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Some embeddings of general linear groups into hyperbolic Clifford groups are constructed generically by using Jordan pairs of rectangular and alternating matrices over a ring. In low rank cases through exceptional isomorphisms, their direct description and relation to some automorphisms of Clifford groups are given. Generic norms are calculated in details, and equivariant embeddings of representation spaces are constructed also.
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Introduction

This paper studies some embeddings of general linear groups into Clifford groups, which are in general explicit only on certain open dense parts and even in low rank cases made explicit rather complexly, but in fact quite natural once interpreted Jordan theoretically. So-called Jordan pairs of rectangular matrices are used in the process, embedded naturally into those of alternating matrices in a global setting. Examples in low rank cases suggest that our embeddings are involved with certain automorphisms of Clifford groups.

We shall work over an arbitrary commutative base ring k of scalars and consider by the data a couple N , P of finitely generated projective modules. Two direct sums M := N ⊕ P , Q := N ⊕ P * (where P * := Hom(P, k) is dual to P ) are to be considered and moreover from M via the hyperbolic quadratic module H(M ) we construct its special Clifford group SΓ(H(M )). It is then proved that the general linear group GL(Q) is embedded into SΓ(H(M )) by a unique homomorphism λ characterized on an open dense subscheme (Theorem 1 Jordan pair of rectangular matrices 1.1. Exterior powers of modules. We begin by fixing notation for M , supposed here an arbitrary finitely generated projective module. We denote by M * the k-module Hom(M, k) dual to M , and by ⟨x, f ⟩ the natural pairing M × M * → k of evaluations. For each integer ν ≥ 0, the ν-th exterior power ( ∧ ν M ) × ( ∧ ν M * ) → k is to be considered under the sign convention (where exp denotes Chevalley's exponential map [2, Section IV-2]), which we have called the "generic norm" in the introduction, and now labeled M as it will be varied later; being actually a square root of the polynomial det(1+AB) [START_REF] Ikai | Spin groups over a commutative ring and the associated root data[END_REF]Theorem 2.6], this δ M enjoys "cocycle relations"

⟨x 1 ∧ • • • ∧ x ν , f 1 ∧ • • • ∧ f ν ⟩ := ε ν det(⟨x i , f j ⟩) with
δ M (A, B)δ M (A B , B ′ ) = δ M (A, B + B ′ ), (1.1.4 
)

δ M (A ′ , B A )δ M (A, B) = δ M (A ′ + A, B) (1.1.5)
for any quasi-invertible (A, B) and for any (A ′ , B ′ ) [START_REF] Ikai | Spin groups over a commutative ring and the associated root data[END_REF]Subsection 3.11]. Exponential maps play a role of relating the Jordan pair ( ∧ 2 M, ∧ 2 M * ) to the hyperbolic (quadratic) module H(M ); recall that the latter is the direct sum M ⊕ M * equipped with the quadratic form defined by the pairing ⟨ , ⟩, and that the exterior power

∧ M = ∧ + M ⊕ ∧ -M ,
decomposed by the parities of degrees, plays the role of "space of spinors" by identifying End( ∧ M ) with the Clifford algebra; it has M ⊕ M * embedded by (x, f ) → l x + d f , and is graded by the "checker-board grading" (see [START_REF] Knus | Quadratic and hermitian forms over rings[END_REF]IV,(2.1)] for details).

Exterior powers of linear maps.

We shall consider the case where M is given as the direct sum of two arbitrary finitely generated and projective modules:

M = N ⊕ P. (1.2.1)
Applying the convention (1.1.1) to P , we settle ∧ ν P dual to ∧ ν P * and identify Hom(

∧ ν P * , ∧ ν N ) with ( ∧ ν N ) ⊗ ( ∧ ν P ); moreover, embedding the latter into ∧ 2ν M by the map z ⊗ w → z ′ ∧ w ′ induced from the ν-th exterior powers z → z ′ , w → w ′ of natural inclusions of N → M , P → M together with the wedge product in ∧ M , we construct a linear map λ ν + : Hom( ∧ ν P * , ∧ ν N ) -→ ∧ 2ν M. (1.2.2)
This is in fact an isomorphism onto one of those direct factors as we have in ∧ 2ν M decomposed to the sum of the ( 

∧ 2ν-i N ) ⊗ ( ∧ i P ), 0 ≤ i ≤ 2ν; in particular, we have a decomposition ∧ 2 M ∼ → (∧ 2 N ) ⊕ Hom(P * , N ) ⊕ (∧ 2 P ) . ( 1 
∑ ν≥0 exp(λ 1 + (u)) 2ν its exponential decomposed to homogeneous components, we claim that exp(λ 1 + (u)) 2ν = λ ν + ( ∧ ν u) ∈ ∧ 2ν M. (1.2.4)
To see this, choose finite n-tuples

(x 1 , • • • , x n ) ∈ N n , (y 1 , • • • , y n ) ∈ P n such that u = ∑ i x i ⊗ y i and use abbreviations such as x I := x α ∧ x β ∧ • • • , for any set I =: {α < β < • • • } of finite indexes; it is then immediate that ∧ ν u = ε ν ∑ I x I ⊗ y I , (1.2.5) 
where the summation ranges over all the sets I of ν-indexes. On the other hand, since λ 1 + (u) equals

∑ i (x i , 0) ∧ (0, y i )
, its exponential is the product of the mutually commuting n-elements 1 + (x i , 0) ∧ (0, y i ); thus its 2ν-component exp(λ 1 + (u)) 2ν equals the sum of all partial products p I := ∏ i∈I (x i , 0) ∧ (0, y i ), for I ranging over just as in (1.2.5). Then the proof completes, by soon encountering the signature ε ν in the relation p I = ε ν λ ν + (x I ⊗ y I ).

