
HAL Id: hal-02930106
https://hal.science/hal-02930106v1

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A User-Centric Identity Management Framework based
on the W3C Verifiable Credentials and the FIDO

Universal Authentication Framework
Romain Laborde, Arnaud Oglaza, Ahmad Samer Wazan, François Barrère,

Abdelmalek Benzekri, David W. Chadwick, Rémi Venant

To cite this version:
Romain Laborde, Arnaud Oglaza, Ahmad Samer Wazan, François Barrère, Abdelmalek Benzekri,
et al.. A User-Centric Identity Management Framework based on the W3C Verifiable Creden-
tials and the FIDO Universal Authentication Framework. 17th IEEE Consumer Communica-
tions and Networking Conference (CCNC 2020), Jan 2020, Las Vegas, United States. pp.1-8,
�10.1109/CCNC46108.2020.9045440�. �hal-02930106�

https://hal.science/hal-02930106v1
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1109/CCNC46108.2020.9045440

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26279

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Laborde, Romain and Oglaza, Arnaud and Wazan,

Ahmad Samer and Barrère, François and Benzekri, Abdelmalek and

Chadwick, David W. and Venant, Rémi A User-Centric Identity

Management Framework based on the W3C Verifiable Credentials and

the FIDO Universal Authentication Framework. (2020) In: 17th IEEE

Consumer Communications and Networking Conference (CCNC 2020),

10 January 2020 - 13 January 2020 (Las Vegas, United States)

A User-Centric Identity Management Framework
based on the W3C Verifiable Credentials and the

FIDO Universal Authentication Framework

Romain LABORDE, Arnaud
OGLAZA, Samer WAZAN, François
BARRERE, Abdelmalek BENZEKRI,
University Toulouse III Paul Sabatier
{Romain.Laborde, Arnaud.Oglaza,

Samer-Ahmad.Wazan,
Francois.Barrere,

Abdelmalek.Benzekri}@irit.fr

David W. CHADWICK
University of Kent

d.w.chadwick@kent.ac.uk

Rémi VENANT
University of Le Mans

Remi.Venant@univ-lemans.fr

Abstract— We present a user-centric and decentralized
digital identity system that allows anyone to easily benefit from
an enriched digital identity made of multi-purpose and multi-
origin attributes. It increases usability by the elimination of
user passwords. It also makes this digital identity highly
trustworthy both for the user (in terms of privacy and
sovereignty) and the service provider who requires highly
certified information about the user being enrolled to and/or
authenticated on its services. We built our system based on the
Universal Authentication Framework specified by the FIDO
Alliance and the data model proposed by the W3C Verifiable
Credentials WG. The whole system has been implemented in a
banking scenario.

Keywords—Federated Identity Management, FIDO UAF,
Verifiable credentials

I. INTRODUCTION
Registration and authentication processes on websites

have been significantly simplified by federated identity
management systems, which allow single sign-on. A central
actor, the Identity Provider (IdP), centralizes all the identity
attributes of each of its users and provides them with a single
authentication process they can use to identify and
authenticate to any service on the internet that is federated
with the IdP. Based on web-based standard protocols (e.g.
SAML [1], OpenID Connect [2]), this process replaces the
tedious task of manually declaring an identity by registering
at each service provider (SP), with an automatic exchange of
identity information between the IdP and the SP. Identity
federation also simplifies user authentication in a password
based world, since the user only authenticates to the IdP,
thereby reducing the number of credentials that need to be
remembered.

However, today’s federated identity management (FIM)
systems have a significant structural weakness, namely, the
placement of the IdP at the centre of the identity ecosystem.
First, the trust model requires the IdP to trust the SP to
preserve the privacy of the user’s identity attributes that it is
asserting, and the SP to trust that the IdP is the authoritative
source of (all of) the user’s identity attributes. Both of these
trust requirements are unreasonable. No single IdP is the
authoritative source of all a user’s identity attributes, and
users may want to present their identity attributes to SPs that
IdPs do not fully trust. Secondly, the IdPs are the center of
the identity eco-system, and issue short-lived identity

assertions [1] or tokens [2] on-demand to trusted SPs.
Consequently, they know which SPs the user is visiting and
when, which allows them to track the user. In addition,
besides violating the user’s privacy, it also introduces a
severe security vulnerability as the recent Facebook hack [3]
highlighted. This allowed the attackers to access all the
user’s accounts at all the SP web sites that trusted Facebook
as the user’s IdP. Since IdPs, like Facebook, store a huge
amount of information about lots of users, such attacks have
a big impact. Finally, the assurance SPs can have on identity
attributes is very low since attributes are mostly always self-
asserted by the user when she creates/updates her account at
the IdP. This stifles the digitalisation of services and
transactions. There are a few examples of IdPs that certify
the integrity of users’ attributes, such as universities, and
France Connect. However, these identity federations are
restricted to academia or French administration offices only
(that brings us back to the first issue).

