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Warming and drought pose a serious threat to tropical forest. Yet the extent of this threat is uncertain, given
the lack of methods to evaluate the forest tree cover changes under future climate predicted by complex
dynamic vegetation models. Here we develop an empirical approach based on the observed climate space of
tropical trees to estimate the maximum potential tropical tree cover (MPTC) in equilibrium with a given
climate. We show that compared to present-day (2000–2009) conditions, MPTC will be reduced by 1 to 15%
in the tropical band under equilibrium future (2090–2099) climate conditions predicted by 19 IPCC climate
models. Tropical forests are found to regress or disappear mainly in the current transition zones between
forest and savanna ecosystems. This climate pressure on tropical forests, added to human-caused land use
pressure, poses a grand challenge to the sustainability of the world’s largest biomass carbon pool.

T
ropical forest is threatened by global climate changes1,2 (but see ref. 3) as well as by land use changes induced
by increasing food, energy, and development demand2,4,5. Simulations from Dynamic Global Vegetation
Models (DGVMs) run with prescribed climate fields, or coupled with General Climate Models (GCMs)

consistently indicate that tropical forest, especially the Amazon forest, is likely to be replaced by savanna or C4
grasses in response to projected climate changes6,7. However, the strength of the climate induced ‘tropical forest
dieback’ greatly differs among different model simulations7–9. This spread of the model results reflects different
vegetation – climate relationships emerging from the complex equations of DGVM models. Improving the
prediction of future climate-induced loss of tropical forest requires a more quantitative understanding of inter-
actions between vegetation and climate6.

In this paper, we quantify the climate envelope of tropical forest by relating tree cover fraction with the
observed evapotranspiration (ET). Evapotranspiration through tree crown is one major component of the
tropical water balance10. In a given climate envelop, by assuming the rate of evapotranspiration through unit
area of treeless ground as constant b, and that through unit area of tree crown as constant (a 1 b), we are able to
relate ET and satellite derived tree coverage (TC) with a linear function: ET 5 a 3 TC 1 b (1), and to estimate the
parameters (a 1 b) and b which determine the ET demand for a unit tree crown. Note that here our climate
envelops are constrained by annual mean air temperature (T) and annual precipitation (P). Radiation (R), which
is one of the important factors affecting ET, is not directly included in the climate envelop (see Discussion).
Secondly, on decadal scales when runoff and other water storage terms and loss terms can be neglected, in the
maximum scenario all water acquired from precipitation (P) can be used for potential tree growth. The climate
maximum potential tree coverage (MPTC) it can support is thus determined by P and parameters (a 1 b) and b
estimated from Equation (1) (see Methods). This is called potential fraction, because other non-climate factors or
indirect climate factors, such as terrain slope, soil fertility, herbivores, disturbance, may further reduce or enhance
tree cover11, and because human-caused deforestation and degradation will also yield to future forest loss beyond
climate effects.

The same parameters of (a 1 b) and b are also applied to predict future potential MPTC in equilibrium with
IPCC climate modeled by the end of the 21st Century (2090–2099)12. In addition, atmospheric carbon dioxide
(CO2) concentration is also projected to rise by the end of this century, which has a profound implication for plant
transpiration through decreasing stomatal conductance and increasing water use efficiency. Hence, to estimate

SUBJECT AREAS:
BIOGEOCHEMISTRY

ECOLOGICAL MODELLING

CLIMATE-CHANGE ECOLOGY

BIOGEOGRAPHY

Received
31 December 2012

Accepted
3 May 2013

Published
6 June 2013

Correspondence and
requests for materials

should be addressed to
S.L.P. (slpiao@pku.edu.
cn) or A.P.C. (anpingc@

princeton.edu)

SCIENTIFIC REPORTS | 3 : 1951 | DOI: 10.1038/srep01951 1



the future potential MPTC under rising CO2, we introduced to
Equation (1) a term of change in stomatal conductance by CO2

changes, d (see Methods). The results are also compared with the
tree cover fraction simulated by four DGVM ecosystem models (i.e.,
HYL, LPJ, ORC and TRI)8. By using MPTC instead of satellite
observed actual tree cover (TC), our aim is to estimate potential
MPTC changes that would solely incur from climate limitations,
not to project future tree cover, the latter being controlled by natural
and anthropogenic factors. We consider instant equilibrium of
vegetation response to climate conditions, independent of the path-
way and time required for vegetation to reach equilibrium under
altered climates13.

