
HAL Id: hal-02930097
https://hal.science/hal-02930097v1

Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Map of Asynchronous Communication Models
Florent Chevrou, Aurélie Hurault, Shin Nakajima, Philippe Quéinnec

To cite this version:
Florent Chevrou, Aurélie Hurault, Shin Nakajima, Philippe Quéinnec. A Map of Asynchronous Com-
munication Models. Refinement Workshop, in World Congress on Formal Methods (REFINE 2019),
Oct 2019, Porto, Portugal. pp.1-15, �10.1007/978-3-030-54997-8_20�. �hal-02930097�

https://hal.science/hal-02930097v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26259

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Chevrou, Florent and Hurault, Aurélie and

Nakajima, Shin and Quéinnec, Philippe A Map of Asynchronous

Communication Models. (2019) In: Refinement Workshop, in World

Congress on Formal Methods (REFINE 2019), 7 October 2019 - 7 October

2019 (Porto, Portugal).

A Map of Asynchronous Communication Models

Florent Chevrou1, Aurélie Hurault1, Shin Nakajima2, and Philippe Quéinnec1

1 Université de Toulouse – IRIT, Toulouse, France first.last@irit.fr
2 National Institute of Informatics, Tokyo, Japan nkjm@nii.ac.jp

Abstract. Asynchronous communication encompasses a variety of fea-
tures besides the decoupling of send and receive events. Those include
message-ordering policies which are often crucial to the correctness of
a distributed algorithm. This paper establishes a map of communica-
tion models that exhibits the relations between them along two axes of
comparison: the strength of the ordering property and the level of ab-
straction of the specification. This brings knowledge about which model
can be substituted by another without breaking any safety property. Fur-
thermore, it brings flexibility and ready-to-use modules when developing
correct-by-construction distributed systems where model decomposition
exposes the communication component. Both criteria of comparison are
covered by refinement. We consider seven ordering policies and we model
in Event-B these communication models at three levels of abstraction.
The proofs of refinement between all of these are mechanized in Rodin.

Keywords: asynchronous communication · formal verification · refine-
ments of communication models · Event-B

1 Introduction

A classic way to develop distributed algorithms is to start with a global goal, such
as mutual exclusion or global agreement. A distributed version of the algorithm is
then derived, either directly or by progressive transformation of the specification,
e.g. by refinement. This approach dates back to early work by Dijkstra [11],
Chandy-Misra with UNITY [7], Back and Kurki-Suonio with action systems [5],
or Lamport with TLA+ [19]. It is still bustling in the correct-by-construction
community and Event-B [1] is a framework which embodies this methodology. At
one point in the development process, communication is explicitly introduced, to
express the flow of information from one site to another, and it eventually takes
the form of message exchanges. When the development is conducted with formal
verification, the properties of the communication are shown to be sufficient for
the correctness of the algorithm. However, it is often unclear what are the specific
properties of this communication that are necessary to ensure the correctness
of the algorithm. Especially, it may be difficult to replace one communication
model with another without doing again the complete proof.

The present work aims at alleviating these difficulties for asynchronous point-
to-point communication with message ordering policies. These policies control

message deliveries based on past events or involved peers, and their relative
strength forms a hierarchy of communication models. To this end, we use simu-
lation: if a model M1 simulates another model M2, M2 has less non-determinism,
hence fewer behaviors. Thus a safety property proved under M1 in a given system
will hold if M1 is substituted by M2 (there is no guarantee of preservation for
liveness properties). A distributed application is refined up to the point where
communication is introduced. Then, model decomposition isolates the commu-
nication part and the hierarchy is used to choose an adequate ordering policy.

There exist several approaches to decomposition in Event-B [14]: shared-
variable [3], shared-event [6] and modularization [16]. Our map is well suited for
shared-event decomposition, where variables are partitioned and a set of events
are synchronized and shared by sub-models. During the refinement of a system,
asynchronous communication appears via two events: send and receive. These
events are isolated in a sub-model to be refined using the results of this paper.

Nevertheless, the proposed one-dimensional scale is not sufficient as several
communication models may realize the same ordering policy. They often have
little in common: some directly map the ordering property on high level data
structures such as distributed executions while others will make use of ad-hoc
concrete approaches (e.g. counters on messages) from which the property arises.
Mapping the communication models depending on their level of abstraction com-
pletes the approach. Therefore, we draw a bidimensional map of communication
models and use refinement as a common ground for the two orthogonal compar-
ison criteria: refinement for simulation, and data refinement for concretization.
Our results, summed up in the map in Figure 1, are proved and mechanized
in Event-B. Regarding decomposition, this means once an ordering policy has
been chosen across the simulation direction, the model can be refined across the
concretization direction as part of a correct-by-construction development.

The outline of this paper is the following. Section 2 recalls basic definitions of
the theory of asynchronous distributed systems and their modeling in Event-B.
Section 3 presents seven communication models and proves the hierarchy of their
ordering policies, based on simulation, using refinement. Section 4 presents vari-
ants of the models based on message histories, and proves that the hierarchy still
holds. Section 5 refines them one step further towards practical concrete models.
Section 6 discusses proof effort and localization. Section 7 provides related work.

The page http://hurault.perso.enseeiht.fr/MenagerieOfRefinements contains
all the models discussed in this paper and gives indications to replay the proofs.