Our hypothesis is that 1) placing the user at the centre of
the identity ecosystem rather than the IdP, and 2) splitting
omnipotent IdPs into small and specialized Attribute
Authorities (AA) or Issuers is both more secure and more
privacy protecting, and consequently will become the
predominant identity management architecture of the future.
Our hypothesis is supported by the “plastic card model” (e.g.
association membership cards, scuba diving accreditation
cards, ID cards, etc.), which allows the user to apply for
plastic cards from multiple issuers, keep them in a wallet,
and then present them to whomsoever they choose, when
they choose. This model is already ubiquitous in the physical
world, and we propose to use it in the electronic world. This
architecture allows the user to:

1) choose which card issuers to enroll with,
2) choose which service providers to present her cards to,
3) not inform the card issuers prior to use of her cards,
4) choose which cards to use, from those accepted by the

service provider,
5) update her personal details with the issuers and inform

them to revoke one of her cards.
As a consequence, there is a need for a new FIM system

that allows users to generate on-demand identities that
contain only the necessary information by aggregating
validated identity attributes from different attribute
authorities. In addition, attribute authorities should neither be
able to control the disclosure of users’ attributes, nor track

them. Hence, our research follows the philosophy of the self-
sovereign identity paradigm [4]. Although there is no
consensus on the self-sovereign identity definition [5], W3C
[6] explains that "in a self-sovereign system, users exist
independently from services. In contrast, in a service-centric
system, users are tightly bound to a particular service." As a
consequence, in a self-sovereign identity system, the user
must be central to the administration of its identity.

We present in this article a user-friendly identity system
that places the user at the centre, using the new W3C
Verifiable Credentials (VC) standard [7]. The architecture
places the user at the center of the FIM eco-system rather
than the IdP, and the trust model only requires the SP to trust
the IdP. However, currently the W3C is only standardizing
the data model for VCs and no protocols are being proposed.

We have built a VC eco-system based on an enhanced
FIDO UAF protocol. Our identity system is highly secure
and privacy protecting with the following properties.
Availability is achieved because the user will be able to
present her credentials to the SPs of her choosing at any
time, and the SP should always be able to validate them.
Confidentiality is respected because the credentials will
only be visible to third parties (SPs) chosen by the user.
Integrity since the SP will be able to check the integrity of
all credentials presented to it i.e. they are current, not
modified, and all belong to the presenter. Finally, we
followed the Privacy-by-design principle. In our system, the
user should not have to present more credentials to an SP
than are needed to access its resources (selective
disclosure/data minimization/least privileges). She should
consent to the release of her credentials (making our system
compliant with the European GDPR), and she should not be
trackable through the use of her credentials, except in cases
of abuse. We implemented the whole system and proved its
efficiency in an online banking registration scenario.

The rest of the article is structured as follows. Section II
presents the related works. Section III describes the
underlying technologies. In section IV, we describe our
identity management system called Universal Authentication
and Authorization Framework. We present the conceptual
and implementation architectures. In section V, we illustrate
its use in a bank scenario. Finally, section VI concludes and
highlights future works.

II. RELATED WORKS
The two main federated identity management protocols

are SAMLv2 [1] and OpenID Connect (OIDC) [2]. As used
in the Shibboleth implementation, SAMLv2 is typically used
for identity federations between organizations where users
are employees of the IdP. This gives the IdP organisation
complete control over the attributes disclosed to the SP.
Also, as operated by the academic community, it requires
strong trust relations between the IdPs and the SPs, who sign
agreements in order to join the federation. OIDC fits more
with the concept of user-centric federated identity
management on the web because (theoretically) users can
choose which attributes will be revealed to the SPs. In
practice, however, users are given a ‘take it or leave it' menu
by the IdP and have to agree to the release of all of the
attributes that the SP requests. Usually, the SP retrieves the
user's attributes directly from the IdP via a backchannel,
allowing the IdP to track users. Finally, there exist
proprietary protocols that are interoperable with OIDC (e.g.

Facebook Connect, Google+ sign in, etc.). However, in
addition to the OIDC weaknesses, these protocols constrain
the user to one central IdP per session (e.g. Facebook or
Google). Solid (https://github.com/solid/) led by Tim
Berners-Lee is proposing to build a decentralized social
application based on Linked Data principles where
authentication is done by WebID-TLS. Although this
approach complies with the self-sovereign principles, Solid
cannot provide certified identity attributes.