1.3. The Jordan pair (V + , V -). The previous λ ν + is in fact to be coupled with the analogous map

λ ν -: Hom( ∧ ν P, ∧ ν N * ) -→ ∧ 2ν M * (1.3.1)
constructed just similarly from (N * , P * ) by making obvious identifications N * ⊕P * ∼ = M * , P * * ∼ = P ; furthermore, as in [5, Subsection 1.6], synonyms such as M + := M , M -:= M * , together with a mod 2-suffix σ ∈ {+, -}, which is to equilibrate the two roles indicated by ±, will be occasionally employed. With these being said, we now consider the pair

V + := Hom(P * , N ), V -:= Hom(P, N * ) (1.3.2)
of k-modules equipped with the quadratic product (u, v) → (uv * u, vu * v). This is needless to say a Jordan pair, locally isomorphic to that of rectangular matrices, but as for its fundamental properties about quasi-inverses it is possible to have a global proof, not resorting to calculation in local coordinates. The Bergmann operators

B + (u, v) ∈ End(V + ) and B -(v, u) ∈ End(V -) being by definition of the forms u 0 → (1-uv * )u 0 (1-v * u) and v 0 → (1-vu * )v 0 (1-u * v), respectively, it is obvious that (u, v) is quasi-invertible if all the endomorphisms 1 -uv * ∈ End(N * ), 1 -v * u ∈ End(P * ), 1 -vu * ∈ End(N ), 1 -u * v ∈ End(P ) (1.3.3)
are invertible, in which case one has the quasi-inverses to be of the forms

u v = (1 -uv * ) -1 u = u(1 -v * u) -1
, etcetera; as for the converse, which appears likely but cumbersome to be precise in terms of actual matrices, we shall subsume it into the following

1.4. Proposition. (a) The pair (λ 1 + , λ 1 -) of linear maps is a homomorphism of Jordan pairs; in particular, if (u, v) is quasi-invertible then so is (λ 1 + (u), λ 1 -(v)). (b) Suppose (u, v) arbitrary. The four endmorphisms listed in (1.3.3) have the same determinant which is equal to δ M (λ 1 + (u), λ 1 -(v)); it is invertible if and only if (u, v) is quasi-invertible. Proof. (a) Let w = ∑ i x i ⊗ y i be any element of V σ ∼ = N σ ⊗ P σ and re- gard λ 1 σ (w) =: W as a linear map M -σ → M σ by the rule (1.1.2); then the image W (ξ) of any ξ = (f, g) ∈ M -σ ∼ = N -σ ⊕ P -σ equals the sum of the -(f, g) ((x i , 0) ∧ (0, y i )), namely ∑ i (⟨y i , g⟩x i , -⟨x i , f ⟩y i ); therefore W (f, g) = (w(g), -w * (f )
) which, interpreted as matrices of left actions and now duplicated for two cases u ∈ V + , v ∈ V -, yields

λ 1 + (u) = ( 0 u -u * 0 ) , λ 1 -(v) = ( 0 v -v * 0 ) . (1.4.1) It is then immediate to get identities -λ 1 + (u)λ 1 -(v)λ 1 + (u) = λ 1 + (uv * u) and -λ 1 -(v)λ 1 + (u)λ 1 -(v) = λ 1 -(vu * v), showing that (λ 1 + , λ 1 -
) is a homomorphism. The last statement is then a consequence of naturalness of quasi-inverses, see [START_REF] Loos | Jordan pairs[END_REF]Proposition 3.2].

(b) Since 1 -uv * and 1 -vu * are dual to each other and so are 1 -u * v and 1 -v * u, in order to prove the first statement it suffices to prove

det(1 -uv * ) = δ M (λ 1 + (u), λ 1 -(v)) = det(1 -u * v); (1.4.2)
furthermore, on account of the last statement of the part (a), these identities will make also clear the unsettled part, the if part, of the second statement. We prove (1.4.2). Since the formula (1.2.4) and the analogous one for

λ ν -(v) convert δ M (λ 1 + (u), λ 1 -(v)) to the sum of the ⟨λ ν + ( ∧ ν u), λ ν -( ∧ ν v)⟩ for ν ≥ 0,
by a well-known formula for determinants of type det(1 + h) (see for example the formula (19) of [1, Section III-8.5]), it suffices to prove, for any X in Hom(

∧ ν P * , ∧ ν N ) and any Y in Hom( ∧ ν P, ∧ ν N * ), (-1) ν trace(XY * ) = ⟨λ ν + (X), λ ν -(Y )⟩ = (-1) ν trace(X * Y ). (1.4.3)
The problem being now linear in each arguments X, Y , we may suppose them to be of the forms z ⊗ w, z * ⊗ w * , where z, w, z * , w * are any elements of ν-th exterior powers of N , P , N * , P * . In this case, both XY * = ⟨w, w * ⟩z ⊗ z * and X * Y = ⟨z, z * ⟩w ⊗ w * have indeed the same trace ⟨z, z * ⟩⟨w, w * ⟩, and since 

λ ν + (X) = z ∧ w, λ ν -(Y ) = z * ∧ w * under

2), any elements

A = a ⊕ u ⊕ c ∈ ∧ 2 M , B = b ⊕ v ⊕ d ∈ ∧ 2 M * with components a ∈ ∧ 2 N, u ∈ Hom(P * , N ), c ∈ ∧ 2 P, b ∈ ∧ 2 N * , v ∈ Hom(P, N * ), d ∈ ∧ 2 P *
are represented as alternating matrices of type

a ⊕ u ⊕ c = ( a u -u * c ) , b ⊕ v ⊕ d = ( b v -v * d ) . (1.5.1)
We propose to give a method of calculating δ M (A, B) in terms of these components "generically" (Preposition 1.6). We begin by noting that, from naturalness of exponential maps, δ M (A, B) reduces to either δ N (a, b) or δ P (c, d) according to those cases where (A, B) is either (a ⊕ 0 ⊕ 0, b ⊕ 0 ⊕ 0) or (0⊕0⊕c, 0⊕0⊕d); both δ M (a⊕0⊕0, 0⊕0⊕d) and δ M (0⊕0⊕c, b⊕0⊕0) are 1, since except for constant terms all pairings coming from ( ∧ N ± )×( ∧ P ∓ ) vanish; here and in the following, we shall tacitly forget the order ⟨z, z * ⟩ =: ⟨z * , z⟩ of arguments in the pairing ⟨ , ⟩, which will thus appear "symmetric". Along the same line, combined also with (1.4.2), we get the following generalization of what we have said:

δ M (0 ⊕ u ⊕ c, b ⊕ 0 ⊕ 0) = δ M (a ⊕ u ⊕ 0, 0 ⊕ 0 ⊕ d) = = δ M (a ⊕ 0 ⊕ 0, 0 ⊕ v ⊕ d) = δ M (0 ⊕ 0 ⊕ c, b ⊕ v ⊕ 0) = 1, (1.5.2) δ M (a ⊕ u ⊕ c, 0 ⊕ 0 ⊕ d) = δ M (0 ⊕ 0 ⊕ c, b ⊕ v ⊕ d) = δ P (c, d), δ M (a ⊕ 0 ⊕ 0, b ⊕ v ⊕ d) = δ M (a ⊕ u ⊕ c, b ⊕ 0 ⊕ 0) = δ N (a, b), (1.5.3) δ M (a ⊕ u ⊕ c, 0 ⊕ v ⊕ 0) = δ M (0 ⊕ u ⊕ 0, b ⊕ v ⊕ d) = = det(1 -uv * ) = det(1 -u * v). (1.5.4)
Note, however, that similar values such as δ M (a ⊕ 0 ⊕ c, 0 ⊕ v ⊕ 0) are no longer trivial, since, for example, exp(a ⊕ 0 ⊕ c) has components coming from the Hom( ∧ ν (P * ), ∧ ν (N )); as for these, we shall prove

δ M (a ⊕ 0 ⊕ c, 0 ⊕ v ⊕ 0) = δ N (a, ( ∧ 2 v)c) = δ P (c, ( ∧ 2 v * )a), δ M (0 ⊕ u ⊕ 0, b ⊕ 0 ⊕ d) = δ N ( ( ∧ 2 u)d, b ) = δ P ( ( ∧ 2 u * )b, d ) .
(1.5.5) Indeed, let δ (1) denote the left-hand side δ M (a⊕0⊕c, 0⊕v ⊕0) of the first line, and δ (2) that of the second line. We begin by regarding δ (1) 

as δ M (A + A ′ , B), with A := a ⊕ 0 ⊕ 0, A ′ := 0 ⊕ 0 ⊕ c, B := 0 ⊕ v ⊕ 0. In this case, δ M (A, B) = 1 by (1.5.
2) and the quasi-inverse

B A = B(1 + AB) -1
, calculated in terms of matrices of type (1.5.1), has components 0 ⊕ v ⊕ ( ∧ 2 v * )a; thus, the cocycle relation (1.1.5) converts δ (1) to δ P (c, ( ∧ 2 v * )a), on account of (1.5.3). Similarly,

starting from A := 0⊕0⊕c, A ′ := a⊕0⊕0, in which case B A = ( ∧ 2 v)c⊕v ⊕0,
we get δ (1) = δ N (a, ( ∧ 2 v)c). Furthermore, proof of the second line for δ (2) is also similar, by applying now the relation (1.1.4) to A := 0 ⊕ u ⊕ 0 and {B, B ′ } := {b ⊕ 0 ⊕ 0, 0 ⊕ 0 ⊕ d}. We shall proceed along the same line of thus proving (1.5.5), to prove the following

1.6. Proposition. (a) If (c, d) ∈ ( ∧ 2 P ) × ( ∧ 2 P * ) is quasi-invertible then δ M (a ⊕ u ⊕ c, b ⊕ v ⊕ d) = δ M (a 1 ⊕ u 1 ⊕ 0, b 1 ⊕ v ⊕ 0) δ P (c, d) (1.6.1)
with a 1 := a + ( ∧ 2 u)d c , u 1 := u(1 + dc) -1 , b 1 := b + ( ∧ 2 v)c d ; in particular, δ M (a ⊕ u ⊕ c, b ⊕ v ⊕ 0) = δ M ( a ⊕ u ⊕ 0, (b + ( ∧ 2 v)c) ⊕ v ⊕ 0 ) . (1.6.2) (b) If (u, v) ∈ V + × V -is quasi-invertible then δ M (a ⊕ u ⊕ 0, b ⊕ v ⊕ 0) = (det h)δ N (a ′ , b) (1.6.3) with h := 1 -uv * , a ′ := ( ∧ 2 h) -1 a.
Proof. (a) We begin with the special case (1.6.2), which is proved similarly to (1.5.5) by applying (1.1.5) to

A ′ := a ⊕ u ⊕ 0, A := 0 ⊕ 0 ⊕ c, B := b ⊕ v ⊕ 0.
In order to prove (1.6.1), we let now

A := a⊕u⊕c, B := 0⊕0⊕d, B ′ := b⊕v ⊕0, in which case δ M (A, B) = δ P (c, d) (1.5.
3) is by supposition invertible, and use (1.1.4) to decompose the left-hand side of (1.6.1) to δ M (A B , B ′ )δ P (c, d). Calculating

1 + AB = ( 1 ud 0 1 + cd ) = ( 1 -ud(1 + cd) -1 0 (1 + cd) -1
) -1

and noting that besides two expressions d(1 

+ cd) -1 = (1 + dc) -1 d of d c the expression 1-d(1+cd) -1 c equals (1+dc) -1 , we see that the quasi-inverse A B = (1 + AB) -1 A has components a 1 ⊕ u 1 ⊕ c d with
(A B , B ′ ) = δ M (a 1 ⊕ u 1 ⊕ 0, b 1 ⊕ v ⊕ 0). (b) Put A := a ⊕ u ⊕ 0, B := 0 ⊕ v ⊕ 0, B ′ := b ⊕ 0 ⊕ 0, in which case δ M (A, B) = det h (1.
M (A B , B ′ ) = δ N (a ′ , b). Again we calculate 1 + AB which, on account of v(1 -u * v) -1 = (1 -vu * ) -1 v = v u , is now of the form ( 1 -uv * av 0 1 -u * v ) = ( (1 -uv * ) -1 -(1 -uv * ) -1 av u 0 (1 -u * v) -1
) -1 .

Therefore, by

A B = (1 + AB) -1 A together with 1 + v u u * = (1 + vu * ) -1 , we get A B = a ′ ⊕ u v ⊕ 0.
On account of (1.5.3), this proves the desired relation.