2 Distributed Systems

2.1 Distributed Executions

An asynchronous message-passing distributed system is composed of a set of
peers that exchange messages. This paper considers point-to-point communi-
cation where a message has exactly one sender and at most one receiver. A
distributed execution is a partially ordered set of events, where events are com-
munication events: message send events and message receive events; internal

Fig. 1. Map of the Asynchronous Communication Models. A black arrow means “re-
fines”. The two axis of refinement are the level of abstraction (data refinement) and
the strength of the ordering policy (reduction of non-determinism).

events are ignored. The partial order is named the causal order [18,23], and it
abstracts independent events. Events occur on peers: a labeling function states
where the event e has occurred. Assuming interleaving of independent events
and no true concurrency, a run is a linear extension of a distributed execution.

Let PEER be the set of peers, MESSAGE an enumerable set of messages identi-
fiers, and COM , {Send,Receive} the communication labels.

Definition 1. A distributed execution (E,≺c, com,mes, peer) is a partially or-
dered set with labeling functions, where E is an enumerable set, ≺c is a par-
tial order on E, and com, mes and peer are labeling functions from E to COM,
MESSAGE and PEER. An event e that occurs on peer(e) is either the sending or
the reception (com(e)) of message mes(e). (E,≺c, com,mes, peer) satisfies:

– no message is sent or received more than once:
∀e, e′ ∈ E :

(

com(e) = com(e′) ∧mes(e) = mes(e′)
)

⇒ e = e′

– a receive event is preceded by a send event:
∀e ∈ E : com(e) = Receive

⇒ ∃e′ ∈ E :
(

com(e′) = Send ∧mes(e′) = mes(e) ∧ e′ ≺c e
)

– events occurring on the same peer are totally ordered:
∀e, e′ ∈ E : peer(e) = peer(e′) ⇒ e ≺c e

′ ∨ e′ ≺c e

Definition 2. A run σ = (E,≺c, <σ, com,mes, peer) extends a distributed ex-
ecution (E,≺c, com,mes, peer): (E,<σ) is a linear extension of (E,≺c).

2.2 Event-B

A model in Event-B [1] is an abstract state machine containing state variables,
invariants, and events (the word “event” refers either to an element of a dis-

tributed execution or a part of an Event-B machine – a transition predicate –;
the context hopefully makes it clear which is which). An event E parameterized
by x has the form EVENT E ANY x WHERE G(v, x) THEN A(v, x) END, where G(v, x)
is the guard of the event and A(v, x) an action changing the values of v. In this
paper, actions are deterministic assignments of the form v := expr where v is
a state variable. INITIALISATION specifies the initial state of a machine. A ma-
chine can be related to an Event-B context (SEES) that specifies sets, constants,
axioms and theorems.

The main concept of the Event-B method is the refinement (REFINES) of
machines. It consists of a refinement of the events: the guards may be weakened
and the behavior must conform to the abstract event. New events refine the
special event called “skip”. The Rodin tool [2] generates proof obligations for the
refinements and the preservation of the invariants by the events.

In Event-B, x1 7→ x2 denotes a pair (x1, x2). Relations are sets of pairs.
dom(r) and ran(r) denote the domain and range of a relation r. E↔F denotes
the set of relations between E and F , E↔↔F the set of total surjective relations,
and E → F total functions from E to F . The relation r1; r2 denotes the forward
composition of relations r1 and r2. “⊳” is the domain restriction operator such
that given a relation r and a set E, E ⊳ r , {x 7→ y | x 7→ y ∈ r ∧ x ∈ E}.
“⊳−” is the domain subtraction operator such that given a relation r and a set
E′, E′ ⊳− r , {x 7→ y | x 7→ y ∈ r ∧ x /∈ E′}. “⊳−” is the overriding operator such
that given relations r1 and r2, r1 ⊳− r2 , r2 ∪ (dom(r2)⊳− r1). P(E) denotes the
powerset of E.

2.3 Event-B Distributed Executions

First, we introduce each feature of asynchronous communication through a series
of initial refinements: concept of "events", "happening", and "past", then the
pairing of two events (communication), localization of the events (distribution)
and causality (distributed executions), linearization of the executions (totally or-
dered runs), and eventually messages which label the exchanges. This paper skips
these preliminary refinements. The resulting machine called RunWithMessages,
presented in Figure 2, is a boilerplate for any asynchronous point-to-point com-
munication model. It conforms to the distributed executions and runs of Defini-
tions 1 and 2. By playing with the guards, other communication paradigms can
be specified (e.g. synchronous communication, multicast, join).

The machine relies on sets defined in the contexts: EVENT the set of event
identifiers labeled by elements of PEER, MESSAGES, and COM (Send or Receive).
Events are labeled by variables peerOf, mesOf, and comOf once they are intro-
duced in the machine (e.g. e 7→ Send ∈ comOf). New communication events are
introduced by the actions of the two Event-B events send and receive. They
are stored in the past variable and the labeling functions evolve according to the
parameters of send and receive: the peer it has occurred on and the exchanged
message. Additionally, variables prec (partial causal order ≺c) and run (total
order <σ) log the dependencies between the events which serves to specify the
communication properties (including ordering policies in future machines).