Many new approaches propose to build a FIM system
following the self-sovereign objective on top of blockchains
[8,9], such as ShoCard, Sovrin, UPort, OneName, BitID,
ID.me or IDchainZ. A first strategy consists in digitizing
paper-based credentials and publishing a hash on a public
distributed ledger. For instance, in ShoCard
(https://shocard.com/), users scan their existing paper-based
trusted credentials (e.g. their passport) using the device’s
camera and extract attributes by applying an optical character
recognition technique. A signed hash of this data, called
ShoCardID, is stored in Bitcoin transactions. In a second
step, this data has to be certified by an IdP and the hash of
the certificate is published in the Bitcoin ledger. This
certification task is similar to the registration process in
X.509 PKI systems. All the attributes are stored in the users'
mobile devices. A ShoCard server can store symmetrically
encrypted certifications (called envelopes) in case the user
loses its device. A relying party can validate an identity after
the user has provided the symmetric key and the envelope
reference from the ShoCard server. This solution has several
drawbacks. First, ShoCard has privacy weaknesses. The hash
of the users' identity attributes is publicly available, and the
ShoCard server may be able to associate a particular
ShoCardID with requests made by relying parties and then
technically track users similarly to SAML or OIDC IdPs.
Secondly, Bitcoin transactions take on average 10 minutes to
be mined and waiting for six additional blocks is
recommended for the settlement of a transaction [8]. This
implies users will have to wait at least one hour before being
able to use their certified identities. This constraint limits the
usage of ShoCard to scenarios requiring only predefined
identities (where attributes are known in advance) since it is
not possible to create identities in real time. Finally, the
central role of the ShoCard server raises the question of the
sustainability of users’ identities if the company ceases to
exist.

Sovrin (https://sovrin.org) has developed another strategy
that relies on a permissioned-ledger based blockchain to
store identity records. An identity record is a transaction on
the Sovrin Ledger that describes a Sovrin Entity that may
include Public Keys, Service Endpoints, Claim Definitions,
Public Claims, and Proofs. Identity Records are Public Data.
Only trusted nodes, called stewards that satisfy the Sovrin
Foundation Agreement can add identity records to the
permissioned-ledger. Specific software programs, called
Agents, act on behalf of the entity to interact with other
Agents or with the Sovrin Ledger. There are two types of
Agents: Edge Agents that run on a local device (e.g. on a
user's mobile device), and Cloud Agents that run remotely on
a server or cloud hosting service. Credentials are exchanged
between Agents using a proprietary P2P-based protocol
while the format of the credentials aligns with the W3C
Verifiable Credentials standard. This solution fits more with
our objectives and using a blockchain as a root of trust is
interesting. However, the Sovrin approach suffers some

drawbacks. First, users could run their Cloud agents on their
own servers, but more likely, they will delegate this task to
specialized intermediary agencies [8]. As a consequence, a
lot of user information will be available to the agencies.
Moreover, the Sovrin protocol is proprietary. A better
approach is to adopt standards around which an ecosystem
can be developed. In the same vein, Sovrin is not compatible
with other FIM technologies. Confining the system can
impact the adoption of the solution.

Last but not least, none of the current blockchain-based
FIM solutions have considered usability and user
understanding of privacy implications [8,10] whilst all these
approaches advocate the need for user control. Finally, as
pointed out by Yael Grauer [11], “multiple startups in
decentralized sovereign identity solutions are competing to
be the key players in this space. Confining users within a
particular blockchain contradicts the main idea of self-
sovereign identity”.

III. THE MAIN TECHNOLOGIES

A. W3C Verifiable credentials
A verifiable credential (VC) is defined in [7] as a set of

one or more tamper resistant claims made by an issuer,
where each claim asserts a set of properties about a subject.
The architecture of the VC model is shown in figure 1.

Fig. 1. W3C Verifiable Credentials Architecture [7]

The subject should create one or more globally unique
identifiers mediated by a verifiable data registry. The holder
asks the issuer to create a VC for one or more subjects by
binding properties to identifiers. The holder is usually, but
not always, the subject of the verifiable credentials they are
holding, for example, a parent may hold a child’s VCs. The
issuer verifies the holder, its right to hold the subject’s VC,
the identifiers and the properties, and then issues the VC.
The holder can store the issued VC in its repository for later
use. Finally, holders combine one or more VCs together (i.e.
attribute aggregation) to present verifiable presentations to
verifiers. In this model, VC issuers don’t know the identities
of the verifiers, which is a significant change from current
FIM systems.

