Josiane Mothe
email: josiane.mothe@irit.fr

Léa Laporte
email: lea.laporte@insa-lyon.fr

Adrian-Gabriel Chifu

Predicting Query Difficulty in IR: Impact of Difficulty Definition

Keywords: Information retrieval, Query difficulty prediction, Query features

the user's query (i.e. precision of 0.33) can be either a good or a poor result, depending on the context, the ambiguity of the query, etc.

Furthermore, from the definition of the notion of query difficulty can depend the evaluation of the accuracy of an automatic query difficulty prediction.

This paper investigates the query difficulty definition. More precisely, it focuses on how much the definition of query difficulty impacts the query difficulty prediction accuracy.

To answer this hard problem, after reviewing the related work (Section II), we suggest several ways of defining query difficulty (Section III) and we measure the quality of query difficulty prediction according to these definitions (Section V), before drawing some conclusions (Section VI).

II. RELATED WORK

Grivolla et al. introduced a binary classification of query difficulty [9]

. They classify queries into difficult and nondifficult queries. They use the median value of the average precision over the set of queries to define the two classes. Moreover, the authors used a set of features to represent the queries and a SVM-based classifier; they show that this model allows to classify the 50 TREC8 topics with about 80% of classification accuracy. Although this work did not follow-up and the model was not evaluated on other collections, nor on larger sets of queries, it provides an interesting definition of query difficulty which is class-based.

.

The usefulness of QPP is not demonstrated while there are concrete applications of query difficulty prediction.

.

Abstract-While it exists information on about any topic on the web, we know from information retrieval (IR) evaluation programs that search systems fail to answer to some queries in an effective manner. System failure is associated to query difficulty in the IR literature. However, there is no clear definition of query difficulty. This paper investigates several ways of defining query difficulty and analyses the impact of these definitions on query difficulty prediction results. Our experiments show that the most stable definition across collections is a threshold-based definition of query difficulty classes.

I. INTRODUCTION

Information Retrieval (IR) aims at providing a user with documents that fulfill an information need that is expressed generally through a query. In textual IR, search models are mainly based on matching bags of words from the query and from the documents, allowing search engines to retrieve documents for almost any query submitted by a user.

However, system effectiveness which measures the ability of the system to retrieve relevant documents and only relevant ones, is not the same for all the queries the system treats. For example, TREC evaluation campaigns 1 have shown that a system can perform well on a given query, but poorly on another one, while another system will perform reversely [START_REF] Harman | Overview of the reliable information access workshop[END_REF], [START_REF] Mothe | Linguistic analysis of users' queries: towards an adaptive information retrieval system[END_REF].

In IR literature, query difficulty is mainly associated with system failure and, as a consequence, a difficult query is a query for which the system gets poor performance in terms of system effectiveness measures [START_REF] Carmel | Estimating the query difficulty for information retrieval[END_REF]. One very active research topic in IR related to query difficulty is query difficulty prediction and query performance prediction.

There is no precise definition of what a difficult query is. Yet, a query can be difficult for a given system (just one system fails but other systems succeed) or for systems in general (all systems fail in retrieving relevant documents). Moreover, getting a third of the retrieved documents actually relevant to Alternatively, the system could also start a conversational interaction to better answer a difficult query; such a (time consuming) conversation would be acceptable for the user if it was applied to difficult queries only.

However, predicting query difficulty implies precisely defining the difficulty.

III. QUERY DIFFICULTY DEFINITIONS

There is no consensual definition of query difficulty in the literature. Most of the existing studies consider the correlation between predicted and actual effectiveness, which does not require a clear definition of query difficulty.

When considering query difficulty prediction as a classification problem, a definition needs to be provided. Classification can be binary (a query is difficult or not), or graded (e.g. a query can be very easy, easy, difficult or very difficult for a system). If q is a query, M a given effectiveness measure such as AP (average precision) obtained by a system S, then a poor effectiveness corresponds to a low value of M .

We consider three kinds of strategies to define the difficulty of a query q, based on the value m S of an effectiveness measure M obtained for a given system S. Our objective is to analyse the impact of the definition on the results in order to suggest the most stable definition as the best definition.

