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The Internet of Audio Things:
state-of-the-art, vision, and challenges

Luca Turchet, György Fazekas, Mathieu Lagrange, Hossein S. Ghadikolaei, and Carlo Fischione, Senior
Member, IEEE,

Abstract—The Internet of Audio Things (IoAuT) is an emerg-
ing research field positioned at the intersection of the Internet
of Things, sound and music computing, artificial intelligence,
and human-computer interaction. The IoAuT refers to the
networks of computing devices embedded in physical objects
(Audio Things) dedicated to the production, reception, analysis
and understanding of audio in distributed environments. Audio
Things, such as nodes of wireless acoustic sensor networks,
are connected by an infrastructure that enables multidirectional
communication, both locally and remotely. In this paper, we
first review the state of the art of this field, then we present a
vision for the IoAuT and its motivations. In the proposed vision,
the IoAuT enables the connection of digital and physical do-
mains by means of appropriate information and communication
technologies, fostering novel applications and services based on
auditory information. The ecosystems associated with the IoAuT
include interoperable devices and services that connect humans
and machines to support human-human and human-machines
interactions. We discuss challenges and implications of this field,
which lead to future research directions on the topics of privacy,
security, design of Audio Things, and methods for the analysis
and representation of audio-related information.

Index Terms—Internet of Audio Things, Internet of Sounds,
Auditory Scenes Analysis, Ecoacoustics, Smart City.

I. INTRODUCTION

THE paradigm of the Internet of Things (IoT) refers to the
augmentation and interconnection of everyday physical

objects using information and communication technologies
[1], [2], [3]. Recent years have witnessed an upsurge in
IoT applications intersecting the areas of Sound and Music
Computing and Semantic Audio (see, e.g., [4], [5], [6]).
However, to date, the application of IoT technologies in audio
contexts has received remarkably little attention compared to
other domains such as consumer electronics, healthcare, and
geospatial analysis.

This paper aims at creating a homogeneous and unified
vision of the various efforts conducted in this domain, that we
coin as the Internet of Audio Things (IoAuT). On the one hand,
the creation of this vision strongly parallels similar efforts in

L. Turchet is with the Department of Information Engineering and Com-
puter Science, University of Trento, e-mail: luca.turchet@unitn.it

G. Fazekas is with the Center for Digital Music, Queen Mary University
of London.

M. Lagrange is with the French National Center for Scientific Research,
University of Nantes.

H. Ghadikolaei is with the Machine Learning and Optimization Lab, EPFL,
Lausanne, Switzerland.

C. Fischione is with the Department of Network and Systems Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden.

Manuscript received XXXX XX, 2019; revised XXXXX XX, 2020.

the emerging field of the Internet of Musical Things (IoMusT)
[7], where a number of devices for music production and
consumption are connected within ecosystems that multiply
possibilities for interactions between different stakeholders
(including performers, audience members and studio produc-
ers). On the other hand, this vision complements and extends
IoMusT outlining requirements, applications, challenges and
opportunities that go well beyond the domain of music. In
the specific context of this paper, we highlight the difference
between the terms “music”, “audio”, and “sound”. With “mu-
sic”, we exclusively refer to musical stimuli, with “audio” we
refer solely to the domain of non-musical auditory stimuli,
whereas with “sounds” we intend the union of both music and
audio. Consequently, we envision different IoT technologies
and methods that address each of them.

Firstly, we survey the existing technologies developed by
practitioners across fields related to the IoAuT as proposed in
this paper. Secondly, we present a vision for the IoAuT and its
motivations. We introduce the IoAuT as a novel paradigm in
which smart heterogeneous objects (so called Audio Things)
can interact and cooperate between each other and with other
smart objects connected to the Internet. The aim is to foster
and facilitate audio-based services and applications that are
globally available to users. Then, we reflect on the peculiarities
of the IoAuT field, highlighting its unique characteristics in
contrast to the IoT and IoMusT. Finally, we discuss implica-
tions and challenges posed by the vision as well as we consider
future directions.