Embeddings

2.1. The homomorphisms X ± , X 0 . We turn attention to group schemes and adapt the functorial point of view [START_REF] Demazure | Groupes Algébriques[END_REF]. Put

Q := N ⊕ P * (2.1.1)
and express elements of End(Q) as matrices with entries in array ( End(N ) Hom(P * , N ) Hom(N, P * ) End(P * )

) (2.1.2)
acting from the left. Similar matrix notation being repeated for all scalar extensions too, we have then homomorphisms

W(V + ) X + -→ GL(Q) X - ←-W(V -) X + (u) := ( 1 u 0 1 ) , X -(v) := ( 1 0 -v * 1 ) (2.1.3)
of k-group schemes, where W denotes the covariant functor constructing vector bundles from finitely generated projective modules:

W(V + )(k ′ ) := V + ⊗ k ′
for each scalar extension k ′ /k, etcetera; and when describing scheme-morphisims, letters like u, v in (2.1.3) are to be understood ranging over all scalar extensions too. In an analogous fashion we introduce a homomorphism

X 0 : GL(N ) × GL(P ) -→ GL(Q) X 0 (g, h) := ( g 0 0 h * -1
) .

(2.1.4)

Actual computation of the product X -(v)X 0 (g, h)X + (u) =: ξ(v, (g, h), u) shows at once that ξ is an open embedding with image the principal open subscheme Ω ⊂ GL(Q) defined by the condition that the (1, 1)-entry in the sense of matrix (2.1.2) is invertible; since the k-group scheme GL(Q) is smooth with connected fibers, this proves that Ω is scheme-theoretically dense in GL(Q).

2.2. Relation to the Jordan pair (V + , V -). We need to know about the induced group germ structure on Ω, for which it is convenient to be conformity with [START_REF] Loos | On algebraic groups defined by Jordan pairs[END_REF]. The decomposition (2.1.1) is now used to endow GL(Q) with the action ψ of the multiplicative group G mk such that ψ t , for any invertible scalar t, multiplies t j-i to each (i, j)-entry; this amounts to setting ψ t := Int(X 0 (t, 1)) and makes W(V ± ) to be of weights ±1, while GL(N ) × GL(P ) remains invariant. There exists an action ρ := (ρ + , ρ -) of the k-group GL(N ) × GL(P ) on the pair (V + , V -) by

ρ + (g, h) • u := guh * , ρ -(g, h) • v := h * -1 vg -1 (2.2.1)
which is also recovered by conjugations in GL(Q) and compatible with the Jordan product (u, v) → (uv * u, vu * v). Moreover, from (1.4) it follows that, on the open subscheme W ⊂ W(V + ) × W(V -) =: X of quasi-invertible pairs, there exists a well-defined morphism

b : W -→ GL(N ) × GL(P ) b(u, v) := (1 -uv * , 1 -u * v). (2.2.2)
For the morphism p : X → GL(Q) defined by p(u, v) := X + (u)X -(v), easy computation shows W to be the inverse image p -1 (Ω) on which is induced the morphism (u, v) → X -(v u )X 0 (b(u, v))X + (u v ) by p. In the terminology of [START_REF] Loos | On algebraic groups defined by Jordan pairs[END_REF], the datum (GL(Q), ψ) is thus an "elementary system" with (V + , V -) the associated Jordan pair, which becomes a "Jordan system" after equipped with the action ρ and the morphism b (to be called the "Bergmann morphism").

There is known a theorem of generators and relations [13, 4.14], which we shall apply for construction an embedding λ of GL(Q).

Partial description of λ.

Provisionally supposing M any finitely generated projective module and considering the hyperbolic module H(M ), we recall the similar description [START_REF] Ikai | Spin groups over a commutative ring and the associated root data[END_REF] as above for the special Clifford group SΓ(H(M )), the normalizer taken in GL(

∧ + M ) × GL( ∧ -M ) of the embed- ded M ⊕ M * ⊂ End( ∧ M ): namely, we have two homomorphisms W( ∧ 2 M ) Y + -→ GL( ∧ M ) Y - ←-W( ∧ 2 M * ) Y + (A) := l exp(A) , Y -(B) := d exp(B) , (2.3.1)
which are in fact factoring through the spin group, the kernel of the norm character µ : SΓ(H(M )) → G mk , and the homomorphism

Y 0 : G mk × GL(M ) -→ GL( ∧ M ) Y 0 (t, T ) := t(det T ) -1 ∧ T, (2.3.2)
which yields the character (t, T ) → t 2 (det T ) -1 after composed with µ; Y 0 normalizes Y ± with (t, T ) → ( ∧ 2 T, ∧ 2 T * -1 ) the induced actions on the Jordan pair ( ∧ 2 M, ∧ 2 M * ) and with (A, B) → (δ M (A, B), 1 + AB) the Bergmann morphism. In the case where M = N ⊕ P as in (1.2), we have homomorphisms λ 1 ± which may well be understood with sources W(V ± ) and targets W( ∧ 2 (M ± )); analogously, we introduce the homomorphism

λ 0 : GL(N ) × GL(P ) -→ G mk × GL(M ) λ 0 (g, h) := (det g, g ⊕ h).
(2.3.3)

Theorem.

Let N and P be any finitely generated projective modules and put M := N ⊕ P , Q := N ⊕ P * . There exists one and only one homomorphism

λ : GL(Q) -→ SΓ(H(M )) (2.4.1)
of group schemes such that λ

• X ± = Y ± • λ 1 ± and λ • X 0 = Y 0 • λ 0 . This is monomorphic, converting the norm µ to the determinant: det = µ • λ.
Proof. The uniqueness and two properties monomorphic and det = µ • λ are all evident by the harmless restriction to the dense subscheme Ω ⊂ GL(Q); notice that by [13, 3.8] the homomorphism f stated in [13, 4.14] is monomorphic whenever so are f 0 and f ± . Furthermore, since everything has been interpreted to the category of Jordan systems, in order to prove the existence of λ it suffices to verify that the pair (λ 0 , (λ 1 + , λ -)) is a homomorphism of Jordan systems, in other words ([13, 5.1 (6), ( 7)]) that

λ 1 + (ρ + (g, h) • u) = ( ∧ 2 T ) • A, λ 1 -(ρ -(g, h) • v) = ( ∧ 2 T * -1 ) • B (2.4.2) λ 0 (b(u, v)) = (δ M (A, B), 1 + AB) (2.4.3)
for any u, v, (g, h) with A := λ 1 + (u), B := λ 1 -(v), T := g ⊕h. Now, from (2.2.1) with computation in matrices of types (1.4.1) and (2.1.2) follows (2.4.2), and similarly 1 + AB = g ⊕ h once (g, h) is taken to be b(u, v), see (2.2.2); then det(g) = δ M (A, B) also by (1.4), whence (2.4.3), on account of (2.3.3). 