A. Percentile-based strategies.

In the binary case, a query q is considered as difficult for a system S if the value of the effectiveness measure is lower than the x th percentile p x , which means that x% of queries have a m S value lower than

p x : difficulty(q) = 1 {mS ≤px} (1)
In the graded difficulty case, the N difficulty classes can be defined thanks to N -1 percentiles. Let D i , i = 1, . . . , N be the i th difficulty class and P j , j = 1, . . . , N -1, be the j th percentile value. Then, we have

q ∈    D 1 if m S ≤ P 1 D i , ∀i = 2, . . . , N -2 if P i-1 < m S ≤ P i D N if m S > P N -1 (2)
where D 1 (resp. D N) is the class of the most difficult (resp. easiest) queries.

B. Threshold-based strategies.

In the binary case, a query q is considered difficult for a system S if the value of the effectiveness measure M is lower than a given threshold

T : difficulty q = 1 {mS ≤T } (3
)
Graded relevance is defined in a similar way as for the percentile-based strategy, replacing the percentiles values by the thresholds values p i , i = 1, . . . , N -1, where N is the number of difficulty classes.

C. Combined strategies.

In the binary case, a query q is considered as difficult for a system S if it is judged as difficult regarding both the threshold-based and the percentile-based definitions:

difficulty(q) = 1 {mS ≤T &mS ≤px} (4)
In the graded difficulty case, let consider D T i (resp. D P i , the i th difficulty class for the threshold (resp percentile)-based strategy. Then q belongs to the i th difficulty class for the combined strategy if q ∈ D T i and q ∈ D P i . In this paper, we consider a system-centered approach, which means that we define the difficulty regarding one given system instead of a set of systems. Nevertheless, the definitions we consider are generic enough to be used to define query difficulty regarding a set of systems S = {S 1 , . . . , S n }. One can just replace m S , the value of the effectiveness measure M for the system S, by m = 1 n n i=1 m Si , the average of the effectiveness measure values over all the systems.

IV. QUERY DIFFICULTY PREDICTION AND EXPERIMENTAL SETTINGS

The main objective of this work is to evaluate how the different definitions impact the performance of the query difficulty. Our methodology and experimental settings are now described.

A. Methodology

Let C be a collection associated to a set of queries Q and S a system. The difficulty of each query q ∈ Q for S can be assessed by using the definitions presented in section III.

Let

y d = [y d 1 , . . . , y d |Q|]
the difficulty labels for each q ∈ Q according to the definition d. We proceed as follows. Given a set of difficulty predictors P, for each vector y (.) of difficulty labels, we learn a model to predict the query difficulty by using a machine learning algorithm A.

We thus evaluate the learned model based on some performance metrics and analyse the results we obtain when considering different definitions for query difficulty.

As mentioned in the introduction, we focus on the queries that are the most difficult for a system, since there are the most crucial with regard to user engagement.

The experimental settings are detailed in the next sections.

B. Query difficulty predictors

We consider both pre-retrieval and post-retrieval features from the literature. Pre-retrieval features can be calculated prior the system runs the query while post-retrieval features implies to use initially-retrieved documents.

As pre-retrieval features, we used

• 2 variants of the linguistic feature SynSet: max and mean number of synonyms of the query term synonyms in WordNet [START_REF] Mothe | Linguistic features to predict query difficulty[END_REF]; • 2 variants of IDF: the maximum and mean of the query terms Inverse Document Frequency in the entire document collection.

As post-retrieval features, we considered :

• Query Feedback (QF) which measures the overlap of documents between initially retrieved documents and the retrieved documents after query expansion [START_REF] Zhou | Query performance prediction in web search environments[END_REF]; • Weighted Information Gain (WIG) [START_REF] Zhou | Query performance prediction in web search environments[END_REF] which measures the divergence between the average score of the top retrieved documents and the score of the entire corpus; • Normalized Query Commitment (NQC) which is based on the standard deviation of the retrieved document scores normalized by the score of the whole collection [START_REF] Shtok | Predicting query performance by query-drift estimation[END_REF]; • Clarity score which measures the divergence between the mean of the top-retrieved document scores and the mean of the entire set of document scores [START_REF] Cronen-Townsend | Quantifying query ambiguity[END_REF].

C. Machine learning algorithm

We use Random Forest as the learning algorithm since it has been shown to provide the best results in related work and in our preliminary studies. We performed 10-fold cross validation on the train set to tune the parameters. We used the rf package for Random Forest in R software in our experiments.

Since the number of queries is rather small per collection, we use leave-one-out cross validation in our experiments.