Our focus is on technologies enabling the IoAuT as well
as on current IoAuT research activities, drawing attention to
the most significant challenges, contributions and solutions
proposed over the recent years. The result of our survey of the
field reveals that, at present, active research on IoAuT-related
themes is rather fragmented, typically focusing on individual
technologies or single application domains in isolation. Ad-
hoc solutions exist that are well-developed and substantial, but
their adoption remains low due to the issues of fragmentation
and weak interoperability between existing systems. Such a
fragmentation is potentially detrimental for the development
and successful adoption of IoAuT technologies, a recurring
issue within the more general IoT field [1], [2], [3]. As a con-
sequence, this paper not only seeks to bridge existing research
areas and communities and foster cross-collaborations, but also
aims to ensure that IoAuT-related challenges are tackled within
a shared, pluralist and system-level perspective.

We believe that the IoAuT has the potential to foster
new opportunities for the IoT industry, paving the way to
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new services and applications that are able to exploit the
interconnection of the digital and physical realms, especially in
the Smart Home [8] and Smart City context [9]. Nevertheless,
for IoAuT technologies to emerge and be adopted by end
users, a number of technical and human interaction-related
challenges need to be addressed. These include low-latency
communication infrastructures and protocols, embedded IoT
hardware specialized for audio, dedicated application pro-
gramming interfaces (APIs) and software relying on specific
ontological principles and semantic audio processes [10], [11],
as well as the design of novel devices dedicated to audio
analysis, production or consumption, employing appropriate
signal processing, machine learning, deep learning and artifi-
cial intelligence technologies. This paper aims to identify and
discuss the challenges arising in this novel vision of the IoAuT.

II. INTERNET OF AUDIO THINGS: CONCEPT AND VISION

The Internet of Audio Things is an emerging field positioned
at the intersection of Internet of Things [1], [2], [3], human-
computer interaction [12], [13], and artificial intelligence ap-
plied to audio contexts [14]. The IoAuT can be seen as a
specialization of the IoT, where one of the prime objectives
is to enable processing and transmission of audio data and
information. The IoAuT enables the integration and coop-
eration among heterogeneous devices with different sensing,
computational, and communication capabilities and resources.
We clarify that in the context of the IoAuT, sensing is not only
referred to audio signals via microphones, but also to other
sources providing quantities tracked by sensors, for instance,
measuring vibrations or pressure variations.

We define an Audio Thing as “a computing device capable
of sensing, acquiring, processing, actuating, and exchanging
data serving the purpose of communicating audio-related
information”. With “audio-related information” we refer to
“data sensed and processed by an Audio Thing, and/or ex-
changed with a human or with another Audio Thing”. We
define the IoAuT as “the ensemble of interfaces, protocols
and representations of audio-related information that enable
services and applications for the communication of audio-
related information in physical and/or digital realms”.

The IoAuT may be structured into ecosystems, just like the
general IoT domain [15], [16]. An IoAuT ecosystem forms
around commonly used IoAuT hardware and software plat-
forms as well as standards. From the technological perspective,
the core components of an IoAuT ecosystem are of three types:

(i) Audio Things. Audio Things are entities that can be used
to produce audio content or to analyze phenomena associated
with auditory events, and can be connected to a local and/or
remote network and act as sender and/or receiver. An Audio
Thing can be, for example, a node in a Wireless Acoustic
Sensor Network (WASN), a device responding to a user’s
gesture with auditory feedback, or any other networked device
utilized to control, generate or track responses to auditory
content (see the examples of audio things used in the systems
described Section III). We position Audio Things as a subclass
of Things, therefore they inherit characteristics of Things in the
IoT context, such as sensors, actuators, connectivity options,
and software to collect, analyze, receive and transmit data.

(ii) Connectivity. The IoAuT connectivity infrastructure
supports multi-directional wired and wireless communication
between Audio Things, both locally and remotely. The in-
terconnection of Audio Things over local networks and/or
the Internet is achieved by means of hardware and software
technologies, as well as standards and protocols governing the
communication.

(iii) Applications and services. Various types of applica-
tions and services can be built on top of the connectivity,
targeting different users according to the purpose of the Audio
Things (e.g., human agents monitoring events, patients, doc-
tors). Such applications and services may have an interactive
or a non-interactive nature. To establish interactive audio appli-
cations, real-time computations have a particular importance.
Analogously to the IoT field, the IoAuT can leverage Web
APIs and Web of Things architectures [17]. Services can be
exposed by Audio Things via Web APIs. Applications are part
of a higher layer in the Web of Audio Things architecture
letting users interact with content or Audio Things directly.