B. FIDO Universal Authentication Framework
The FIDO Alliance has specified the Universal

Authentication Framework (UAF) for password-less
authentication [12] using asymmetric encryption on smart
devices (figure 2).

All UAF devices contain one or more FIDO
Authenticators. An authenticator is a secure entity within the
smart device that can create and store asymmetric key pairs
and authenticate the user to access the keys via a specific
method such as fingerprints, PIN, face recognition, etc. All
FIDO authenticators must be certified and registered with the

FIDO metadata service, which is managed by the FIDO
alliance. They all contain an Attestation Private Key inside
them that is used to certify the public keys they create.
Attestation key pairs are generated by the
device/authenticator manufacturer and are inserted into their
authenticators. The FIDO Alliance recommends that the
same attestation private key is inserted into around every
100,000 authenticators to protect the user's privacy. In this
way, there is no unique ID associated with the user
(otherwise a unique attestation public key would become a
globally unique correlating ID for the user). All FIDO
servers store the attestation public key certificates to validate
the integrity of the messages. They can retrieve the
attestation public key certificates from the metadata service.
Since all FIDO authenticators are uniquely identified by an
Authenticator Attestation ID (AAID), the FIDO servers can
limit the authenticator to be used by the user.

Fig. 2. FIDO UAF Architecture [9]

The FIDO user device creates a new asymmetric key pair
for each web site the user authenticates to. UAF has adopted
the Same Origin Policy (SOP) [13] to ensure signed data is
only transferred between web pages of the same web site i.e.
the pages have the same origin (same protocol, host and
port). This helps in preventing cross-site scripting and similar
attacks, as each private key is used for one site only.

When the user first contacts a web site (called Relying
Party - RP) from her FIDO device, the site’s FIDO server
issues a registration request message to the FIDO client in
the user’s device, containing its authentication policy. This
policy lists the FIDO authenticators that the RP accepts. The
FIDO client asks the user to choose one authenticator that
matches the policy. Then, the FIDO client calls the chosen
authenticator via its Authenticator-Specific Module API
(ASM). The user authenticates to the authenticator and it
creates a new key pair dedicated to this site (PrivKey4Site,
PubKey4Site) where PrivKey4Site, PubKey4Site are the
private and public keys respectively. The key pair is bound to
the site's origin (i.e. name, port, and protocol) by the
authenticator, in order to enforce the SOP. The authenticator
returns the public key to the FIDO server (via the client)
signed by its attestation private key PrKAtt i.e.
signPrKAtt{PubKey4Site} where signPrKi{data} means data is
signed by private key PrKi. The FIDO server can validate the
signed registration response message using the trusted
attestation public key and stores the user’s public key in its
database.

When the user logs in to the site again, the FIDO server
sends an authentication request message, containing a
challenge and its Authentication Policy, to the FIDO client.

The client calls the authenticator that has registered with this
site to respond to the challenge. The authenticator checks the
site’s origin and activates the private key PrivKey4Site only
if it matches the stored origin. It then asks the user to
authenticate via its supported method(s). Once the user has
authenticated to it, the authenticator signs the challenge with
the private key and returns the authentication response to the
site via the client.

IV. THE UNIVERSAL AUTHENTICATION AND
AUTHORIZATION FRAMEWORK

On the one hand, the W3C is only standardizing the data
model for VCs and no protocols are proposed. On the other
hand, FIDO UAF only deals with authentication. In this
section, we present our FIM framework called Universal
Authentication and Authorization Framework that extends
the FIDO UAF protocol to implement W3C Verifiable
Credentials. We first introduce the conceptual model and
then we describe the implementation. More details about the
conceptual model and best practice recommendations are
provided in [15].

A. The UAAF conceptual model
Our FIM model places the user at the centre of the

identity ecosystem rather than the IdP, and splits omnipotent
IdPs into small and specialized Attribute Authorities (AA).
Existing organizations already assert verifiable credentials in
our daily life and thus they can play the role of an AA. For
instance, Universities assert diplomas or student status,
utility companies and the city hall know your name and
address, the French scuba-diving federation FFESSM
certifies diving degrees, etc. As a consequence, users can
provide the SP with verifiable identities by aggregating
identity attributes from these well-established authoritative
entities. Based on this observation, we propose our UAAF
model (figure 3).