D. Collections and effectiveness measures

We consider two TREC collections from the ad hoc and web tasks: Robust [START_REF] Voorhees | The trec robust retrieval track[END_REF] and WT10G ([START_REF] Hawking | Overview of the trec-9 web track[END_REF], [START_REF] Hawking | Overview of the trec-2001 web track[END_REF]), respectively. The TREC tasks allow researchers to investigate the performance of systems that search a static set of documents using new information needs (called topics). These collections are very popular in the literature and having two types of benchmarks, ad hoc and web, involves a wider evaluation perspective. We use the topic title as the query and the provided qrels (document relevance judgements) with trec_eval in order to compute system effectiveness.

In the case of TREC Robust, the competition provided approximately 2 gigabytes worth of documents and a set of 250 natural language topic statements (per collection). The documents were articles from newspapers like the Financial Times, the Federal Register, the Foreign Broadcast Information Service and the LA Times. The WT10G collection provided approximately 10 gigabytes worth of Web/Blog page documents with its 100 corresponding topics. In Table I we present a summary of benchmark collections features regarding the topics, the documents and the disk space required for each set of documents. We use precision after 10 retrieved documents (P@10), as the effectiveness measure to define difficulty classes. We analyse the results of prediction through the confusion matrices, the true positive rate and the false positive rate for the hard queries.

E. Systems

We use two different systems:

(1) BM25 with default parameters from Terrier and (2) the best run for each collection.

To choose the best run, we tried various system configurations by making Terrier parameters varying.

F. Query difficulty instanciations

In our experiments, we consider four instanciations of the proposed query difficulty definitions.

1) Experiment 1.: In experiment 1, we use the graded, percentile-based strategy to define four classes of difficulty ("very hard", "hard", "easy" and "very easy"), according to the first quartile, the median and the third quartile. Our goal is to evaluate a graded definition of query difficulty with automatically fixed and quite homogeneous classes in terms of number of queries.

The three other experiments aim to analyse the impact of using definitions that focus on the hardest queries.

2) Experiment 2: In experiment 2, we consider the binary threshold-based strategy to isolate the very hard queries.

We use three different thresholds for P@10: T ∈ {0, 0.1, 0.2}. T = 0 implies that we consider a query to be very difficult for a system if it fails to retrieve any relevant document among the ten first documents. For T = 0.1 (resp. 0.2), a query is judged as very difficult if it retrieves only one (resp. two) relevant documents among the ten first documents. All other queries are considered as not difficult for the system.

3) Experiment 3: In experiment 3, we established the very hard queries according to P@10 thresholds such as T ∈ {0.1, 0.2, 0.3}, but instead of considering all other queries as not hard, we keep only the easiest queries in the dataset. Once T is fixed, the threshold used to define the easiest class is set to 1 -T .

Thus, we consider the following (T veryhard ,T veryeasy) pairs of P@10 thresholds: (0.1, 0.9), (0.2, 0.8) and (0.3, 0.7).

We do not report the (0,1) pair of P@10 thresholds since it tends to produce empty difficulty classes on our datasets. The underlying idea is that, in experiment 2, the discrimination between the very hard class and all the rest may be hard to make, due both to the larger number of "not very hard" queries and to the smooth change when passing through values that belong to the "very hard" class towards values that belong to the "not very hard". We thus want to check whether it is easier to distinguish between queries from different classes that have a higher P@10 gap, or not.

4) Experiment 4 : Finally, in experiment 4, we investigate the combined definition of difficulty in the binary case. We consider the same P@10 thresholds than in the second experiment, T ∈ {0, 0.1, 0.2}, and the first quartile.

G. Dealing with unbalanced classes.

The threshold-based definitions of difficulty used in experiments 2-4 may produce very unbalanced classes, since the number of very hard queries is small compared to the total number of queries. We use the SMOTE algorithm, a hybrid approach for resampling.

V. RESULTS AND DISCUSSION

Tables II and VIII present the false and true positives rates for the very hard queries for experiment 1 and experiments 2-4 with resampling, respectively. Tables III, IV, V, VI and VII present the confusion matrices for experiment 1, and experiments 2-4 with resampling, respectively. For experiments 2 and 4, we present the matrices for T = 0.2, and for experiment 3, (T veryhard , T veryeasy) = (0.1, 0.9). In the following, we denote the "very hard, "hard", "easy" and "very easy" classes as "VH", "H", "E" and "VE", respectively. First of all, from Table VIII, one can notice that "very hard" queries are hardly predicted when using 4 classes of difficulty (percentile-based strategy, experiment 1), apart from WT10G, which is detailed in Table VIIa, with most of the very hard queries truly detected when considering BM25 (75.61%). This very high true positives rate is not consistently obtained across collections, nor across systems.