Remark. λ seems something like

ite i • λ. We conjecture that this is i • κ • Y 0 (det(•), •) with κ an isomorphism SΓ(H(Q))
∼ → SΓ(H(M )), namely that there exists an isomorphism κ such that λ(γ) = κ( ∧ γ) for all point γ of GL(Q). In the case where M has rank two or three, we shall give an explicit description of κ (Section three).

Close-up of End(

∧ Q). We proceed to give a method to calculate the exterior powers of X ± in terms of λ 1 ± , to be used in proving the next theorem (Theorem 2.8). We begin by rewriting (2.1.3) as

X + (u) = 1 + ũ, X -(v) = 1 + ṽ, (2.5.1)
where w → w denotes the map from we have an injection j : End(Q) → ∧ 2 E just as in (1.2); furthermore, since

V σ ∼ = N σ ⊕ P σ to End(Q) ∼ = Q ⊗ Q * such that (n⊗p) ∼ = (
M ± are direct factors in E, we have induced injections ∧ M ι + -→ ∧ E ι - ←- ∧ M * (2.5.3
) also; it is then easy to see that, for w ∈ V σ , σ = ±,

j( w) = ι σ ( λ 1 σ (w)
) .

(2.5.4)

On the other hand, since E is the module underlying H(Q) and since the embedded subspaces M ± ⊂ E are totally singular, both of them generate subalgebras isomorphic to exterior algebras; explicitly, we have injective homomorphisms

∧ M φ + -→ End( ∧ Q) φ - ←- ∧ M * (2.5.5)
of k-algebras, which are described on the degree-one-parts as

φ + (ξ) = l n⊕0 + d 0⊕p , φ -(ξ * ) = l 0⊕p * + d n * ⊕0 (2.5.6)
for ξ = (n, p) in M and ξ * = (n * , p * ) in M * . As yet another description, we recall [7, 1.6] that there exists a module-isomorphism

φ : ∧ E ∼ → End( ∧ Q) (2.5.7)
characterized by the unital property φ(1) = 1 and the identity

φ ((n, p * , n * , p) ∧ Z) = (l n⊕p * + d n * ⊕p ) • φ(Z) -φ(F Z) (2.5.8)
for (n, p * , n * , p) in E and Z in ∧ E, with F denotes the linear form E → k taking value ⟨n 0 , n * ⟩+⟨p, p * 0 ⟩ at (n 0 , p * 0 , n * 0 , p 0 ). Since such an F annihilates the embedded M (M * ) if n * = 0 (respectively, p = 0), it follows in particular that φ becomes algebra homomorphisms after restricted to either ∧ M or ∧ M * ; in fact, comparing (2.5.6) with (2.5.8), we find that φ ± = φ • ι ± .

Proposition. For

u ∈ V + and v ∈ V -one has ∧ X + (u) = φ + ( exp(λ 1 + (u)) ) , ∧ X -(v) = φ - ( exp(λ 1 -(v))
) .

(2.6.1)

In order to prove (2.8.1) for the first two cases in (2.8.2), we rewrite γ = X σ (w) as in (2.5.4) for short and notice that exp(λ 1 σ (w)) = 1 + λ 1 σ (w); thus, ∧ γ equals φ σ (1 + λ 1 σ (w)) by (2.6.1), while since λ 1 σ (w) is now either (n, 0) ∧ (0, p) or (n * , 0) ∧ (0, p * ), combining (2.5.6) with λ

• X σ = Y σ • λ 1 σ we find the couple ( ∧ γ, λ(γ)) to be either ( 1 + l n⊕0 • d 0⊕p , 1 + l (n,0)∧(0,p) ) or ( 1 + d n * ⊕0 • l 0⊕p * , 1 + d (n * ,0)∧(0,p * ) )
; so the problem (2.8.1) now takes the forms

ζ(Z ′ ⊗ ω) = (n, 0) ∧ (0, p) ∧ ζ(Z ⊗ ω), (2.8.5) ζ(Z ′′ ⊗ ω) = (n * , 0) ((0, p * ) ζ(Z ⊗ ω)) , (2.8.6)
where

Z ′ := (n ⊕ 0) ∧ ((0 ⊕ p) Z) and Z ′′ := (n * ⊕ 0) ((0 ⊕ p * ) ∧ Z).
To prove (2.8.5), we infer

Z ′ = (-1) ν ((n ∧ z ν ) ⊕ 0) ∧ ( 0 ⊕ (p z * d-ν ) ) from (2.8.3), so that ζ(Z ′ ⊗ ω) = (-1) ν (n ∧ z ν , 0) ∧ ( 0, (p z * d-ν ) ω ) (2.8.7) by (2.7.1); however (p z * d-ν ) ω =: z (1)
ν+1 equals p ∧ (z * d-ν ω) =: z (2)
ν+1 , since for any (ν + 1)-tensor z * ν+1 over M * the obvious nullity of p (z

* ν+1 ∧ z * d-ν ) equates (p z * ν+1 ) ∧ z * d-ν to (-1) ν z * ν+1 ∧ (p z * d-ν
), which acted by the pairing with ω proves z [START_REF] Bourbaki | Elements of mathematics, Algebra, Part I: Chapters 1-3[END_REF] ν+1 and z

(2) ν+1 = (-1) ν (z * d-ν ω) ∧ p to be indeed taking the same value at z * ν+1 . Therefore, from (2.8.7) the following calculation proceeds, proving (2.8.5), on account of (2.8.4):

ζ(Z ′ ⊗ ω) = (-1) ν (n ∧ z ν , 0) ∧ ( 0, p ∧ ( z * d-ν ω )) = = (-1) ν (n, 0) ∧ (z ν , 0) ∧ (0, p) ∧ (0, z * d-ν ω) = (n, 0) ∧ (0, p) ∧ (z ν , 0) ∧ (0, z * d-ν ω).
As to (2.8.6), for which we have

Z ′′ = (-1) ν ((n * z ν ) ⊕ 0) ∧ ( 0 ⊕ (p * ∧ z * d-ν )
) by (2.8.3) and moreover (0