Results
Under the condition that trees do not exist where annual rainfall is
inferior to evapotranspiration, we estimated the equilibrium MPTC
in a (T, P) space discretized in 0.1uC temperature and 10 mm pre-
cipitation bins, using gridded fields of T, P and evapotranspiration
from satellite observations (see Methods). In 92% of the (T, P) cou-
ples, the potential equilibrium MPTC (Fig. 1a) is found to be larger
than the actual tree cover fraction observed from space (MODIS tree
cover data product; Fig. 1b). This is because factors other than the
local water balance reduce the actual tree cover to lower than the
potential value14,15. Oppositely, in a few of the (T, P) climate couples,
the actual tree cover exceeds MPTC, which can be caused by, for
instance, excessive water from aquifers or from runoff.

Linear regression analyses suggest a significant dependence of
both MPTC and TC on P and T (R2 5 0.75, and R2 5 0.72, respect-
ively, Supplementary Table S1). Before it reaches 100% in wet forest
areas, MPTC decreases with increasing temperature, and with
decreasing precipitation. The sensitivity of MPTC to temperature
or precipitation spatial gradients also depends on the other climate
variable (Fig. 2). When annual precipitation is below about
1500 mm, the negative sensitivity of MPTC to rising temperature
increases with precipitation. On the other hand, the temperature
sensitivity of MPTC quickly goes down to zero in regions where
precipitation lies in the range 1500–2000 mm yr21, and stays at zero
where precipitation reaches above 2000 mm yr21. This is because
MPTC saturates to 100% when precipitation is abundant (Figs. 1
and 2). Similarly, the sensitivity of MPTC to spatial precipitation
gradients decreases with rising temperature in regions where T .
15uC (Fig. 2b). Fig. 2c shows that the amount of precipitation needed

to maintain the same MPTC across a 1uC temperature spatial gra-
dient is roughly of ,60 mm and decreases slightly at higher temper-
ature or precipitation.

The spatial distribution of MPTC based on empirical regression
with T, P predictors, under present-day (2000–2009) climate condi-
tions (see Methods; Fig. 3a) is similar to the tree cover fraction
(Fig. 3c) simulated by four DGVM ecosystem models8. The
DGVM model results also consistently show higher tree cover than
the MODIS satellite observed actual tree cover (Fig. 3b), especially in
regions currently dominated by C4 grassland and savanna, like in the
southeast of South America, around the Congo basin rainforest and
Madagascar. In those regions, the overestimation of MPTC can be
related to the effects of tree-grass competition, nutrients limitations,
fire disturbance that suppresses trees, herbivories, and human caused
deforestation11,15. In the rainforest regions, the discrepancy between
potential MPTC and satellite observed actual tree cover fraction is
smaller (on average 22% in the rainforest area vs. 34% in the savanna
area) (Fig. 3d). Overall, the MODIS observed tree cover is on average
51% only of the potential MPTC (R 5 0.78, p , 0.001).

For MPTC under the future (2090–2100) climate and CO2 scen-
arios, we used the output of 19 GCMs from the IPCC 4th Assessment
Report under the SRES A2 radiative forcing scenario (2090–2100)16.
The MPTC distribution was found likely to be reduced in most
tropical areas under the modeled equilibrium climate conditions of
the end of 21st century (2090–2099) (Fig. 4). Figure 4 shows the
projected changes in MPTC, relative to present-day values for dif-
ferent scenarios of climate change in possibility quantiles, including
100% (maximum scenario), 75%, 50% (median scenario), 25%, and
0% (minimum scenario). In South America and Africa, the projected
future distribution of MPTC varies between different GCM models
(Supplementary Fig. S4 and Fig. 4). In Southeast Asia and Australia,
MPTC diagnosed from different GCM models exhibits a small
spread. Little change of future MPTC is found in Southeast Asia
and in Australia. However, there are large uncertainties for the
MPTC predictions in South America and Africa, especially in
Amazon and central Africa (Fig. 4). In the maximum scenario,
MPTC from the ensemble of 19 GCMs indicates that the tropical
rainforest in South America and Africa will remain unchanged or
even expand (Fig. 4a); while in the minimum scenario, MPTC in the
eastern of Amazonia rainforest and Congo rainforest will shrink
dramatically (Fig. 4e). Considering all models as indepentent and
equally probable, the fraction of climate models that indicate a