In Table II, one can see that the best prediction is ob- tained when considering a threshold-based definition of query difficulty with two classes of difficulty (middle sub-table)experiment 3 and a high P@10 gap between the classes. True positives are detected at rates from 63% (Robust collection and BM25 run) up to 90% (WT10G collection and BM25 run).

The definition based on threshold makes sense in concrete applications, since the percentage of queries which a system is going to fail on is not known, as it depends on the queries themselves.

Combining the two definitions (threshold-based plus percentage-based) does not make the prediction easier: true positive and false positive rates are almost balances (which means the prediction is rather poor).

The choice of the system (BestRun vs. BM25 in our case) has an impact on the true positive rate (e.g. 71.76% vs. 64.20% on Robust and 85.11% vs. 90.74% on WT10G, on experiment 3, with the same thresholds). However, the impact of the system is smaller than the impact of the collection (64.20% for Robust and 90.74% for WT10G, for the BM25 run, in experiment 3). The threshold value within the same experiment has a small impact (e.g. 72.46%, 71.76% and 72.88%, for the chosen thresholds in experiment 3 -Table II, middle sub-table).

Overall, the definition of query difficulty has an impact on the accuracy of the predictive model. When considering the definition that makes the most sense to us (thresholdbased rather than percentage-based) and a P@10 gap between classes, we got the highest level of true positives. Although the hard queries for the different systems may not be the same, the accuracies we obtain are similar across systems, given a collection.

VI. CONCLUSION

Since there is no clear definition for query difficulty, we proposed in this article three strategies to define query difficulty, based on percentiles, on thresholds and combined, respectively.

With data sets built on Robust and WT10G TREC collections and based on pre and post retrieval features as query difficulty predictors, we designed four experiments according to our query difficulty definitions, with the purpose of predicting "very hard" queries.

TABLE I :

 I Topic and document features from the data collections

	Collection	No. of	Topic number	No. of	Space
		topics		documents	on disk
	TREC Robust	250	301-450; 601-700	528,155	2GB
	WT10G	100	451-550	1,692,096	10GB

TABLE II :

 II False positive and true positive rates for "very hard" (VH) class, for experiments 2-4, systems BM25 and BestRun and collections Robust and WT10G using the SMOTE class balancing method[START_REF] Chawla | Smote: Synthetic minority over-sampling technique[END_REF]. The upper and the middle sub-tables correspond to the threshold definition with 2 classes of query difficulty, experiments 2 (binary threshold-based) and 3 (easiesthardest threshold based), respectively. The bottom sub-table corresponds to the combined definition with 2 classes, experiment 4 (combined-based). The threshold values are indicated in the first line of each sub-table.

				EXPERIMENT 2 -BINARY THRESHOLD-BASED DEFINITION (VH/NVH)	
			T VH = 0	T VH = 0.1	T VH = 0.2
			VH False Pos	VH True Pos	VH False Pos	VH True Pos	VH False Pos	VH True Pos
	2*Robust	BestRun	79.25%	28.95%	58.70%	55.07%	52.94%	53.09%
		BM25	78.26%	35.71%	57.14%	49.09%	52.22%	53.09%
	2*WT10G	BestRun	61.29%	48.00%	52.17%	62.86%	43.86%	68.09%
		BM25	56.67%	54.17%	51.02%	58.54%	32.65%	61.11%
				EXPERIMENT 3 -THRESHOLD-BASED DEFINITION WITH P@10 GAP (VH/VE)	
			(T Veryhard , T Veryeasy) = (0.1, 0.9)	(T Veryhard , T Veryeasy) = (0.2, 0.8)	(T Veryhard , T Veryeasy) = (0.3, 0.7)
			VH False Pos	VH True Pos	VH False Pos	VH True Pos	VH False Pos	VH True Pos
	2*Robust	BestRun	24.24%	72.46%	24.69%	71.76%	22.52%	72.88%
		BM25	16.98%	80.00%	27.78%	64.20%	26.32%	63.06%
	2*WT10G	BestRun	21.88%	71.43%	20.00%	85.11%	18.64%	82.76%
		BM25	7.89%	85.37%	10.91%	90.74%	9.09%	88.24%
				EXPERIMENT 4 -COMBINED DEFINITION (VH∩Q1)	
			T VH = 0 & Q1	T VH = 0.1 & Q1	T VH = 0.2 & Q1
			VH False Pos	VH True Pos	VH False Pos	VH True Pos	VH False Pos	VH True Pos
	2*Robust	BestRun	79.25%	28.95%	58.70%	55.07%	58.70%	55.07%
		BM25	78.26%	35.71%	57.14%	49.09%	52.22%	53.09%
	2*WT10G	BestRun	61.29%	48.00%	61.29%	48.00%	61.29%	48.00%
		BM25	56.67%	54.17%	51.02%	58.54%	51.02%	58.54%

TABLE III :

 III Confusion matrices using the WT10G collection and the BM25 run, for experiment 2 with T VH = 0.2, experiment 3 with (T Veryhard , T Veryeasy) = (0.1, 0.9), experiment 4 with Combined VH∩Q1(T VH = 0.2), and with SMOTE balancing.