, p * ) ζ(Z ⊗ ω) = (-1) ν (z ν , 0) ∧ ( 0, p * (z * d-ν ω)
) by (2.8.4), it is actually easier to have both members equated, which are

(-1) ν (n * z ν , 0) ∧ ( 0, p * (z * d-ν ω)
) . For the last case in (2.8.2), from (2.1.4) we calculate the left-hand side of (2.8.1) as the product ((

∧ ν g) • z ν , 0) ∧ (0, w ν ) =: Π, where 
w ν := ( ( ∧ d-ν (h * -1 ) • z * d-ν ) ω = (det h) -1 ( ∧ ν h) • ( z * d-ν ω ) ∈ ∧ ν P ;
thus, on account of (2.8.4), for Γ :

= (det h) -1 ∧ (g ⊕ h) ∈ GL( ∧ M ) one has Π = Γ • ζ(Z ⊗ ω); however, (2.3.3) combined with λ • X 0 = Y 0 • λ 0 shows Γ to be Y 0 (λ 0 (g, h)) = λ(γ)
. This completes our proof.

Examples

3.1. The case of two invertible modules. Consider the case where both N and P are of rank one. We have ∧ -M = M , and since λ 1 + identifies V + = Hom(P * , N ) with ∧ 2 M , there arises an identification

∧ + M ∼ = k ⊕ V + . (3.1.1)
Settling V -= Hom(P, N * ) dual to V + under the pairing {u, v} which either uv * ∈ End(N ) ∼ = k or u * v ∈ End(P ) ∼ = k defines, we shall employ for elements of End(

∧ + M ) matrix notation of type [ k V - V + k
] acting from the left; similar matrix notation being understood for all scalar extensions too. Then

⟨λ 1 + (u), λ 1 -(v)⟩ = -{u, v} by (1.4.3), so that on ∧ + M the action Y -(λ 1 -(v)) is [α 0 , u 0 ] → [α 0 -{u 0 , v}, u 0 ]; apparently Y + (λ 1 + (u)) is [α 0 , u 0 ] → [α 0 , u 0 + α 0 u]; and since a point (g, h) of GL(N ) × GL(P ) is now a pair of invertible scalars, we have λ 0 (g, h) = (t, T ) with t := g, T := diag(g, h), whence Y 0 (λ 0 (g, h)) is [α 0 , u 0 ] → [h -1 α 0 , gu 0 ]. These compared with (2.1.
3), (2.1.4) soon prove, as having been so on the dense subscheme Ω, that the composite ρ + • λ with the even spin representation ρ + : SΓ(H(M )) → GL(

∧ + M ) is the isomorphism γ = ( α u v * β ) → γ := [ β v u α ] : GL(Q) ∼ -→ GL( ∧ + M ). (3.1.2)
As for the composite

ρ -• λ, both Y + (λ 1 + (u)) and Y -(λ 1 -(v)
) are trivial and Y 0 (λ 0 (g, h)) acts as diag(h -1 g, 1); since h -1 g = det(X 0 (g, h)), the result is γ → diag(det(γ), 1). Therefore we arrive at 

λ(γ) = (γ, diag(det γ, 1)), ( 3 
κ : GL( ∧ + Q) × GL( ∧ -Q) ∼ -→ GL( ∧ + M ) × GL( ∧ -M ) κ( T , γ) := (γ, T ). (3.1.4) A point is that λ(γ) = κ( ∧ (γ)), since ∧ (γ) = (diag(1, det γ), γ)
in the situation of (3.1.4). Incidentally, since d = 1, L = P in the notation of (2.7), the embedding ζ is now the natural isomorphism identifying 

∧ d Q ⊗ L = (
) = ι (∧ 2 X + (u) ) , (3.3.1) ρ - ( Y -(λ 1 -(v)) ) = ι (∧ 2 X -(v) ) , (3.3.2) ρ -(Y 0 (det(g), g ⊕ η)) = ι (∧ 2 X 0 (g, η) ) (3.3.3) for u ∈ V + , v ∈ V -, g ∈ GL(N ),
2 X + (u) = [ 1 (B → Bu * -uB * ) 0 1 ] , (3.3.8) ∧ 2 X -(u) = [ 1 0 (a → -av) 1 ] , (3.3.9) ∧ 2 X 0 (g, η) = [ det g 0 0 g ⊗ η -1 ] . (3.3.10)
In fact, once relations t(det T ) -1 = η -1 and ∧ -T = diag(g, η, η det g) have been noticed for (t, T ) := (det g, g ⊕ η), it is also apparent from Proof. Since we know both λ(γ) and ∧ γ have the same norm det γ, it remains to check the identity ρ -(λ(γ)) = (det γ) (∧ -γ ) * -1 in GL( ∧ -M ). Similarly to the proof of Proposition 3.3, we may restrict ourselves to three cases γ = X 0 (g, η), X + (u), X -(v) of k-points, for each of which the left-hand side ρ -(λ(γ)) has been made explicit. For the case γ = X 0 (g, η), transporting structures through θ makes g act on N * ⊗ L as g * -1 ⊗ (det g), whence the transposed inverse (∧ -γ ) * -1 multiplied by det γ = (det g)η -1 takes the wanted form (3.3.11). Remaining two cases, in both of which det γ is 1, involve the fact θ * -1 (x ⊗ b) = x b we have mentioned after (3.6.1): namely, through θ * -1 and through the obvious identification (L ⊗ P ) ⊗ L * ∼ = P , we have -u * = û ⊗ 1 and v = v ⊗ 1 easily verified along definitions, which shows that the operation T → T * -1 converts ∧ -X + (u) and ∧ -X -(v) to those matrices as displayed in (3.5). This completes our proof.