Figure 1 | Tropical tree cover fraction in the climate space. (a), The maximum potential tree cover fraction (MPTC). In each climate bin with 0.1uC
interval of mean annual temperature and 10 mm interval of annual precipitation, MPTC is estimated by fitting Eq. (1) and Eq. (2) and only shown when

the fitting is significant (p , 0.05). (b), The MODIS-derived actual tree cover fraction averaged over 2000–2010. Note that the maximum of the MODIS

tree cover fraction across the whole tropics is 87% only. The focal area is the tropical vegetation belt between 35uS and 15uN.

www.nature.com/scientificreports
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certain MPTC result can be regarded as a crude metric of the prob-
ability for this result12. Using this metrics, we infer a high probability
(75%, Supplementary Table S2) that the area of the Congo rainforest
will be reduced by at least 0.7%, and a medium probability (50%) that
the eastern of Amazonia rainforest (extend from 60uW to 48uW)
may shrink by at least 5.2% in the end of the 21st century, given
climate change. The predicted rainforest dieback in eastern
Amazonia is in consistence with the result from Malhi et al.12 using
an empirical preciptation-based boundary reconstruction method,
which evaluted the rainfall regime of tropical forest with the
19 GCMs and observed rainfall regime.

The potential tree cover fractions for the four DGVMs under SRES
A2 climate vary between models and differ from the empirical MPTC
diagnostic using the same GCM of HadCM3 (Supplementary Table
S3 and Fig. S5)8. With HYL, LPJ and ORC models, the future tree
cover in most area of South America and Africa is projected to
expand compared to the empirical diagnostic. In TRI, the distri-
bution of future tree cover is similar to that of MPTC under
HadCM3 GCM (Supplementary Fig. S5), in which the Congo rain-
forest will remain mostly unchange, but the Amazonia rainforest will
shrink and even disappear, especially in the central Amazon. This
overestimated decrease in tree cover from our study compared to
DGVMs may be due to the fact that here we only consider the effect
of climate alone on vegetation – climate equilibrium; while DGVMs
are dynamic models which are not necessary in equilibrium. It has
been suggested that the Amazon forest die-back can continue for
decades after climate stabilization13.

Discussion
The results of this study suggest that both mean annual precipitation
and average surface air temperature are important determinants of
tropical tree cover distribution. Recent work focused on precipitation
as determinants of tropical vegetation distribution11,12,14,17 but
ignored temperature because of its homogeneity across the tropics.
However, since the temperature in the tropics is also projected to
increase steadily and could move away from optimum for tree
growth during this century1,3, its role as a determinant of tropical
vegetation distribution cannot be ignored in evaluating future
vegetation shift induced by climate changes, which is evidenced by
our sensitivity analysis of potential tree cover to climate factors.
Temperature regulates tropical tree cover mainly through its control
on plant transpiration. It is found that along the temperature gra-
dient, the plant transpiration parameter (a 1 b) varies remarkably,
while the evaporation parameter b remains roughly constant
(Supplementary Fig. S8).

Despite of the high probability of decreasing tree cover fraction
across most area of the tropics including the eastern of Amazonia and
Congo rainforest under equilibrium future climate conditions, our
empirical MPTC results may still underestimate the extent of tropical
forest dieback in response to climate change, especially in the forest –
savannah transition areas. In our static empirical model, the equilib-
rium response of tree cover to temperature and precipitation is
linear. However, it may not be the case over the forest – savannah
transition areas where tree – grass competition, fire and herbivory
disturbances could bring rapid and nonlinear vegetation shift from

Figure 2 | Response of tropical maximum potential tree cover fractions (MPTC) to climate variables. (a), sensitivity of MPTC to mean annual

temperature (black) and range of mean annual temperature (blue) along the precipitation gradient. (b), sensitivity of MPTC to annual precipitation

(black) and range of annual precipitation (blue) along the temperature gradient. (c), amount of extra precipitation needed to maintain the same MPTC

under 1uC warming in the climate space. Pixels are grouped into climate bins with 0.1uC interval of mean annual temperature and 10 mm interval of

annual precipitation. Solid dots represent significant (p , 0.05) sensitivities while hollow cycles are insignificant ones. The range and the significance

together ensure if the calculated sensitivity is meaningful.

www.nature.com/scientificreports
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Figure 3 | Spatial distribution of multi-year average tree cover fraction during the early 21st century (2000–2009) across the tropics (356S–156N).
(a), The maximum potential tree cover fraction (MPTC) estimated using present-day climate conditions from CRU datasets. (b), The tree cover fraction

derived from MODIS satellite measurements. (c), The multi-model mean tree cover fraction averaged over four DGVMs (i.e., HYL, LPJ, ORC and TRI)

under SRES A2. (d), The difference between MPTC and MODIS-derived tree cover fraction across the tropics. Maps were generated using Matlab

(http://www.mathworks.co.uk/products/matlab/).