	(a) Experiment 2	(b) Experiment 3	(c) Experiment 4
		Prediction		Prediction		Prediction
	Class	VH	NVH	Class	VH	NVH	Class	VH	VE
	VH	33	21	VH	35	6	VH	24	17
	NVH	16	27	NVH	3	0	VE	25	31

TABLE IV :

 IV Confusion matrices using the WT10G collection and the best run, for experiment 2 with T VH = 0.2, experiment 3 with (T Veryhard , T Veryeasy) = (0.1, 0.9), experiment 4 with Combined VH∩Q1(T VH = 0.2), and with SMOTE balancing.

	(a) Experiment 2	(b) Experiment 3	(c) Experiment 4
		Prediction		Prediction		Prediction
	Class	VH	NVH	Class	VH	NVH	Class	VH	VE
	VH	32	15	VH	25	10	VH	22	13
	NVH	25	25	NVH	7	1	VE	24	38

TABLE V :

 V Confusion matrices using the Robust collection and the BM25 run, for experiment 2 with T VH = 0.2, experiment 3 with (T Veryhard , T Veryeasy) = (0.1, 0.9), experiment 4 with Combined VH∩Q1(T VH = 0.2), and with SMOTE balancing.

	(a) Experiment 2	(b) Experiment 3	(c) Experiment 4
		Prediction		Prediction		Prediction
	Class	VH	NVH	Class	VH	NVH	Class	VH	VE
	VH	43	38	VH	44	11	VH	27	28
	NVH	47	119	NVH	9	17	VE	36	156

TABLE VI :

 VI Confusion matrices using the Robust collection and the best run, for experiment 2 with T VH = 0.2, experiment 3 with (T Veryhard , T Veryeasy) = (0.1, 0.9), experiment 4 with Combined VH∩Q1(T VH = 0.2), and with SMOTE balancing.

	(a) Experiment 2	(b) Experiment 3	(c) Experiment 4
		Prediction		Prediction		Prediction
	Class	VH	NVH	Class	VH	NVH	Class	VH	VE
	VH	40	45	VH	50	19	VH	38	31
	NVH	45	117	NVH	16	14	VE	54	124

TABLE VII :

 VII Confusion matrix on WT10G and Robust collections for the BM25 and best runs with 4 classes using percentilebased definition (experiment 1).

	(a) WT10G and BM25 run	(b) WT10G and best run	(c) Robust and BM25 run	(d) Robust and best run	
			Prediction				Prediction				Prediction				Prediction	
	Class	VH	H	E	VE	Class	VH	H	E	VE	Class	VH	H	E	VE	Class	VH	H	E	VE
	VH	31	1	4	5	VH	10	14	0	1	VH	48	9	21	3	VH	36	15	14	4
	H	9	0	3	1	H	7	16	3	7	H	20	14	16	6	H	24	24	15	3
	E	14	0	7	1	E	1	12	1	2	E	24	15	16	9	E	12	15	34	9
	VE	13	0	6	2	VE	6	11	2	4	VE	13	6	22	5	VE	10	7	22	3

TABLE VIII :

 VIII False positive and true positive rates in the case of 4 difficulty classes using percentile-based definition (experiment 1), with respect to the "very hard" (VH) class.

			VH/H/E/VE
			VH False Pos	VH True Pos
	2*Robust	BestRun	56.10%	52.17%
		BM25	54.29%	59.26%
	2*WT10G	BestRun	58.33%	40.00%
		BM25	53.73%	75.61%

http://trec.nist.gov: the TREC Conference series supports "research within the information retrieval community by providing the infrastructure necessary for large-scale evaluation of text retrieval methodologies"

The results show that "very hard" queries are hardly predicted, except for a few cases (WT10G collection and BM25 system).

We conclude that the best predictions are obtained with threshold-based strategies and a P@10 gap between difficulty classes and that the choice of the collection has the greatest impact on the predictions, while the threshold choices have the least impact.