Fig. 3. The UAAF model

First, the user has to register with the AAs she has a
relationship with (e.g. her city hall, her insurance company,
her University, etc.). We do not dictate the entire enrollment
process because AAs already have their own enrollment
procedure. The main goal of our UAAF enrollment is for the
AA to link a FIDO public key with the user. In the most

secure procedure, the user should physically present herself
to the AA staff for them to validate her physical identity and
her possession of the FIDO device. It is also possible to send
a One Time Password (OTP) by regular mail to the user’s
home as is currently done for credit cards. Whatever the
procedure, the user will then register her device using the
FIDO UAF protocol. This consists in generating an
asymmetric key pair and transmitting the public key to the
AA (see section III.B). When this step is complete, the AA
sends the user the list of attributes it can assert for her (see
figure 3 step R0) through a new message that extends the
UAF protocol.

Before making any transaction, the user should register
its device on the SP website. When it receives a standard
FIDO registration request, the FIDO authenticator of the
user’s device creates a new key pair for communicating with
the SP (step 0 in figure 3) and sends the public key
(PubKey4SP) to the SP. When the user wants to make a
transaction (e.g. buy a pizza), the SP replies to the user by
presenting an authorization policy that indicates which
attributes are needed for this transaction and the list of
trusted AAs for each attribute (step 1). The SP should
prepare its authorization policies beforehand for the various
services it offers. Each protected URL can have a different
policy. This allows fine-grained access control. Our
authorization policy model covers both CNF and DNF
policies to describe all possible policy combinations [16].
The UAAF module on the user's device looks in its database
to see if the authorization policy can be matched by the
attributes the user has already selected for asserting by her
registered AAs. If no matching attributes are found, the
transaction stops, and indicates to the user which attributes
are missing. Otherwise, the user selects one AA from the
SP’s trusted AAs to issue a verifiable credential for each of
the requested attributes. The UAAF client now performs a
standard FIDO authentication exchange with the first AA’s
credential issuing web page, and then sends a new verifiable
credential request message to the AA. The UAAF module
asks the authenticator to sign both the AA’s and SP’s public
keys with the attestation private key i.e.

{PubKey4SP, PubKey4AA}, to prove that both
keys belong to the same user (step 2). Otherwise it would be
possible for one user to pass on the public key of a second
user. We employed the FIDO ASM API extension features to
make this new message compliant with FIDO UAF. In this
way, the AA doesn’t know anything about the SP the AA is
visiting. It only knows the user has another public key.
Finally, the AA returns the set of verifiable credentials to the
user’s UAAF module (step 3). The format of the credentials
respects the W3C Verifiable Credential data model. This
verifiable credential creation process is repeated until the
user has verifiable credentials for all the attributes requested
by the SP (e.g. steps 4 and 5). When she has retrieved all the
verifiable credentials, the user returns them to the SP (step 6)
in a verifiable presentation. This provides the attribute
aggregation feature from multiple AAs. The SP can then
validate the signature of the verifiable credentials and check
if they match with the authorization policy. If so, the SP
grants the user access to its protected resource. The SP can
also ask the user to sign the transaction acceptance (step 7)
for non-repudiation or user consent purposes. The user can
sign this transaction using the private key created for this
specific SP (step8).

User

University XYZCityHall ABC

Attribute Authorities

...

Service Provider

(2) PubKey4City says:
I want you to assert

"The address for PubKey4SP"

PrivKey4City/PubKey4City
PrivKey4Univ/PubKey4Univ

PrivKey4SP/PubKey4SP

ABC

Address (4) PubKey4Univ says:
I want you to assert that
"PubKey4SP is student"XYZ

Student

(1) Prove me
you are student and

give me a veri• able address

(3) (5)

(6) Addres
s

XYZ

Student

(R0) UAAF registration:
User -> City: I am PubKey4City

City -> User: I can assert "Name"
and "Address"

(R0) UAAF registration:
User -> Univ: I am PubKey4Univ

Univ -> User: I can assert "student"
and "last diploma"

(0) I am PubKey4SP

(8) I con• rm the transaction

(7) Everything's •ne,
the credentials are OK

Here is the transaction to sign

PubKey4City PubKey4Univ

PubKey4SP

B. Implementation
We implemented the AA and SP servers by extending the

UAF FIDO server provided by eBay [17] to be compliant
with our authorization framework. Both AA and SP servers
are built on the popular Spring framework and follow the
Model/View/Controller software design pattern. We
deployed our UAAF models with Spring Data, which
provides a programming abstraction layer to access data in a
unified way regardless of the actual data store. This allows us
to distribute two releases. The "integration" release allows
administrators to integrate the servers (AA and SP) with their
existing information system. Administrators can specify their
own data model and link it to their databases. They also need
to create a web site and complete the configuration files. The
drawback of the "integration release" is it requires Spring
skills making the deployment somewhat difficult if they are
not present in the company. The “plug-and-play” release
focuses on making the deployment fast and easy. It provides
a data model and only requires administrators to create the
web site and complete the configuration files. However, this
version does not allow the administrator to integrate the
servers with their existing databases. Finally, the FIDO
UAAF client is available on Android (version 6.0 and
higher) and iOS (version 10.3 and higher).