Figure 1 depicts the main components of an architecture
supporting IoAuT ecosystems. The data flow can be grouped
into i) streams from the Audio Thing, which include audio
streams and messages consisting of features extracted from
the audio signals captured by the audio thing’s microphones
or other sensors producing audio signal like measurement
streams; ii) audio streams arriving to the Audio Thing that
are rendered as sounds by means of loudspeakers, as well as
control messages governing the behavior of the Audio Thing.
An example of the first type of data flow is represented by
the data produced by nodes of WASNs (which typically have
limited or no capability of receiving feedback messages). An
example of the second type of data flow is the messages sent
by a remote doctor to the smart sonic shoes described in [5].

A. Relation to other fields

The IoAuT has strong connections with and could be
seen as a subfield of the Internet of Media Things (IoMT),
which is defined as a network of Things capable of sensing,
acquiring, actuating, or processing media or metadata [18].
This is currently under exploration by MPEG1. We consider
the IoAuT as a subfield of the IoMT (which in turn is a
subfield of the IoT) and we position it at the intersection
with the IoMusT (see Figure 2). The IoAuT differentiates
from the IoMT for its focus on audio applications, whereas
the IoMT also deals with other multimedia aspects, such as
video. Similarly to what the Web of Things2 represents for the
Internet of Things, we use the term “Web of Audio Things”
to refer to approaches taken to provide an Application Layer
that supports the creation of IoAuT applications.

In contrast to the IoT, the IoAuT may pose stringent
requirements and challenges related to the collection, analysis,
and communication of audio-related information. For instance,
a distributed array of microphones in a WASN might need to
be synchronized tightly with low latency communications to

1ISO/IEC 23093 (IoMT): https://mpeg.chiariglione.org/standards/
mpeg-iomt

2https://www.w3.org/WoT/
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Fig. 1. A schematic representation of an architecture supporting IoAuT ecosystems.

detect audio events in real time. Current IoT protocols and sys-
tems are insufficient to tackle this challenge. Along the same
lines, the IoAuT demands novel analytic tools specific to the
audio domain, which should be able to process large amounts
of audio-related data and extract meaningful information given
tight temporal constraints (e.g., for monitoring or surveillance
purposes) and pose specific challenges in the areas of real-time
signal processing and machine learning (see Section IV-C and
IV-F). In the same vein, current data models devised for the
representation of the IoT domain are not adequate to describe
the knowledge related to IoAuT ecosystems, which has the
potential to foster interoperability across heterogeneous Audio
Things.

IoAuT IoMusT

IoMT

IoT

Fig. 2. A schematic representation of the relation between the Internet of
Audio Things (IoAuT) and the fields of Internet of Things (IoT), Internet of
Multimedia Things (IoMT), and Internet of Musical Things (IoMusT).

It is important to highlight the distinctive features of the
IoAuT with respect to the IoMusT:

• The IoAuT does not have musical purposes, whereas
the focal points of the IoMusT are live music per-

formance, music pedagogy, studio productions and, in
general, interactions between specific stakeholders such
as performers, composers, audience members and studio
producers. The purposes of stakeholders in the IoMusT
are radically different from those of the stakeholders of
the IoAuT. Music is a creative activity, and creativity is
an aspect that is scarcely addressed in the IoAuT. As a
consequence, most of the implications and challenges of
the two fields are different (e.g., requirements of ultra-
low latency transmission of musical content to guarantee
credible interactions between performers). Nevertheless,
some applications lie at the intersection of the two fields
(see, e.g., [19] where a wearer of a sensor-equipped
garment could interact with an online repository of audio
content, in a musical performance context).

• The IoMusT is not a subfield of the IoAuT because,
according the vision reported in [7], the IoMusT is in-
herently multisensory, encompassing haptic feedback and
virtual reality as communication media that extend the
musical layer. Conversely, the IoAuT deals exclusively
with audio signal.