MACHINE E_RunWithMessages
SEES E_Messages
VARIABLES past peerOf prec run mesOf comOf
INVARIANTS // (excerpt)

TmesOf: mesOf ∈ past →MESSAGE //
TpeerOf: peerOf ∈ past →PEER TcomOf: comOf ∈ past →COM // Type invariants
Tprec: prec ∈ past ↔↔past Trun: run ∈ past ↔↔past //

// prec is reflexive , transitive , and anti−symmetric. So is run (omitted).
inv1 : (past ⊳ id) ⊆ prec inv2 : prec ; prec ⊆ prec inv3 : prec ∩ prec−1 ⊆ id
// Events occurring on the same peer are totally ordered
inv4 : ∀ e1, e2 · e1∈ past ∧e2∈ past ∧peerOf(e1) = peerOf(e2) ⇒e1 7→ e2 ∈ prec ∨e2 7→ e1 ∈ prec
inv5 : prec ⊆ run // run extends prec .
inv6 : ∀ e1, e2 · e1 ∈ past ∧ e2 ∈ past ⇒ e1 7→ e2 ∈ run ∨e2 7→ e1 ∈ run // run is total .
// No message is sent or received more than once.
inv7 : ∀ e1,e2 · e1∈ past ∧e2∈ past ∧comOf(e1)=comOf(e2) ∧mesOf(e1)=mesOf(e2) ⇒e1 = e2
inv8 : ∀ e · e ∈ past ∧ comOf(e) = Receive // A receive event is preceded by a send event.

⇒ (∃ es · es ∈ past ∧ comOf(es) = Send ∧mesOf(e) = mesOf(es) ∧es 7→ e ∈ prec)

EVENT send ANY e p m // New event, Peer where the event occurs, Sent message
WHERE

grd1: e ∈ EVENT \ past ∧ p ∈ PEER ∧ m ∈ MESSAGE
grd3: m ∈ MESSAGE \ ran(mesOf) // m has not already been sent

THEN

act1: past := past ∪ {e}
act2: peerOf := peerOf ∪{e 7→ p}
act3: prec := prec ∪ {e 7→ e} ∪ {ep · ep ∈ past ∧ (∃ ep2 · ep2 ∈ past ∧ peerOf(ep2) = p ∧ep 7→

ep2 ∈ prec) | ep 7→ e}
act4: run := run ∪ {e 7→ e} ∪ {ep · ep ∈ past | ep 7→ e}
act5: mesOf := mesOf ∪{e 7→ m} act6: comOf := comOf ∪{e 7→ Send}

EVENT receive ANY e p m // new event; receiver; received message
WHERE

grd1: e ∈ EVENT \ past ∧ p ∈ PEER ∧ m ∈ MESSAGE
grd6: ∀ ep · ep ∈ past ∧ comOf(ep) = Receive ⇒mesOf(ep) 6= m // m has not already been received
grd7: ∃ es · es ∈ past ∧ comOf(es) = Send ∧mesOf(es) = m // m has been sent

THEN // Same as send except
act4: // The new event is causally after all the events that causally precede

prec := prec // an event from the same peer (penultimate line) and after all the events
∪ {e 7→ e} // that causally precede the send event (last line).
∪ {ep · ep ∈ past ∧ (∃ ep2 · ep2 ∈ past ∧ peerOf(ep2) = p ∧ep 7→ ep2 ∈ prec) | ep 7→ e}
∪ {ep · ep ∈ past

∧ (∃ es · es ∈ past ∧ comOf(es) = Send ∧mesOf(es) = m ∧ep 7→ es ∈ prec) | ep 7→ e}
act6: comOf := comOf ∪{e 7→ Receive}

Fig. 2. Event-B Machine for Asynchronous Point-to-Point Communication

3 Abstract Communication Models

The communication model specifies when a communication action (send or re-
ceive) is possible in order to ensure specific properties on the communication.
We focus on message ordering properties (e.g. global ordering: all messages are
received in their emission order). In this section, each abstract communication
model is a machine based on RunWithMessages that is characterized by an or-
dering invariant on distributed executions or runs. We use this invariant to filter
out the distributed executions and runs that do not abide to the ordering policy
and keep all those that do.

The communication models constitute steps between fully asynchronous dis-
tributed communication (async) where sending and receiving a message is always

possible, partially ordered communication (fifo11, causal, fifo1n, fifon1), totally
ordered communication (fifonn), and almost synchronous communication (RSC)
where a message must be received immediately after it has been sent. We use sim-
ulation to define a hierarchy based on the strength of the delivery order. Stronger
models have less non-determinism on the receptions. Machine RunWithMessages
models asynchronous communication and corresponds to the async model. The
other models impose more and more determinism on reception (and, for RSC, on
send). The first column of Figure 1 accounts for the hierarchy of these models.
Refinement is used to prove the simulation relations between the models. Note
that these are not concretization refinements: no model can be called more (or
less) concrete or realizable. Concretization of the communication models follow
a specific path for each model and is described later.

3.1 Informal Specifications

In this paper, we study seven asynchronous point-to-point communication mod-
els. A detailed description with figures of each model is given in [10].

RSC Realizable with Synchronous Communication [8,17]. The send event of a
message is immediately followed by the receive event of this message (viewed
atomically, it corresponds to synchronous communication).

fifo n-n Messages are globally ordered and are delivered in their send order.
fifo 1-n Messages from the same peer are delivered in their send order.
fifo n-1 On a given peer, messages are received in their send order.
fifo 1-1 Messages between a couple of peers are delivered in their send order.