Figure 4 | The projected changes in maximum potential tree cover fraction (MPTC) across the tropics over the 21st century under SRES A2. Across the

19 GCMs used in this estimation, projected changes in MPTC between the end of 21st century (2090–2099) and present (2000–2009) are shown for

different scenarios in possibility quantiles, including (a), 100% (maximum); (b), 75%; (c), 50% (median); (d), 25%, and (e), 0% (minimum). Maps were

generated using Matlab (http://www.mathworks.co.uk/products/matlab/).

www.nature.com/scientificreports
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forested land to savannah in response to increasing temperature or
decreasing precipitation18,19. Climate defined MPTC is 1.61 times of
that of satellite observed tree cover fraction in those transition areas
where tree cover is about 0.50 ,0.60; while it is only 1.29 times of
observed tree cover fraction in forested lands. Higher level of land
conversion in the forest – savannah transition areas with more
human dwelling than in forested lands may also contribute to its
higher reduction in tree cover from the climate maximum values.

Our findings highlight the important role of temperature, precip-
itation, as well as atmospheric CO2 in determining tropical tree
coverage. Yet our results should be viewed as the outcome of a par-
ticular set of assumptions, rather than an assertion on the future
change in tropical tree cover. Because our empirical approach only
considers the effects of precipitation, temperature and atmospheric
CO2 concentration, the results are subjected to a certain degree of
uncertainty. For example, tropical vegetation distribution is also sig-
nificantly associated with the temporal (seasonal, interannual) dis-
tribution of rainfall17. Disturbance regimes such as fire, grazing and
human intervention also play important roles on the potential tree
cover11,18. Moreover, it has been well documented that net radiation
affects both transpiration rate and evaporation rate20,21. Yet because
of the lack of high spatial resolution dataset of radiation, particularly
the unknown change in future radiation, we could not include net
radiation in quantifying the future changes in MPTC. By defining the
ET-TC relationship only in a (T, P) space, we have assumed that the
future changes in temperature and radiation can be synchronized.
Yet the future warming may not be accompanied with increased
radiation. Thus, it is likely that the warming induced future ET
demand for a unit area of tree crown may be overestimated, which
consequently results in the underestimated MPTC. The range of this
uncertainty, however, is difficult to assess, since the change in future
radiation, especially the short wave radiation, as well as the relative
dependency of ET upon radiation after accounting for that upon
temperature, is unknown. In addition, in a region where water lost
through runoff is sizable, assuming zero runoff overestimates the
potential tree cover. In fact, runoff can also be described as a function
of TC in a given climate envelope as vegetation system can reduce
water loss from runoff22–24. However, the lack of high resolution (i.e.
1 km) data of global runoff prevents us from exploring on the rela-
tionship between runoff and TC. Further experiments and analyses,
in particular those based on high spatial resolution runoff and net
radiation datasets, are needed to explore the determinant factors of
tree cover and their mechanisms.

Methods
Datasets. We focused on the tropical vegetation between 35uS and 15uN, including
Africa, Australia, South Asia and South America18, which were gridded at the scale of
1 km2. The grids were grouped into climatic bins with resolutions of 10 mm of P
(ranging from 0 to 5010 mm) and 0.1uC of T (ranging from 11 to 31uC). Data used in
this study include satellite observed tree cover fraction (TC), mean annual
evapotranspiration (ET), mean annual precipitation (P) and average surface air
temperature (T) at the resolution of 1 km2. Satellite observed tree cover fraction was
computed from 0.25 km resolution MOD44B Collection 005 production from 2000
to 2010, deriving from Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite measurement of canopy reflectance25. Multiyear mean annual
evapotranspiration from 2000 to 2010 were extracted from MOD16 production
(MOD16 ET) at 1 km resolution, which is computed globally every day using MODIS
land cover, FPAR/LAI data and global surface meteorology from the Global Modeling
and Assimilation Office (GMAO)21. Both multiyear mean annual precipitation and
average surface air temperature were obtained from WorldClim at 1 km resolution
based on meteorological station data from 1950–200026. Observed multiyear mean
values of P and T for the early 21st century (2000–2009) were obtained from the
Climate Research Unit (CRU) TS3.1 datasets at the resolution of 0.5u 3 0.5u27.