Fig. 4. The UAAF AA Architecture

Creating an AA web site entails deploying seven REST
services, creating a configuration file, and populating a
database that defines which users are entitled to which
attributes (figure 4). Three REST services implement the
standard FIDO UAF protocol:

• regRequest, issues the UAF Registration Request
message to the client (FIDO device) when asked for it;

• authnRequest, issues the UAF Authentication Request
message to the client when asked for it;

• uafResponse, receives the client’s response to the above
messages; either UAF Registration Response containing
the attested public key from the client, or UAF
Authentication Response signed by the client’s private
key.

Four REST services implement our FIDO authorization
service:

• attrList returns the set of attributes the AA is prepared to
assert for the user (step R0);

• userSelectedAttrList receives the list of attributes the user
consents to be issued as credentials (step R0);

• credentialsToCertify receives the credential request (steps
2 and 4)

• and credentials returns the credentials to the client (steps 3
and 5).
Our UAAF AA library doesn't manage the first step of

the initial registration, which is user identification and
authentication. This gives the AA flexibility to choose the
most suitable procedure, such as an OTP or Activation Code,
etc. Once the user is authenticated, the AA web site
controller must create a transient object to store the user
session, which links the different TLS connections and
informs the UAAF AA controller that the userID has been
authenticated.

Administration of the database is possible through AA
Administration REST services (add/modify/remove users,
add/modify/remove attributes, etc.). Finally, the AA
administrator can customize the library in a FIDO metadata
configuration file where she can set: the list of allowed
Authenticators’ AAIDs, the trusted facet list (in FIDO, a
trusted facet list states the different identities of a single
logical application; it is used by the client to apply the SOP),
the attestation keys, and the path to the AA’s private key to
sign credentials.

Fig. 5. The UAAF SP Architecture

The architecture of the SP is similar to that of the AA
(figure 5). Our FIDO UAAF SP library supplies the three
FIDO REST services for authentication described above, as
well as two more REST services for authorization:

• UAAFPolicyRequest allows the FIDO UAAF client to get
the authorization policy related to the current resource
(step 1);

• signedUAAFResponse receives the signed credentials
(step 6).

The SP web site communicates with the UAAF SP
library through a transient object of type UAAF-Transaction
that the SP web site controller must create using our SP
UAAF API. This object links the different TLS sessions and
allows the SP web site to give all the information about the
current transaction/resource access to the UAAF AA library.

AA
Web site

View

AA
Web site
Controller

AA
Web site
Model

UAAF
AA

Controller

UAAF
AA

Model

UAAF AA
REST Services

UAAF AA Library

UAAF
AA

Con•guration
File

UAAF
device

Data
store

SPRING framework

Data
store

...

AA web site

AA
administator

AA Model Administration
REST Services

User Session

create

read

SP
Web site

View

SP
Web site
Controller

UAAF
SP

Controller

UAAF
SP

Model

UAAF AA
REST Services

UAAF SP Library

UAAF
SP

Con• guration
File

UAAF
device

Data
store

SPRING framework

Data
store

...

SP web site

UAAF
SP

Authorization
Policy File

UAAF
Transaction

create

read

SP
Web site

Model

List of trusted
AAs

certi• cates

Finally, the administrator of the SP web site should
configure, into the SP configuration file, the metadata for
FIDO authentication (allowed AAIDs, trusted facet list,
attestation certificates), and FIDO authorization (the path to
the trusted AAs' certificates and the path to the SP
Authorization Policy File).

The SP's Authorization Policy File contains a set of
policies. Each policy tells the user which alternative sets of
attributes from which AAs are required to gain access to a
particular resource or undertake a chosen transaction. This
allows the site to support the least privilege principle. Each
policy is defined by a name. The SP web site controller
decides which policy to send to the client depending on the
transaction (or resource) chosen by the user. When the
UAAF SP controller gets the policy name, it sends the
referenced policy to the user.