Messages from/to different peers are independently delivered.
causal Messages are delivered according to the causality of their emission [18].

If a message m1 is causally sent before a message m2 (i.e. there exists a
causal path from the first emission to the second one), then a peer cannot
get m2 before m1.

async Fully Asynchronous. No order on message delivery is imposed. The ma-
chine RunWithMessages is this model.

3.2 Event-B Specifications

We consider the specifications of the communication models with events. Each
communication model is characterized by an invariant that describes the ordering
properties it ensures on the communication. The invariants of the models all
introduce es1 and es2, the send events of two distinct messages, as well as er1
and er2, the corresponding receive events. The model-specific part imposes an
order on the receive events (er1 and er2) based on the causal or run order of the
send events (es1 and es2) and whether or not the sending or receiving peers are
the same (same sending peer and same receiving peer for fifo 1-1, same sending
peer for fifo 1-n, same receiving peer for fifo n-1 and causal). For instance, the
ordering invariant in the machine CausalEvent is:

// Given two transmissions of messages and the four corresponding events : es1 er1 and es2 er2
∀ es1, er1 , es2, er2 · es1 ∈ past ∧ er1 ∈ past ∧ es2 ∈ past ∧ er2 ∈ past

∧ comOf(es1) = Send ∧comOf(es2) = Send ∧comOf(er1) = Receive ∧comOf(er2) = Receive
∧ mesOf(es1) = mesOf(er1) ∧mesOf(es2) = mesOf(er2)
// Model−specific part :
∧ es1 7→ es2 ∈ prec // If es1 CAUSALLY precedes es2
∧ peerOf(er1) = peerOf(er2) // and the corresponding RECEPTIONS occur on the SAME PEER
⇒ er1 7→ er2 ∈ run // then they must occur in the emission order .

Our next goal is to compare the communication models, by proving that some
have less transitions than others (i.e. are more deterministic). Later in Sections 4
and 5, we derive more concrete specifications of these models. However, at this
point, having machines that are as liberal as the ordering allows is important.
Thus, the weakest preconditions of the ordering invariants are stipulated for the
guards of the send and receive events. As the actions are assignments of the form
var := var ∪ {· · · }, the computation of the weakest preconditions is trivial [12].
As an example, Figure 3 presents the resulting structure of the CausalEvent

machine with a close up on the ordering guard of the receive event.

3.3 Proofs and Invariants

The difference between the models is an invariant directly related to the or-
der of delivery and the associated weakest precondition used as a guard on the
communication events. A proof of refinement consists in proving the logical im-
plications between these invariants. Most of the time these proofs require little
manual intervention thanks to auto-provers, post-tactics, and SMT solvers.

The refinements of causal in fifo-n1 and fifo-1n need manual intervention
with a specific invariant that states that two causally related events on different
peers are necessary linked by (at least) one message. Informally, it means that
causality between events on distinct peers only exists due to message exchanges.

∀ e1, e2 · e1 7→ e2 ∈ prec ∧peerOf(e1) 6= peerOf(e2) ⇒
(∃ es , er · e1 7→ es ∈ prec ∧es 7→ er ∈ prec ∧ er 7→ e2 ∈ prec ∧peerOf(e1) = peerOf(es)

∧ comOf(es) = Send ∧comOf(er) = Receive ∧mesOf(es) = mesOf(er))

4 History-based Models

In this section, we take one step forwards in the direction of concretization. These
new specifications share a common framework in which the ordering properties
rely upon keeping track of dependent messages in histories. This makes it easier
to compare them much like in the previous section. Yet, the specifications are
now operational and realistic enough to be implemented and used as such.

There are two directions involved in the mapping of these communication
models. First, each history-based model relates to its execution-based counter-
part: it is a concretization of the latter, which means the underlying ordering
properties still hold, and we use refinement to prove it in Section 4.2. For exam-
ple, Fifo11History is a concretization of Fifo11Event. Second, it is expected
that the history-based communication models, which model the same ordering

MACHINE E_CausalEvent
REFINES E_fifo11 // (which refines E_RunWithMessages)
SEES E_Messages
VARIABLES past peerOf prec run mesOf comOf

INVARIANTS

... // Invariants from E_RunWithMessages
ordering : // causal ordering invariant : see 3.2

EVENT send REFINES send ... // from E_RunWithMessage with additional invariant

EVENT receive REFINES receive // receive event with a
ANY e p m
WHERE

grd1: e ∈ EVENT \ past
grd2: p ∈ PEER
grd3: m ∈ MESSAGE \ ran(mesOf)
... // guards from E_RunWithMessage
// weakest precondition of the causal ordering invariant
ordering : ∀ es1, er1 , es2, er2 ·

es1 ∈ past ∪ {e} ∧ er1 ∈ past ∪ {e}
∧ es2 ∈ past ∪ {e} ∧ er2 ∈ past ∪ {e}
∧ (comOf ∪ {e 7→ Send})(es1) = Send
∧ (comOf ∪ {e 7→ Send})(es2) = Send
∧ (comOf ∪ {e 7→ Send})(er1) = Receive
∧ (comOf ∪ {e 7→ Send})(er2) = Receive
∧ (mesOf ∪ {e 7→ m})(es1) = (mesOf ∪{e 7→ m})(er1)
∧ (mesOf ∪ {e 7→ m})(es2) = (mesOf ∪{e 7→ m})(er2)
∧ (peerOf ∪ {e 7→ p})(er1) = (peerOf ∪ {e 7→ p})(er2)
∧ es1 7→ es2 ∈ run ∪ {e 7→ e} ∪ {ep · ep ∈ past | ep 7→ e}
⇒ er1 7→ er2 ∈ run ∪ {e 7→ e} ∪ {ep · ep ∈ past | ep 7→ e}

