryeasy) = (0.3,0.7)
VH False Pos VH True Pos VH False Pos VH True Pos VH False Pos VH True Pos

2*Robust BestRun 24.24% 72.46% 24.69% 71.76% 22.52% 72.88%
BM25 16.98% 80.00% 27.78% 64.20% 26.32% 63.06%

2*WT10G BestRun 21.88% 71.43% 20.00% 85.11% 18.64% 82.76%
BM25 7.89% 85.37% 10.91% 90.74% 9.09% 88.24%

EXPERIMENT 4 - COMBINED DEFINITION (VH∩Q1)
TVH = 0 & Q1 TVH = 0.1 & Q1 TVH = 0.2 & Q1

VH False Pos VH True Pos VH False Pos VH True Pos VH False Pos VH True Pos

2*Robust BestRun 79.25% 28.95% 58.70% 55.07% 58.70% 55.07%
BM25 78.26% 35.71% 57.14% 49.09% 52.22% 53.09%

2*WT10G BestRun 61.29% 48.00% 61.29% 48.00% 61.29% 48.00%
BM25 56.67% 54.17% 51.02% 58.54% 51.02% 58.54%

TABLE III: Confusion matrices using the WT10G collection and the BM25 run, for experiment 2 with TVH = 0.2, experiment

3 with (TVeryhard,TVeryeasy) = (0.1,0.9), experiment 4 with Combined VH∩Q1(TVH = 0.2), and with SMOTE balancing.

(a) Experiment 2

Prediction
Class VH NVH
VH 33 21

NVH 16 27

(b) Experiment 3

Prediction
Class VH NVH
VH 35 6

NVH 3 0

(c) Experiment 4

Prediction
Class VH VE
VH 24 17
VE 25 31

TABLE IV: Confusion matrices using the WT10G collection and the best run, for experiment 2 with TVH = 0.2, experiment

3 with (TVeryhard,TVeryeasy) = (0.1,0.9), experiment 4 with Combined VH∩Q1(TVH = 0.2), and with SMOTE balancing.

(a) Experiment 2

Prediction
Class VH NVH
VH 32 15

NVH 25 25

(b) Experiment 3

Prediction
Class VH NVH
VH 25 10

NVH 7 1

(c) Experiment 4

Prediction
Class VH VE
VH 22 13
VE 24 38

G. Dealing with unbalanced classes.

The threshold-based definitions of difficulty used in exper-

iments 2-4 may produce very unbalanced classes, since the

number of very hard queries is small compared to the total

number of queries. We use the SMOTE algorithm, a hybrid

approach for resampling.

V. RESULTS AND DISCUSSION

Tables II and VIII present the false and true positives rates

for the very hard queries for experiment 1 and experiments

2-4 with resampling, respectively. Tables III, IV, V, VI and

VII present the confusion matrices for experiment 1, and ex-

periments 2-4 with resampling, respectively. For experiments 2

and 4, we present the matrices for T = 0.2, and for experiment

3, (Tveryhard, Tveryeasy) = (0.1, 0.9). In the following, we denote

the “very hard, “hard”, “easy” and “very easy” classes as

“VH”, “H”, “E” and “VE”, respectively.

First of all, from Table VIII, one can notice that “very hard”

queries are hardly predicted when using 4 classes of difficulty

(percentile-based strategy, experiment 1), apart from WT10G,

which is detailed in Table VIIa, with most of the very hard

queries truly detected when considering BM25 (75.61%). This

very high true positives rate is not consistently obtained across

collections, nor across systems.

In Table II, one can see that the best prediction is ob-



TABLE V: Confusion matrices using the Robust collection and the BM25 run, for experiment 2 with TVH = 0.2, experiment

3 with (TVeryhard,TVeryeasy) = (0.1,0.9), experiment 4 with Combined VH∩Q1(TVH = 0.2), and with SMOTE balancing.