• The level of human involvement is generally different in
the two fields. Firstly, whereas almost all audio signals
within the IoMusT are generated or ultimately used
by humans, IoAuT applications can make use of audio
signals not related to human activities (e.g., monitoring
environmental sounds such as birds). Secondly, in the
IoMusT most of the times a human listener is involved
in the interactions of the technology with the sonic
content (e.g., the audience member enjoys the music of
performers remotely connected; the music student listens
to classes technologically-mediated by smart instruments;
the studio producer listens to the content retrieved from
cloud-based repositories). Conversely, in several IoAuT
applications (e.g., traffic monitoring, surveillance) the
listening aspect performed by humans can be absent for
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the technology to work, and a system may completely
rely on automatic processes.

• The IoAuT may encompass activities, processes, applica-
tions and services that are not present or are radically dif-
ferent in the IoMusT. For instance, sonification processes
are normally absent in the IoMusT (e.g., the sonification
[20] of human movements for rehabilitation purposes).
Conversely, creative aspects typical of the IoMusT con-
trast with objective measurements that characterize most
of IoAuT systems and applications. In addition, the con-
text around the IoMusT stakeholders is different from the
one that is around IoAuT stakeholders or the one used by
them (e.g., environmental sounds of a city), and context-
aware systems [21] may be radically diverse in the two
fields. This necessarily involves different ontologies to
represent the underlying knowledge as well as algorithms
for context-reasoning. Along the same lines, proactive
services based on such context-aware systems are also
diverse.

• The quality of service for IoMusT applications may rad-
ically differ from those in the IoAuT. In the IoAuT some
nodes and/or sensors may be inactive for long periods
of time, yet a system remainds operational, whereas in
the IoMusT it is essential that each node, sensor or
actuator is running perfectly during user interaction. Also,
in the IoAuT the network may be utilized for very long
periods of time (e.g., a WASN deployed in a smart city
may run uninterruptedly for several months or years),
whereas in the IoMusT it is typically utilized to ensure the
stakeholder interactions with the desired musical content
(e.g., remote performances may last a few hours).

• In the IoMusT, the audio signals need to be captured
and reproduced in high quality to ensure credible mu-
sical interactions between stakeholders. In the IoAuT
this stringent constraint may not hold true for some
systems and applications. For instance some nodes in
WASNs involved in surveillance applications embed low-
cost microphones and analog-to-digital converters, which
may have much lower sampling rates and resolutions.

• The typical application of artificial intelligence also dif-
fers between the two fields. In the context of IoMusT,
it is more common for AI technologies to be directly
embedded in a single Musical Thing or a relatively
restricted number of Musical Things, which have to
extract, process or transmit semantic metadata related
to a musical audio signal. In the envisioned IoAuT
context, it is typically expected that AI has to extract
and process information obtained several from spatially
distributed low-cost sensors, although single or multi-
sensor embedded applications are also possible.

Besides the IoMusT, the IoAuT differentiates from other
related technological areas present in the audio domain:

• Wireless acoustic sensor networks (WASNs): current
WASNs typically employ embedded systems and network
communication protocols not specifically conceived for
audio processing tasks [22], which are instead key in the
IoAuT. In addition, the IoAuT differentiates from today

WASNs paradigms for the extensive use of semantic
audio methods [11] able to extract structured meaningful
information from the captured audio signal.

• Sonification: the field of sonification [20] typically does
not focus on networked scenarios involving embedded
systems, where information to be sonified or resulting
from the sonification activity is communicated across
devices. In the IoAuT, applications may comprise the
extension of traditional sonification methods towards
networked scenarios, especially involving embedded sys-
tems.

• Semantic audio: the field of semantic audio [11] has
rarely found application in IoT contexts dealing with
audio signal, and this is particularly true for the non-
musical domain. Typically, it does not focus on em-
bedded systems, which are at the heart of the IoAuT.
In the IoAuT, semantic audio methods are useful for
advanced interoperability purposes across heterogeneous
Audio Things.

• Embedded audio: current embedded systems specific to
audio processing offer a little range of connectivity op-
tions and scarce hardware-software methods supporting
advanced machine learning algorithms. In the IoAuT
vision, the connectivity component of embedded systems
is crucial to devise advanced applications leveraging
edge computing techniques while seamless accounting for
privacy and security aspects.

Whereas the IoAuT stems from the technologies and
paradigms listed above, it differentiates from them for a
broader and holistic vision able not only to encompass all
of them in a unified domain, but also to extend them towards
novel avenues. In the next section these aspects are discussed
in relation to the state-of-the-art.