Finally, we implemented our UAAF client on both
Android (version 6 and above) and iOS (10.1 and above).
The software architecture on Android implements the FIDO
ASM as a separate APK packaged application, as suggested
by the FIDO UAF documentation. The ASM protects the
private keys in the Android KeyStore system. On iOS, the
UAAF and the ASM are bundled together in the same app
due to inter-process communication limitations and private
keys are stored in the device's secure enclave. Except for
these technical differences, the core of the UAAF client is
identical on both platforms. We extended the ASM to certify
that the authenticator manages two keys. This action is
required to limit the scope of use of the credentials signed by
the AA; otherwise, two users could collude and share an
AA's issued credentials. The ASM API [18] is a JSON-
formatted request/response protocol to communicate with the
authenticator. The FIDO UAF standard defines six
predefined request types (“GetInfo”, “Register”,
“Authenticate”, “Deregister”, “GetRegistrations” and
“OpenSettings”). However, this standard protocol is also
extensible because the ASMRequest type contains a field
dedicated to extensions. As a consequence, we extended the
“Authenticate” ASMRequest message by using this
extension field to inform the authenticator to sign two keys
in order to prove it manages both keys (step 2 in figure 3).

V. APPLYING OUR FIM SYSTEM TO ONLINE BANKING
We applied our user-centric FIM system to the bank

context. We interviewed bank experts at informatique
Banque Populaire to understand the current process and the
users’ experience when opening a new bank account online.
It consists of:

1) Manually filling in some fields to indicate their name,
surname, address, etc.

2) Uploading pdf documents to prove the truthfulness of
the information previously provided.

3) Waiting for 4 or 5 days to get their account opened
because a human operator has to validate the uploaded
documents.

This process has several drawbacks. First, it harms the
users’ experience. The whole process is painful, from
manually filling in fields, to uploading pdf files using a
mobile device, and then waiting 4 or 5 days for the
response. Secondly, users can provide fake documents and
can fool the manual validation. As a consequence, we
developed a prototype to show how our system can help the

bank to fight against identity fraud, improve the trust in their
clients, speed up the entire process and facilitate the
development of new businesses and services.

We started by analyzing the different documents needed
to open a new bank account. The current process requires
document-based credentials. However, these documents
contain much information (i.e. many attributes), not all of it
being relevant. Thus, we had to interview our partner to
determine which of the attributes included in the documents
are really needed. During this analysis, we could also
determine the existing AAs that are already trusted by the
bank (see figure 6).

Fig. 6. The “opening a new bank account” use-case

In our new process, the user starts by registering her
device on each AA she already knows. For instance, she can
go to her city hall and register her device using an OTP
provided by a city official (figure 7(a)). The user is then
asked to authenticate using the TouchID to create the FIDO
key pair for the city hall (figure 7(b)). When the city hall
receives the public key, it sends the list of assertable
attributes back to the user (see figure 7(c)).

Now let’s consider the user has registered her device at
her city hall (here Mairie de Bolmo), an energy supplier
(here GreenElectricity), her current bank (here ‘my online
bank’), and her real estate agency (here ImmobCity). She
connects to the new bank web site to create a new bank
account. After asking some legal questions, the new bank
website will start the UAAF process (figure 8(a)). The
UAAF client of the user then creates a key pair for the new
bank website and sends the public key to the web site. Then,
the new bank web site sends its authorization policy to the
user (figure 8(b)) where it asks for four verifiable credentials:

• a proof of identity (name/surname) issued by either a
city hall or the National Gendarmerie;

• a proof of address issued by either an energy
supplier, a city hall, an accredited real estate agency,
the French National Gendarmerie, the French tax
department or a University;

• a proof of salary issued by either the French tax
department or a University;

• and the IBAN number of the current user’s bank
account.

City Hall

Bank

IBANAddressIdentity
Address

Address

Identity
Address

Salary
Address

1) Request to open a
bank account

2) Requirements: Identity,
Address, Salary, IBAN

3) Getting
verifiable
credentials

4) Send verifiable credentials
and confirmation

Salary
Address

Energy Supplier

Real estate agency

University

(a)

 (b) (c)

Fig. 7. Screenshots of the enrollment process on the AA “Mairie de
Bolmo”

For each requested attribute, the user can select the AA that
will issue the related verifiable credential (figure 8(c)). The
UAAF client only presents the intersection between the list
of registered AAs and the list of AAs trusted by the SP.
That’s why, the user can only select Mairie de Bolmo or
ImmobCity in our case (figure 8(c)). Once the AAs are
selected, the user will generate signed verifiable credential
requests (figure 9(a)). For each request, the user will be
asked to authenticate using the TouchID so that the UAAF
client can use the private key for the respective AA to sign
the messages. When all the verifiable credentials have been
retrieved, they are transmitted to the new bank web site. In
our use-case, the new bank website shows a transaction
confirmation message (figure 9(b)) after having verified the
credentials. If accepted, the user signs the transaction
confirmation using her new bank's private key. She is then
redirected to the bank website and can use her new bank
account (figure 9(c)).