THEN // same actions as E_RunWithMessage
act1: past := past ∪ {e}
act2: peerOf := peerOf ∪{e 7→ p}
act3: prec := prec ∪ ...
act4: run := run ∪ ...
act5: mesOf := mesOf ∪{e 7→ m}
act6: comOf := comOf ∪{e 7→ Receive}

Fig. 3. Structure of the Causal Communication Model Described With Events. The
machine corresponds to E_RunWithMessages with an additional ordering invariant and
the associated guards.

policies, preserve the hierarchy of these ordering policies. Once again, the simu-
lation relations (i.e. the reduction of the non-determinism of the communication
events send and receive) are made explicit and proved by refinement. For in-
stance CausalEvent is stronger than (refines) Fifo11Event and CausalHistory

is stronger than (refines) Fifo11History.

4.1 Specifications with Histories

We consider specifications of the asynchronous point-to-point interaction models
where communication occurs according to two parameterized events: send(p,m, d)
(peer p sends message m to an explicit peer d) and receive(p,m) (peer p receives
message m).

The models rely on a state variable net that contains messages in transit.
Sent messages are labeled to carry information about the communication: the

origin peer, the destination peer, and the history of the message. The history of a
message is the set of messages on which it depends, i.e. the set of messages which
precede it. As two notions of precedence exist (causal/execution), two kinds of
message histories are defined: namely causal and global.

Definition 3. (Message Histories) For a run σ = (E,≺c, <σ, com,mes, peer),
and a message m:

hcOf(m) ,

m′ ∈ MESSAGE : ∃e, e′ ∈ E :
com(e) = Send ∧ com(e′) = Send

∧ mes(e) = m ∧mes(e′) = m′

∧ e′ ≺c e

hgOf(m) ,

m′ ∈ MESSAGE : ∃e, e′ ∈ E :
com(e) = Send ∧ com(e′) = Send

∧ mes(e) = m ∧mes(e′) = m′

∧ e′ <σ e

In the Event-B models, the message histories are built upon state variables
hg ⊆ MESSAGE, the global history, and hc ∈ PEER → P(MESSAGE), the causal
histories of each peer. When peer p sends a message m, the global history (hgOf)
and the causal history (hcOf) of m are the current values of hg and of hc(p).
The new message is also added to the history state variables (hg and hc(p)).
The causal history hc(p) of peer p is updated when a message m is received to
account for the causal relation induced by the transmission of the message from
one peer to another: m and its causal history hcOf(m) are added to hc(p). The
validity of these constructions with regard to the above definitions is stated as
two invariants. The ordering properties of a model are determined by guards on
the send and receive events that depend on the message histories, origin, and
destination of a message.

4.2 Concretization

For each communication model, the refinement of the event-based model by the
history-based model is split in two steps to facilitate the proofs. First, add new
variables to hold histories and message destination (net, hg, hc, hgOf, hcOf,
destOf), and replace the guards about events by guards about histories. Then,
remove the now useless variables related to events (past, prec, run, . . .).

As an example, Figure 4 is the resulting machine for the causal model. Its
ordering invariant states that if m1 and m2 have the same destination, and m1

was sent causally before m2 (thus m1 is in the causal history of m2), then m1

cannot be in transit when m2 is not. This means that m1 must be received before
m2. Accordingly, the ordering guard for receive allows to deliver a message m if
there does not exist another message m2 in transit, with same destination, and
which is in the history of m.

Data refinement consist in proving that the model-specific guards on the
communication events guarantee the ordering properties on the distributed exe-
cutions. The proofs rely on the ordering invariant, and wisely formulated gluing

MACHINE G2_CausalHistory
REFINES F2_CausalHistory
// (which refines E_CausalEvent)
SEES E_Messages
VARIABLES

net // Network
hg // Global history
hc // Causal history per peer
origOf // sender of message
destOf // destination of message
hgOf // global history of message
hcOf // causal history of message

INVARIANTS

Tnet: net ∈ P (hg)
Thg: hg ∈ P (MESSAGE)
Thc: hc ∈ PEER →P (hg)
TorigOf: origOf ∈ hg →PEER
TdestOf: destOf ∈ hg →PEER
ThgOf: hgOf ∈ hg →P (hg)
ThcOf: hcOf ∈ hg →P (hg)
ordering :
∀ m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2

∧ destOf(m1) = destOf(m2)
∧ m1 ∈ hcOf(m2)
⇒ ¬ (m1 ∈ net ∧m2 /∈ net)