(2.3.2) that ρ -(Y 0 (det g, g ⊕ η)) =   η -1 g 0 0 0 1 0 0 0 det g   ; ( 3 

  ε ν := (-1) ν(ν-1)/2 , (1.1.1) and moreover putting ⟨z,z * ⟩ := 0 if z ∈ ∧ ν M , z * ∈ ∧ µ M * with ν ̸ = µ we extend it to the whole ∧ M × ∧ M * . Besides the ordinary wedge product z ∧ z ′ =: l z • z ′ , we use the (left) interior product z * z ′ = d z * • z ′ systematically, with which ∧ M becomes a left ∧ M * -module such that any element f ∈ M *of degree one operates as the unique anti-derivation d f extending the map f :∧ 1 M → ∧ 0 M . The left ∧ M -module ∧ M * being considered just similarly, there arise natural identifications ∧ 2 M ⊂ Hom(M * , M ) A(f ) := -f A ∧ 2 M * ⊂ Hom(M, M * ) B(x) := -x B, (1.1.2) under which the pair ( ∧ 2 M, ∧ 2 M * ) comes equipped with the quadratic product (A, B) → (-ABA, -BAB); this is a Jordan pair, such that (A, B) is quasi-invertible if and only if the endomorphism 1 + AB of M , dual to that 1 + BA of M * , is invertible in which case the quasi-inverses A B , B A areA B = (1 + AB) -1 A = A(1 + BA) -1 ,etcetera [5, Subsection 1.5]. Particular interest is to be laid on the polynomial function δ M (A, B) := ⟨exp(A), exp(B)⟩ (1.1.3)

1 . 5 .

 15 the identifications we have made and indicated by dashes in settling (1.2.2), their pairing ⟨λ ν + (X), λ ν -(Y )⟩ is now equal to ⟨w * (z ∧ w), z * ⟩ by the duality between left interior-and right wedge-products; since w * (z ∧ w) = (-1) ν ⟨w, w * ⟩z, this completes the proof. More on δ M . Let us examine the polynomial δ M (A, B) in more details than the previous case (A, B) = (λ 1 + (u), λ 1 -(v)). Coupling the decomposition (1.2.3) with the analogous one for ∧ 2 M * , we shall note here the following addendum to (1.4.1): as maps intertwining between M = N ⊕ P and M * = N * ⊕ P * according to the rule (1.1.

  5.4) is by supposition invertible, and use (1.1.5) to reduce the problem to proving δ

  ∧ ; more precisely, letting i denote the isomorphism SΓ(H(M )) ∼ → SΓ(H(Q)) induced from the natural isometry H(M ) ∼ → H(Q) of switching P and P * , one might well ask what is the compos-

  n⊕0)⊗(0⊕p) for σ = + and (n * ⊗p * ) ∼ = -(0⊕p * )⊗(n * ⊕0) for σ = -; here and in the following, elements of Q, Q * are to be written as n ⊕ p * , n * ⊕ p and those of M , M * as (n, p), (n * , p * ). Introducing the direct sum k-module E := N ⊕ P * ⊕ N * ⊕ P, (2.5.2)

.1. 3 )

 3 matching with the well-known fact that SΓ(H(M )) equals the fiber product of GL( ∧ ± M ) relative to the determinants. In fact, the construction (3.1.2) may well be adapted by changing roles of Q, M , and this enables us to have an isomorphism SΓ(H(Q)) ∼ → SΓ(H(M )) induced from

  and η ∈ k * ∼ = GL(P ). Since ∧ 2 Q decomposes to L ⊕ (N ⊗ P * ) with L invertible, elements of End( ∧ 2 Q) are expressed as matrices of type [ k Hom(N ⊗ P * , L) Hom(L, N ⊗ P * ) k ] (3.3.4) acting from the left, while those of End( ∧ -M ) are of type   End(N ) Hom(P, N ) Hom(L ⊗ P, N ) Hom(N, P ) k Hom(L ⊗ P, P ) Hom(N, L ⊗ P ) Hom(P, L ⊗ P ) k   (3.3.5) acting on ∧ -M = N ⊕ P ⊕ (L ⊗ P ) from the left; and we notice that, the operation tensoring Id P gives rise to isomorphisms Hom(N ⊗ P * , L) ∼ -→ Hom(N, L ⊗ P ), (3.3.6) Hom(L, N ⊗ P * ) ∼ -→ Hom(L ⊗ P, N ), (3.3.7) as well as the obvious End(N ⊗ P * ) ∼ → End(N ), after these of which being treated as identifications ι becomes mere insertion of the array (3.3.4) into the external four corners of (3.3.5). Therefore, verification of an identity ρ -(λ(γ)) = ι( ∧ 2 γ) consists of the following at most three steps: describe ∧ 2 γ as the matrix of type (3.3.4); similarly for ρ -(λ(γ)) of type (3.3.5); and chase entries along the isomorphisms (3.
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 435 The "hat" isomorphisms. Provisionally we let N , P be arbitrary. As has already appeared in in(3.3.8), there exists a bilinear composition coupling B ∈ N ⊗ P * ∼ = Hom(P, N ) and u ∈ V + = Hom(P * , N ) to the following tensor which is apparently an alternating map:[B, u] := Bu * -uB * ∈ ∧ 2 N ⊂ Hom(N * , N ). (3.4.1) This amounts to [B, n ⊗ p] = B(p) ∧ n, because (Bu * -uB * )(f ) equals ⟨n, f ⟩B(p) -⟨B(p), f ⟩n = -f (B(p) ∧ n) for u = n ⊗ p and f ∈ N * .Furthermore, we have linear mapsu → û : V + = Hom(P * , N ) -→ Hom(N, ∧ 2 (N ) ⊗ P ) û(x) := (x ∧ n) ⊗ p for u = n ⊗ p, (3.4.2) v → v : V -= Hom(P, N * ) -→ Hom( ∧ 2 (N ) ⊗ P, N ) v(a ⊗ p) := v(p) a, (3.4.3) both identified naturally with tensorizations r ⊗ Id P , d ⊗ Id P * , where r denotes the map N → Hom(N, ∧ 2 (N )) constructing right-wedge products, namely r(n)(x) := x ∧ n, and d the map N * → Hom( ∧ 2 (N ), N ) constructing leftinterior products. In particular, both (3.4.2) and (3.4.3) are isomorphisms if N is of rank two. If P is invertible, on the other hand, we claim that (3.4.1) relates to (3.4.2) under the following relation (where ω ∈ P is arbitrary): [B, u] ⊗ ω = û(B(ω)). (3.4.4) Indeed, supposing u = n ⊗ p harmlessly yields [B, u] ⊗ ω = (B(p) ∧ n) ⊗ ω by the remark after (3.4.1), while û(B(ω)) = (B(ω) ∧ n) ⊗ p by (3.4.2); thus, the assertion is a consequence of the fact that every bilinear map defined on an invertible module is symmetric. The relation (3.4.4) may be read as an identity (B → Bu * -uB * ) = û, for which the isomorphism (3.3.6) makes sense; furthermore, so does the isomorphism (3.3.7) for (a → -av) = v, since (3.4.3) reads -a (v(ω)) = v(a ⊗ ω). Verification of (3.3.1), (3.3.2). Returning to the situation of Proposition 3.3, we shall complete the proof. By the remark made above, it suffices to prove By linearity we may suppose again u = n ⊗ p, so that λ 1 + (u) = (n, 0) ∧ (0, p), which acted upon M = N ⊕ P by the wedge product annihilates P and sends (x, 0) (where x ∈ N ) to the element of ∧ 3 M ∼ = L ⊗ P identified with (x ∧ n) ⊗ p = û(x), see (3.4.2); since Y + (λ 1 + (u)) = Id + l (n,0)∧(0,p) , this proves the first formula. As to the second, v may be supposed to be n * ⊗ p * ∈ N * ⊗ P * , in which case the interior product by λ 1 -(v) = (n * , 0) ∧ (0, p * ) converts an element a ⊗ ω ∈ ∧ 3 M ∼ = L ⊗ P to ⟨ω, p * ⟩n * a = v(ω) a = v(a ⊗ ω), see (3.4.3); since Y -(λ 1 -(v)) = Id + d (n * ,0)∧(0,p * ) , this completes our proof.
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 63337 The isomorphism κ. Since N is of rank two with L = ∧ 2 N , we have an isomorphism θ :N * ⊗ L ∼ -→ N θ(f ⊗ a) := -f a (3.6.1)given by the interior product, in which the sign minus is employed so that the transposed inverse θ * -1 :N ⊗ L * → N * be the ordinary x ⊗ b → x b; the identification L * ∼ = ∧ 2 N * beingmade as in (1.1). The isomorphism θ, together with obvious isomorphisms P * ⊗ L ∼ and (L ⊗ P ) * ⊗ L ∼ → P * , gives rise to an isomorphism (∧ -M ) we shall use to regard the operation T → T * -1 as an isomorphism GL( ∧ -Q) ∼ → GL( ∧ -M ) of group schemes. On account of our faithful representations of rank three special Clifford groups, it is then natural to construct the isomorphism κ : SΓ(H(Q)) ∼ -→ SΓ(H(M )) κ(T, t) := (tT * -1 , t). (3.6.Proposition. One has λ(γ) = κ( ∧ γ) for any point γ of GL(Q).