III. STATE-OF-THE-ART

This section reviews key studies on which our IoAuT vision
is based.

A. Wireless acoustic sensors networks

One of the most compelling and important extensions of the
IoT to the audio domain is represented by wireless acoustic
sensors networks (WASNs) [22], [23]. These are networks
of tiny and low-power autonomous nodes that are equipped
with microphone-based sensing, processing, and communicat-
ing facilities. Such nodes are based on “embedded audio”
platforms, i.e., embedded systems dedicated to digital audio
processing (see, e.g., the Bela board [24]), where a variety of
audio software runs on single board computers such as the
Raspberry Pi or the Beaglebone [25].

Network architectures can be considered depending on the
task at hand and the technical and ethical constraints that may
be encountered (see [26] for a thorough discussion). One of the
most typical application domain of WASNs is that of “acoustic
monitoring”, or “acoustic scene analysis” [27], [28], [29],
[14], [30], including urban noise pollution monitoring [31],
environment surveillance (see, e.g., [32]), anomalies detection
[33], and wildlife monitoring [34]. For the last case, the WASN
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paradigm leads to the emergence of a new disciple called
“ecoacoustics” [35] where scientists go beyond the single
animal call analysis to gather statistics computed over large
scale both in time and space [36], particularly relevant for
ecosystems health monitoring.

A prominent example of WASNs for acoustic monitoring
of urban areas is SONYC, a system that integrates sensors,
machine listening, and data analytics to monitor and analyze
urban noise pollution in New-York [6], [30], [37]. Another
kind of network implementations are also considered in var-
ious other places in the world. In Germany, the Stadtlaerm
project [38], [39] aims at triggering events from a given
taxonomy provided the input signal received by the sensors.
Events can be “traffic”, “shouting”, etc. In that case, the
complete processing chain is implemented on the sensor node,
namely recording, analysis and classification. The main benefit
of this type of architecture is that the data to be transmitted
from the sensors to the servers has very low bit rate and can be
directly interpreted by humans. Some drawbacks are present.
First, each processing step has to be energy efficient since it
is embedded in the sensor. For the same reasons, modifying
the processing chain, for example updating the taxonomy of
events, can be cumbersome as it requires a complete update
of the embedded software. The DYNAMAP project [40] study
the development of such network in two major cities in Italy.
In France, the CENSE project focuses on the deployment
of dense networks that transmit high-level spectral features
[4], [41] which are designed to 1) respect the privacy of the
citizen [26], and 2) permit a quality of the description of
the sound scene that goes well beyond the use of averaged
acoustic pressure level that is commonly considered for those
applications [42].

When considering WASN for urban areas monitoring, three
main components are of importance to gain knowledge from
the data gathered. Firstly, the microphones shall be well
calibrated and durable. Since most WASN are based on the
“many but low cost” paradigm, the microphones must be
relatively cheap. MEMS capsules, such as the ones used in
smartphones are a relevant choice, although their durability
for long time periods remains unknown [43].

Secondly, the sensors shall be reliable enough in order to
obtain regularly sampled data in time and space [44], [45],
[46]. Designing the topology of the network is also of crucial
importance and needs to balance many constraints that are
enforced by urban regulations [47]. Most WASNs are static,
meaning that the sensors are not moving but some alternatives
are considered, for example by taking into account buses
[48] and more importantly considering smartphones [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61],
[62]. The latter case is particularly tempting, as the sensors are
densely present in urban areas. However, the quality of the data
has to be questioned as in any crowdsourcing paradigm [63],
for instance, because the calibration of the microphone is of
great importance for noise mapping applications [64], [65],
[66], [67]. Along the same lines, unmanned aerial vehicles
(such as drones) also represent an opportunity for moving
acoustic sensing. Recent examples of use of these technologies
includes applications for search and rescue scenarios [68] and

for ecoacoustic monitoring [69]. It is plausible to hypothesize
that in the future drone-based networks will emerge, which
leverage the acoustic information for surveillance, environment
monitoring, and related applications.