EVENT send REFINES send
ANY p m d
WHERE

Tpd: p ∈ PEER ∧d ∈ PEER
Tm: m ∈ MESSAGE \ hg // new message id

THEN

a1: net := net ∪ {m}
a2: hg := hg ∪ {m}
a4: hc(p) := hc(p) ∪ {m}
a5: origOf := origOf ∪ {m7→ p}
a6: destOf := destOf ∪ {m7→ d}
a7: hgOf := hgOf ∪ {m7→ hg}
a8: hcOf := hcOf ∪ {m7→ hc(p)}

EVENT receive REFINES receive
ANY p m
WHERE

intransit : m ∈ net
destination : p ∈ PEER ∧ destOf(m) = p
ordering : ¬ (∃ m2 · m2 ∈ net

∧ destOf(m2) = p
∧ m2 ∈ hcOf(m))

THEN

a1: net := net \ {m}
a2: hc(p) := hc(p) ∪ hcOf(m) ∪ {m}

Fig. 4. History-Based Event-B Model for Causal Communication

and consistency invariants. The gluing invariants relate the state variables of the
abstract (events, executions) and concrete machines (network, histories). For in-
stance, a message m1 is in the causal history of m2 if the send event of m1 is
causally anterior to the send event of message m2. The consistency invariants
clarify links between the state variable of the concrete machine (e.g. if a message
m1 is in the causal history of m2, it is also in its global history). Besides, signif-
icant manual interventions have to be carried out to supervise the proof process
as the number of state variables and invariants misdirect the automatic provers.
Finding the optimal formulation (e.g. proposition vs. contraposition), through
trial and error, is a large portion of the proof effort.

5 Concrete Models

In the first approach, the models based on events directly translate the order-
ing policies of the communication models. The second approach using message
histories is more concrete: the locality and transmission of data is taken into
account with messages that carry their history. However, keeping trace of all the
previously sent messages is still unrealistic in practice. Therefore we refine the
models that use histories with concrete structures such as counters of messages
or queues of messages.

5.1 Logical Clocks

Regarding the causal communication model as described in Figure 5, the causal-
ity relation can be explicit, using pruned causal histories [17] (in the worst case,

MACHINE H3_CausalVector
REFINES G3_CausalHistory
SEES E_Messages
VARIABLES net hg origOf destOf

rankOf // message →vector clock
vcOf // peer →vector clock

EVENT send REFINES send
ANY p m d WHERE

Tm: m ∈ MESSAGE \hg
Tpd: p ∈ PEER ∧d ∈ PEER

THEN

...
act5: vcOf(p) := vcOf(p)

⊳− {p 7→ vcOf(p)(p) + 1}
act6: rankOf(m) := vcOf(p)

⊳− {p 7→ vcOf(p)(p) + 1}

EVENT receive REFINES receive
ANY p m WHERE

Tm: m ∈ net
Tp: p ∈ PEER
dest : destOf(m) = p
order : ¬(∃m2 ·

m2 ∈ net \ {m}
∧ destOf(m2) = p
∧ (∀ pp · pp ∈ PEER
⇒ rankOf(m2)(pp) ≤ rankOf(m)(pp)))

THEN

...
act2: vcOf(p) := { pp ·pp ∈ PEER |

pp 7→ max({ vcOf(p)(pp),
rankOf(m)(pp) })}

act3: rankOf := {m} ⊳−rankOf

INVARIANTS

TrankOf: rankOf ∈ net →(PEER →N)
TvcOf: vcOf ∈ PEER →(PEER →N)
inv1 : ∀ m1, m2 ·m1 ∈ net ∧m2 ∈ net ∧m1 6= m2

⇒ (m1 ∈ hcOf(m2) ⇒(∀ p · p ∈ PEER ⇒rankOf(m1)(p) ≤ rankOf(m2)(p)))
inv2 : ∀ m1, m2 ·m1 ∈ net ∧m2 ∈ net ∧m1 ∈ hcOf(m2)

⇒ rankOf(m1)(origOf(m2)) < rankOf(m2)(origOf(m2))
inv3 : ∀ m, p · m ∈ net ∧p ∈ PEER ∧m ∈ hc(p)

⇒ (∀ pp · pp ∈ PEER ⇒rankOf(m)(pp) ≤ vcOf(p)(pp))

Fig. 5. Concrete Model for Causal Communication Using Vector Clocks

this is as costly as our version with histories), or derived from logical vector
clocks of size n or matrix clocks of size n× n [23].

Every peer p has a vector clock vcOf (p). For peers p and pp, vcOf (p)(pp)
holds the number of send events on pp that are in the current past of peer p. When
a peer sends a message, it increments its own count (vcOf (p)(p)) and piggybacks
its vector with the message. At reception, a peer updates every component of its
vector with the max of its current value and of the component of the received
vector. Thus, vcOf (p)(pp) holds the number of messages sent by pp and known
by p. A message m is in the causal history of m′ iff every vector component of m
is lower or equal than the one of m′ (and at least one is strictly lower: distinct
messages have different vectors). To ensure causal reception, a message can be
delivered to a peer iff no other message exists for this peer with a lower vector.

The refinement of CausalHistory replaces the history variables with vector
clocks. The events are refined to update these variables and, in the receive

event, the guard built on histories is replaced with a property on the vectors.
The refinement proof requires gluing invariants on causal histories and vector
clocks.