The late 21st century (2090–2099) climate is the sum of current climate and current
climate multiplied by the relative climate changes12, which is estimated using all the 19
Global Climate Models (GCM) in the Intergovernmental Panel on Climate Change
(IPCC) AR4 under the medium-high range Special Report on Emissions Scenarios
(SRES) A216 (https://esg.llnl.gov:8443/index.jsp). The four DGVMs8 used in this
study are the HyLand model (HYL), the Lund-Potsdam-Jena model (LPJ),
ORCHIDEE model (ORC) and TRIFFIED model (TRI). We don’t include Sheffied
model since vegetation in this model is fixed8. All of these models were coupled to a

GCM analogue model and a simple ocean carbon cycle model IMOGEN, Integrated
Model Of Global Effects of climatic aNomalies, calibrated against the climate change
simulated by HadCM3LC under four SRES8.

Analyses. The estimation of MPTC is based on the following assumptions. Firstly, we
only consider evapotranspiration conducted through tree crown which is thus
proportional to tree cover fraction28,29, (e.g. Supplementary Fig. S1)

ET~F(TC j (P,T))~a:TCzb j (P,T) ð1Þ

where ET is mean annual evapotranspiration, TC is average tree cover fraction, P is
mean annual precipitation and T is average surface air temperature. Note parameter a
should be positive and regressions with negative a are not included in the following
analyses (see Supplementary Fig. S2).

We fitted Equation (1) for each climatic bin of specific P and T with the satellite
observed TC and climate data when its sampling size is larger than 100. When runoff
is neglected, under the maximum potential, evapotranspiration through tree crown
would balance the precipitation it receives. Hence, the climate defined maximum
potential tree cover fraction (MPTC) is the tree cover fraction that makes ET equal
to P,

MPTC~

P{b
a |100%,if 0ƒ

P{b
a ƒ1

0%,if P{b
a v0

100%,if P{b
a w1

8><
>:

ð2Þ

where a and b are least-squares fitted parameters derived from Equation (1).
Here MPTC are estimated for each climatic bin of specific P and T. It is treeless

when MPTC is 0, and fully forested when MPTC is 100%. The states of treeless or fully
forested are not sensitive to small changes in climate variables as shown in Fig. 2.

On the other hand, the shifts of vegetation in response to the climate change may be
partly mitigated by the rising atmospheric CO2 concentration, which is predicted to
rise to 730–1020 ppm by 2100 under SRES A29. Under higher CO2 pressure, leaf
stomata open less to reduce water loss while uptaking the same amount of CO2, which
results in enhanced water use efficiency2,12. Thus, without considering possible
changes on surface energy balance, the future ET under rising atmospheric CO2 can
be expressed as a function of changes in stomatal conductance23:

ET DCO2ð Þ~a| 1{d|DCO2ð Þ|TCzb j P,Tð Þ ð3Þ

where ET(DCO2) is the ET value when atmospheric CO2 concentration increased by
DCO2, TC is tree cover, d is the relative change in stomatal conductance caused by per
ppm increase in CO2, a and b are least-squares fitted parameters derived from
Equation (1). HereDCO2 by the end of 21st century and d over the tropics are assumed
as 500 ppm9 and 0.03% per ppm12,30,31, respectively. Thus the relative changes in
stomatal conductance caused by rising CO2 (d 3 DCO2) is 15%.

Below we denote the future MPTC under rising atmospheric CO2 as MPTC’, which
can be calculated as:

MPTC ’~

P{b
a| 1{d|DCO2ð Þ|100%, if 0ƒ

P{b
a| 1{d|DCO2ð Þƒ1

0%, if P{b
a| 1{d|DCO2ð Þv0

100%, if P{b
a| 1{d|DCO2ð Þw1

8>><
>>:

ð4Þ

where MPTC’ is the maximum potential tropical tree cover under increased atmo-
spheric CO2 concentration, a and b are least-squares fitted parameters derived from
Equation (1).

Finally, we fit linear regression models of MPTC and MPTC’ as a function of P, T,
and their product, with the least-square estimation method, when MPTC or MPTC’
falls between 0 and 100% (see Supplementary Fig. S3),

Y~ K1:PzK2:TzK3:P:TzK4ð Þ|100% ð5Þ

where Y is MPTC or MPTC’, P is mean annual precipitation and T is average surface
air temperature, K1, K2, K3, K4 are constants.
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