Thirdly, the gathered data shall be filtered [70], mined and
displayed [71]. For this purpose, data management systems
need to be deployed [72], [73] and skillfully used. This final
step is non trivial and is currently researched extensively. It is
mandatory to select relevant data to motivate given actuations.
The challenge here is that the data analyst shall be able to mine
a large amount of data that is diverse in terms of content and
structured both in space and time [74].

Most large scale WASNs do not consider the acoustic
relations between the audio content captured at different nodes,
which for instance, can be exploited for source localization.
Nevertheless, for smaller scale WASNs, or for more advanced
nodes, source localization (single or multiple) can be per-
formed using various techniques and algorithms (see, e.g.,
[75], [76], [77], [78], [79], [80], [81]).

B. Sonification and the Internet of Things
A handful of works have explored the use of sonification

techniques in conjunction with the IoT. Sonification is es-
sentially a technique that consists of the transformation of
data into sounds [20]. Sonification is referred to as the use
of nonspeech audio to convey information. More specifically,
sonification is the transformation of data relations into per-
ceived relations in an acoustic signal for the purposes of
facilitating communication or interpretation [82].

A first example of this category of works is the one reported
in [83]. The authors sonified the electricity consumption of
various appliances in the home, which were enhanced with
a device able to monitor the amount of electricity used and
were equipped with wireless connectivity to a base unit. This
system aimed at enhancing users’ awareness of electricity
consumption for sustainability purposes.

A second example is represented by the work reported
in [84] within the context of the so-called “Industry 4.0”. The
authors developed a preliminary prototype of a sonification-
based system for acoustic monitoring of manufacturing pro-
cesses and production machines, using the approach of “au-
ditory augmented reality” [85]. The system uses an array of
microphones placed onto a production machine (such as a 3D
printer) and is able to detect normal states or anomalies of
the manufacturing process from the sound of the monitored
machine. The classification of these states is based on machine
learning algorithms running on a remote cloud, the result of
which is communicated as continuous auditory stimuli to a
worker operating near the machines, thanks to a wireless link
to connected headphones.

A third example is reported in [5], where a pair of smart
sonic shoes is connected to the Internet to explore novel
forms of sound-based motor therapies. This work is positioned
in the context of remote patient monitoring [86], and more
specifically is conceived for telerehabilitation of motor disabil-
ities [87]. As opposed to the previous two systems described
in this section, such a work uses the approach of interac-
tive sonification [88], which deals with the involvement of
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dynamic human interaction in the generation or exploration of
information transformed into sound. The described prototype
of smart sonic shoes is able to transform each footfall into a
sound simulating walking on various surface materials [89],
can collect data about the gait of the walker, as well as its
sound production can be controlled via a remote doctor (see
Figure 3). The purpose of these shoes is to guide and improve
walking actions in rehabilitation contexts due to the ability
of sound to modulate the gait of a person (see, e.g., [90],
[91], [92], [93]). The use of this portable device could enable
patients to perform sound-based rehabilitation exercises while
being comfortable in their homes. Patients and their families
could be provided with cost-effective tools to autonomously
monitor the progress of a therapy. Doctors could be enabled to
remotely monitor each patient and control the sonic feedback
at each exercise. This has the potential to prevent patients to
visit frequently the hospital by decreasing the cost for both
patients and hospitals.

C. Auditory augmentation of connected objects

Researchers have also focused on the sonic augmentation
of everyday objects by means of tangible devices equipped
with motion sensors, microphones, speakers and wireless con-
nectivity. A notable example in this category is StickEar [94],
a small device attachable to an object, which encompasses
wireless sensor network technology and enables sound based
interaction. The device was conceived to empower people
with the ability to deploy acoustic tags on any objects or
space, and be informed of acoustic cues that may be produced
by an object or a location. Applications of this device with
sound-based input/output capabilities include remote sound
monitoring, remote triggering of sound, autonomous response
to sound events, and controlling of digital devices using sound.

D. Acoustic data transmission

Recent years have witnessed the emergence of the tech-
nology of device-to-device acoustic data transmission, which
provides a means of proximity communication between co-
located devices as an alternative to more widespread and
common solutions such as electromagnetic communications.
In more detail, information to be transmitted is encoded into
inaudible ultrasonic sound waves that can be picked up by
conventional microphones (which enables the adoption of
this technology into portable solutions such as smartphones
running dedicated apps). The nature of the information can
range from text messages to images, and the technology
could be used for payments transfers, user authentication, and
smart city applications such as digital locks. At present, two
main companies are leading such technological developments,
Chirp3 [95] and Trillbit4. Various online documents refer
to this technology as an enabler for an Internet of Sounds,
envisioning it as a standard for IoT communications given the
scalability of the solution.