5.2 Other Concretizations

As shown in Figure 1, other concrete models have been defined. The various fifo*
models are easily described with counters. If n denotes the number of peers, 2
counters (fifonn), 2× n counters (fifon1 and fifo1n), or 2× n2 counters (fifo11)

are used to account for the ordinal rank of the last sent and last received messages
in the system (fifonn), a peer (fifon1 and fifo1n), or a couple of peers (fifo11).
The ranks of the last received messages determine the rank of the messages that
can be received. Alternatively, message queues can be used: if n denotes the
number of peers, we need a global queue (fifonn), n inbox queues (fifon1), n
outbox queues (fifo1n), or n2 queues (fifo11).

6 Additional Remarks

6.1 Proof Effort

The full menagerie holds 42 machines, 41 refinements, 329 invariants, and more
than 1400 proof obligations. Once the necessary invariants are stated, the large
majority of these proof obligations are automatically proved by Rodin with SMT
solvers (49 manual proofs, 3.5% of the proof obligations). The main difficulties
are described below.

To make the proofs automatic, the trick is to find additional invariants. For
instance, to prove that RscHistory refines RscEvent, the invariant

∀ e1, e2 · e1 7→ e2 ∈ run ∧ comOf(e1) = Send ∧ e1 6= e2 ⇒ mesOf(e1) /∈ net

has to be made explicit (it says that if there exists at least one event after a
send event e1, then the message sent at e1 is no longer in transit). As expected,
the discovery of the necessary invariants is the hardest part in the proofs, and
the largest part of our proof effort was devoted to this point. Our methodology
consists in running the automatic provers and analyzing the failure (if any).
After some case analysis of the disjunctions, a contradiction often appears in the
hypotheses. This contradiction leads us to a relevant new invariant. Once stated
and proved, this new invariant may, with good luck, suppress the unsuccessful
branch and advance towards the fully automatic proof.

The refinements involving causal are never easy. One essential invariant is:

∀ e1, e2 · e1 7→ e2 ∈ prec ∧ peerOf(e1) 6= peerOf(e2) ⇒ (∃ es , er · e1 7→ es ∈ prec ∧ es 7→ er ∈
prec ∧ er 7→ e2 ∈ prec ∧peerOf(e1) = peerOf(es) ∧ comOf(es) = Send ∧comOf(er) = Receive ∧
mesOf(es) = mesOf(er))

It states that two causally related events on different peers are necessarily linked
by (at least) one message, or conversely, that causality between peers only arises
from message exchanges. This invariant had to be manually instantiated.

Lastly, concrete models need ad-hoc reasoning. For instance, Section 5.1
presents the specific invariants that are required to prove that CausalVector

refines CausalHistory. These invariants are expected as they state that vector
clocks encode causality. Nevertheless, the refinement proofs require to manually
recall and instantiate these invariants.

6.2 Localization

The last point concerns the distributed nature of the communication models.
The first abstract models, based on properties of the executions, are purely

logical and offer a global point of view of the communication models. The second
models, based on histories, are actually directly implementable even if costly.
The third concrete models offer realistic implementations. By looking at their
definitions, one can distinguish two classes of communication models. The models
async, fifo11, causal and fifo1n only need meta information piggybacked with the
message and local knowledge available on the peer. On the other hand, fifon1,
fifonn and rsc require global shared variables, and their implementation in a
distributed system requires a central coordinator or totally ordered multicast.

7 Related Work

Asynchronous communication models in distributed systems are studied and
compared in [17] (notion of ordering paradigm), [8] (notion of distributed com-
putation classes), and [13] (for message sequence charts). Implementations of
the basic communication models (causal, fifo11) using histories or clocks are
explained in classic textbooks [17,23]. In our previous work, we have unified
and extended these results in [10]. The goal was to develop a framework to me-
chanically verify algorithms [9], and to give a unified description of the models.
However only the communication models with message histories were specified in
TLA+. All the Event-B models presented here are new, as well as the refinement
relations leading to the distributed executions (Section 2), between the abstract
communication models (Section 3), and between the concretizations (abstract
model to history-based model to ad-hoc model, sections 4.2 and 5).

Formal verification of distributed algorithms have been conducted with suc-
cess. However the hypotheses on the communication are often fuzzy or unclear
and one has to dive deep into the proofs to identify them. For instance, [22]
studies the topology maintenance in structured peer-to-peer networks. Differ-
ent algorithms are studied, some assume FIFO channels and some do not. It is
unclear why it is required, and if it is required for all channels.

Refinement has been used to verify distributed algorithms. [20] describes the
addition of Byzantine resilience to standard Paxos. The proof is conducted by re-
finement of the distributed non-Byzantine algorithm and has been mechanically
checked with the TLA+ Proof System. Another approach is presented in [21].
Three versions of Paxos (the classic one, disk Paxos and Byzantine Paxos) are
derived from an abstract, non-distributed algorithm.

The Event-B book [1] presents several examples of refinements of distributed
algorithms. The simple file transfer protocol decomposes the atomic sending of
a file in a sequence of send events, and uses counters to coordinate the progres-
sion. This protocol is later extended to handle loss and re-transmission with an
alternating bit protocol. In this example, asynchronous communication appears
implicitly during refinement, and properties of the communication are directly
embedded in the resulting machine. A logical clock is used in the routing algo-
rithm for a mobile agent to order the messages sent by a mobile agent while it
moves. This example can be seen as the development of an ordered communica-
tion model down to a concrete localizable model. Lastly, the leader election on a

connected graph network deals with the difficulties of splitting an atomic action
(in a shared-memory model) into several actions (in a message-passing model).
This creates deadlocked states (a situation called contention in the algorithm)
where two nodes are each waiting for the other to progress. This development is
more concerned with providing a algorithmic solution in presence of non-atomic
actions, than with the development of non-atomicity (i.e. messages).