  our a 1 , u 1 ; thus, on account of (1.6.2), we get the desired relation δ M

  N ⊕ P * ) ⊗ P with ∧ + M , see (3.1.1), and it is easy to work out a direct verification for the fact (2.8) that ζ is equivariant relative to the group isomorphism (3.1.2). ) × G mk by the morphism with components (ρ -, µ), as the closed subgroup scheme of those points (S, t) such that det S = t 2 [8, Theorem 1.5]. We know µ • λ = det, so ρ -• λ remains to be made explicit which should be something quadratic. Let us consider the closed embedding

	3.2. An embedding ι. Suppose N to be of rank two and P invertible, so
	that M is of rank three. In this case, SΓ(H(M )) is faithfully represented in GL( ∧ -M ι : GL( ∧ 2 Q) -→ GL( ∧ -M ) (3.2.1)
	constructed in the following way: identify	∧ 2 Q with (	∧ 2 N ) ⊕ (N ⊗ P * ), to
	which tensoring P yields an isomorphism
	(∧ 2 Q )	⊗ P	∼ -→ (L ⊗ P ) ⊕ N (where L :=	∧ 2 N );	(3.2.2)
	its target, say R, occupies partial factors of natural way a closed subgroup of GL( ∧ -M ); thus, (3.2.2) acted by GL takes (∧ 3 M ) ⊕ M , so that GL(R) is in
	the wanted form (3.2.1). We notice by passing that only the invertibility of P
	has been used so far.			
	3.3. Proposition. If N is of rank two and P invertible, then ρ -• λ factors through ι by the natural homomorphism ∧ 2 : GL(Q) → GL( ∧ 2 Q) of taking
	second exterior powers. This, ρ -• λ = ι • ∧ 2 , matches with the earlier anticipation. To the proof
	harmless restriction to k-points of Ω applies again, which combined with The-
	orem 2.4 reduces the problem to verifying
			ρ -	(	Y + (λ 1 + (u))

  3.6), (3.3.7), if necessary. The first step is carried out under the identification ∧ 2 Q ⊂ Hom(Q

* , Q), describing the components a ∈ L, B ∈ N ⊗ P * ∼ = Hom(P, N ) of an arbitrary element p ∈ ∧ 2 Q in the form of two-by-two alternating matrix with entries a, B, -B * , 0, on which the action of ∧ 2 γ is p → γpγ * [5, (1.4.6)]; on account of (2.1.3), (2.1.4), we get ∧

Proof. From φ ± = φ • ι ± follows φ ± • exp = Exp • ι ± , where Exp denotes the map Section 2]. This, combined with (2.5.4), proves φ σ (exp(λ 1 σ (w))) = Exp(j( w)) (for w in V σ , σ = ±), with the second member being ∧ (1 + w) by [7, 2.2.1]; in view of (2.5.1), we are done. 

for each ν; thus, tensoring L (from the right) to ∧ d Q and ∧ ν N (from the left) to (2.7.1), after which the target (

2), we obtain a linear map

which is by construction an isomorphism onto a direct factor. Furthermore, on the source (

acts by the d-th exterior power of the standard representation tensored with Id L , while on the target acts SΓ(H(M )) by the even spin representation.

Theorem. ζ is equivariant relative to the group homomorphism λ.

Proof. This amounts to saying that one has

for all points (γ, Z, ω) of the k-scheme

harmless to be supposed k-points in the proof. Furthermore, since the problem is homomorphic in γ and linear in Z, we may suppose γ to be of those forms

as in the succeeding explanation of (2.5.1) or in (2.1.4), and Z to be

whence, by (2.7.1), previous symbols like z ⊕ 0, (z, 0), etc., are to be abused also for exterior tensors over Q, M , etc.