(a) Experiment 2

Prediction
Class VH NVH
VH 43 38

NVH 47 119

(b) Experiment 3

Prediction
Class VH NVH
VH 44 11

NVH 9 17

(c) Experiment 4

Prediction
Class VH VE
VH 27 28
VE 36 156

TABLE VI: Confusion matrices using the Robust collection and the best run, for experiment 2 with TVH = 0.2, experiment

3 with (TVeryhard,TVeryeasy) = (0.1,0.9), experiment 4 with Combined VH∩Q1(TVH = 0.2), and with SMOTE balancing.

(a) Experiment 2

Prediction
Class VH NVH
VH 40 45

NVH 45 117

(b) Experiment 3

Prediction
Class VH NVH
VH 50 19

NVH 16 14

(c) Experiment 4

Prediction
Class VH VE
VH 38 31
VE 54 124

TABLE VII: Confusion matrix on WT10G and Robust collections for the BM25 and best runs with 4 classes using percentile-

based definition (experiment 1).

(a) WT10G and BM25 run

Prediction
Class VH H E VE
VH 31 1 4 5
H 9 0 3 1
E 14 0 7 1

VE 13 0 6 2

(b) WT10G and best run

Prediction
Class VH H E VE
VH 10 14 0 1
H 7 16 3 7
E 1 12 1 2

VE 6 11 2 4

(c) Robust and BM25 run

Prediction
Class VH H E VE
VH 48 9 21 3
H 20 14 16 6
E 24 15 16 9

VE 13 6 22 5

(d) Robust and best run

Prediction
Class VH H E VE
VH 36 15 14 4
H 24 24 15 3
E 12 15 34 9

VE 10 7 22 3

TABLE VIII: False positive and true positive rates in the

case of 4 difficulty classes using percentile-based definition

(experiment 1), with respect to the “very hard” (VH) class.

VH/H/E/VE
VH False Pos VH True Pos

2*Robust BestRun 56.10% 52.17%
BM25 54.29% 59.26%

2*WT10G BestRun 58.33% 40.00%
BM25 53.73% 75.61%

tained when considering a threshold-based definition of query

difficulty with two classes of difficulty (middle sub-table) -

experiment 3 and a high P@10 gap between the classes. True

positives are detected at rates from 63% (Robust collection and

BM25 run) up to 90% (WT10G collection and BM25 run).

The definition based on threshold makes sense in concrete

applications, since the percentage of queries which a system

is going to fail on is not known, as it depends on the queries

themselves.

Combining the two definitions (threshold-based plus

percentage-based) does not make the prediction easier: true

positive and false positive rates are almost balances (which

means the prediction is rather poor).

The choice of the system (BestRun vs. BM25 in our case)

has an impact on the true positive rate (e.g. 71.76% vs. 64.20%

on Robust and 85.11% vs. 90.74% on WT10G, on experiment

3, with the same thresholds). However, the impact of the

system is smaller than the impact of the collection (64.20%

for Robust and 90.74% for WT10G, for the BM25 run, in

experiment 3). The threshold value within the same experiment

has a small impact (e.g. 72.46%, 71.76% and 72.88%, for the

chosen thresholds in experiment 3 - Table II, middle sub-table).

Overall, the definition of query difficulty has an impact

on the accuracy of the predictive model. When considering

the definition that makes the most sense to us (threshold-

based rather than percentage-based) and a P@10 gap between

classes, we got the highest level of true positives. Although

the hard queries for the different systems may not be the same,

the accuracies we obtain are similar across systems, given a

collection.

VI. CONCLUSION

Since there is no clear definition for query difficulty, we pro-

posed in this article three strategies to define query difficulty,

based on percentiles, on thresholds and combined, respectively.

With data sets built on Robust and WT10G TREC collec-

tions and based on pre and post retrieval features as query

difficulty predictors, we designed four experiments according

to our query difficulty definitions, with the purpose of predict-

ing “very hard” queries.



The results show that “very hard” queries are hardly pre-

dicted, except for a few cases (WT10G collection and BM25

system).

We conclude that the best predictions are obtained with

threshold-based strategies and a P@10 gap between difficulty

classes and that the choice of the collection has the greatest

impact on the predictions, while the threshold choices have

the least impact.
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