I. CONCLUSION AND FUTURE WORKS
We presented in this article the Universal Authentication

and Authorization Framework. This user-centric and
decentralized identity management solution gives control of
digital identities back to the users. In parallel, it reduces the
power of the IdPs by splitting monolithic IdP entities into
small AAs, and preventing them, by design, to track users.

Our system is also more resilient. Indeed, users can obtain
the same credentials from multiple AAs. This way, the
impact of an AA closing its service is limited. Finally, our
system is more secure for SPs that require assurance of
credentials and for users by removing the need for
passwords. The whole framework has been implemented
(Spring servers for AAs and SPs, iOS and Android for the
users' devices) and applied to opening a new bank account
online.

We acknowledge that our system radically transforms the
current digital FIM ecosystem and the associated business
model where identities are sold by IdPs. Nevertheless, our
FIM ecosystem mirrors the trust model which is currently
deployed by organizations in the physical document-based
identity model. As a consequence, organizations can use
their existing business relations to build their digital identity
federations.

Our future work will focus on the acceptance of our new
ecosystem. We have obtained feedback from industrial
people that have asked for help in managing the transition
from their currently deployed FIM technologies to our
vision. As a consequence, we will work on integrating OIDC
and SAML to our system as a transitional solution while
preserving the privacy of the users and the trust that SPs have
in existing attribute providers.

(a)

 (b) (c)

Fig. 8. Screenshots of the SP’s authorization policy

 (a) (b)

(c)

Fig. 9. Screenshots of the verifiable credentials creation and transaction
confirmation

ACKNOWLEDGMENT
We would like to thank M. Collas from informatique

Banque Populaire for providing us with the scenario and
allowing us to access the related documentation. We also

thank the members of the OCSSIMORE Association
(https://www.ocssimore.net/) for their useful feedback.

REFERENCES
[1] OASIS. “Assertions and Protocol for the OASIS Security Assertion

Markup Language (SAML) V2.0”, OASIS Standard, 15 March 2005
[2] N. Sakimura et al. “Final: OpenID Connect Core 1.0 incorporating

errata set 1.” 8 Nov 2014. Available: http://openid.net/specs/openid-
connect-core-1_0.html

[3] facebook, Security Update,
https://newsroom.fb.com/news/2018/09/security-update/, Sept 2018.

[4] Mühle, A., Grüner, A., Gayvoronskaya, T., Meinel, C., “A survey on
essential components of a self-sovereign identity”. Computer Science
Review, 30, p 80-86, 2018.

[5] https://www.coindesk.com/path-self-sovereign-identity/
[6] https://w3c.github.io/webpayments-ig/VCTF/charter/faq.html#self-

sovereign
[7] W3C, “Verifiable Credentials Data Model 1.0 - Expressing verifiable

information on the Web”, February 2019
[8] Dunphy, P., Petitcolas, F. A. “A first look at identity management

schemes on the blockchain”. IEEE Security & Privacy, 16(4), p20-29,
2018.

[9] Orman, H., “Blockchain: The emperor’s new PKI?”, IEEE Internet
Computing, 22(2), p 23-28, 2018

[10] Elsden, C., Manohar, A., Briggs, J., Harding, M., Speed, C., & Vines,
J., “Making sense of blockchain applications: A typology for HCI”, In
CHI Conference on Human Factors in Computing Systems (p. 458).
ACM, 2018.

[11] Grauer Y. (2018), https://breakermag.com/a-critical-look-at-
sovereign-identity-startups/ (accessed 6/7/2019)

[12] FIDO Alliance. “FIDO UAF Architectural Overview.” FIDO Alliance
Proposed Standard. 8 December 2014

[13] A. Barth, “The Web Origin Concept.” RFC 6454. Dec 2011.
[14] Wazan, S. A., Laborde, R., Barrere, F., Benzekri, A., “A formal

model of trust for calculating the quality of X. 509 certificate”, in
Security and Communication Networks, 4(6), p. 651-665, 2011.

[15] Chadwick, D. W., Laborde, R., Oglaza, A., Venant, R., Wazan, S.,
Nijjar, M., “Improved Identity Management with Verifiable
Credentials and FIDO”, in IEEE Communications Standards
Magazine, december, 2019

[16] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy Core
Information Model -- Version 1 Specification,” RFC3060, Feb. 2001.

[17] [12] The eBay UAF FIDO implementation is available from
https://github.com/eBay/UAF [Accessed: 17 Feb 2017]

[18] The ASM API is available from https://fidoalliance.org/specs/fido-
uaf-v1.0-ps-20141208/fido-uaf-asm-api-v1.0-ps-20141208.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