[4] presents the development by refinement of snapshot algorithms. It starts
with the specification of the snapshot problem, which is by essence a global
property. A generic architecture with asynchronous communication is presented,
which allows the derivation of several algorithms. At one point, the set of mes-
sages (which models fully asynchronous communication) is refined by FIFO
queues (which models ordered communication). This leads to a simpler snap-
shot algorithm, which ends being the well-known Chandy-Lamport algorithm.

[15] describes the formal derivation of an algorithm for leader election in
Event-B. The abstract model is centralized, and refinement introduces distri-
bution. The behavioral part of the communication model first comprises two
events, send and receive which directly access the state variable of the other
peers. Then, a new refinement introduces new variables to decouple the peers
and to get a “one-to-one asynchronous communication channel”.

8 Conclusion

This paper provides a guide for the design of the communication component in
the development of distributed systems and algorithms. It considers a wide range
of asynchronous communication models that enforce message-ordering properties
on the system and positions each one of them on a map of refinement relations.
The map, shown in Figure 1, has two dimensions: it compares the models ac-
cording to the strength of the underlying ordering properties and their level of
abstraction. All these models are specified and the refinements proved in Event-
B which paves the way for reusing part of the mechanization in a correct-by-
construction development of a distributed system thanks to shared-event model
decomposition. Our machines are indeed pluggable to any system where commu-
nication occurs according to two events send and receive with usual parameters
(message, destination). A classic development process consists in introducing
asynchronous communication which corresponds to our RunWithMessages ma-
chine, the root of our map, and make use of the rest of the map to strengthen
the ordering policy depending on the needs, pursue the development towards the
concrete practical specifications models (with counters or queues), or even sub-
stitute models afterwards knowing the safety properties are preserved. Besides,
each one of the three sets of communication models we provide has its assets: the
concrete models are close to practical implementations, the event-based models
clearly translate the ordering policies which ease theoretical reasoning on the
properties themselves, and the history-based models offer a compromise with
operational descriptions that are implementable and yet remain uniform to ease
formal reasoning.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

3. Abrial, J., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete
models: Application to Event-B. Fundamenta Informaticae 77(1-2), 1–28 (2007)

4. Andriamiarina, M.B., Méry, D., Singh, N.K.: Revisiting snapshot algorithms by
refinement-based techniques. Computer Science and Information Systems 11(1),
251–270 (2014)

5. Back, R., Kurki-Suonio, R.: Distributed cooperation with action systems. ACM
Transactions on Programming Languages and Systems 10(4), 513–554 (1988)

6. Butler, M.J.: Decomposition structures for Event-B. In: Integrated Formal Meth-
ods, 7th International Conference, IFM 2009. pp. 20–38 (2009)

7. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
(1988)

8. Charron-Bost, B., Mattern, F., Tel, G.: Synchronous, asynchronous, and causally
ordered communication. Distributed Computing 9(4), 173–191 (Feb 1996)

9. Chevrou, F., Hurault, A., Quéinnec, P.: Automated verification of asynchronous
communicating systems with TLA+. Electronic Communications of the EASST
(PostProceedings of AVoCS 2015) 72 (2015)

10. Chevrou, F., Hurault, A., Quéinnec, P.: On the diversity of asynchronous commu-
nication. Formal Aspects of Computing 28(5), 847–879 (Sep 2016)

11. Dijkstra, E.W.: EWD851b – reducing control traffic in a distributed implementa-
tion of mutual exclusion (1983)

12. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer-Verlag New York, Inc. (1990)

13. Engels, A., Mauw, S., Reniers, M.A.: A hierarchy of communication models for
message sequence charts. Science of Computer Programming 44(3), 253–292 (2002)

14. Hoang, T.S., Iliasov, A., Silva, R., Wei, W.: A survey on Event-B decomposition.
ECEASST 46 (2011)

15. Iliasov, A., Laibinis, L., Troubitsyna, E., Romanovsky, A.: Formal derivation of a
distributed program in Event-B. In: ICFEM. Lecture Notes in Computer Science,
vol. 6991, pp. 420–436. Springer (2011)

16. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting reuse in Event B development: Modularisation approach.
In: Abstract State Machines, Alloy, B and Z. pp. 174–188 (2010)

17. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press (Mar 2011)

18. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (Jul 1978)

19. Lamport, L.: Specifying Systems. Addison Wesley (2002)
20. Lamport, L.: Byzantizing Paxos by refinement. In: 25th International Symposium

on Distributed Computing. LNCS, vol. 6950, pp. 211–224 (2011)
21. Lampson, B.W.: The ABCD’s of Paxos. In: Symposium on Principles of Distributed

Computing, PODC 2001. pp. 13–. ACM (2001)
22. Li, X., Misra, J., Plaxton, C.G.: Active and concurrent topology maintenance. In:

18th Int’l Symp. on Distributed Computing. LNCS, vol. 3274, pp. 320–334 (2004)
23. Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer (2013)