3https://chirp.io/
4https://www.trillbit.com/

E. Semantic Audio

Semantic Audio is an interdisciplinary field providing tech-
niques to extract structured meaningful information from au-
dio [11]. It typically goes beyond simple case-specific audio
analyses, for instance, the detection of a single type of event
in an audio stream, as well as more complex audio feature
extraction, classification or regression problems. It does so
by combining signal analysis to extract quantifiable acoustic
features from audio, machine learning techniques to map
acoustic features to perceptually, environmentally or musically
meaningful features, and structured representations that place
these features into possibly multi-relational or heterogeneous
hierarchies [10], [96] using for example Semantic Web ontolo-
gies [97].

Semantic Audio is a core concept in the IoAuT because it
provides the means for both analysing and understanding the
content of audio streams or recordings as well as communi-
cating this information between Audio Things. These devices
are typically situated in complex distributed environments,
consisting, for instance, of networks of standalone sensors,
embedded systems in mobile sensing and communication
devices, as well as data and control centers. This creates the
need for complex and versatile yet interoperable audio analysis
and representation techniques which is at the heart of Semantic
Audio.

There are relevant examples of systems relying on Semantic
Audio. For instance, the Audio Commons ecosystem [98]
provides a mechanism to combine generic audio and content
repositories within creative application scenarios [99], [100],
[101], [19], [102], [103] that include sounds collected from
the broader environment. A key concept in these systems
is the combination of the two primary aspects of semantic
audio: machine analysis and automatic tagging of content,
and its representation in an appropriate semantic hierarchy
for interoperability [10], [104]. Tagging comes with its own
challenges owing to noisy annotations in relevant labelled data
sets, lack of temporal accuracy in the annotations, i.e., often
only weakly labelled data is available, as well as the presence
of multiple sound sources in an audio stream or recording
[105], [106], [107].

Detection is followed by annotation within a semantic
hierarchy that supports efficient communication and interoper-
ability. This requires a shared conceptualization of low to high
level acoustic features, as well as meaningful labels across
different audio related domains. Several ontologies have been
proposed for these purposes, including those for audio features
[108], effects and transformations [109], mobile sensing in the
audio context [110], as well as ontologies that bind complex
workflows and signal routing in audio processing environments
[111] and ontologies that bind distributed content repositories
together [104].

F. Web-based digital audio applications

The Web Audio API is one of the most recent among the
technologies for audio applications on the web and its use
is becoming increasingly widespread [112]. It enables real-
time sound synthesis and processing on web browsers simply
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Fig. 3. A schematic representation of the local and remote interactions enabled by the system reported in [5].

by writing JavaScript code. It represents a promising basis
for the creation of distributed audio applications such as those
envisioned in the IoAuT. Differently from Java or Flash, which
are implemented in the form of browser plugins, the Web
Audio API is implemented by the browser itself. Moreover,
the Web Audio API is a World Wide Web Consortium (W3C)
proposed standard5.

Recently, Web Audio technologies have been employed in
embedded systems, thus bridging the realm of smart objects
with that of audio applications leveraging the web. An example
in this category is reported in [113]. The authors proposed a
preliminary system consisting of a network of nodes based
on the Raspberry Pi platform. Each node run a Web Audio
application that could exploit a number of libraries previously
built for mobile based applications (e.g., for synchronization
purposes [114]), with the purpose of implementing a dis-
tributed architecture for musical performances.

Along the same lines, Skach et al. proposed a system
that links web-based digital audio technologies and embedded
audio [19]. Their system consists of a sensor- and actuator-
equipped garment allowing for the interactive manipulation of
musical and non-musical sounds retrieved from online sound
repositories. Specifically, the authors developed a jacket-based
and trousers-based prototype for body-centric sonic perfor-
mance, which allows the wearer to manipulate sounds through
gestural interactions captured by textile wearable sensors.
The data tracked by such sensors control, in real-time, audio
synthesis algorithms working with content downloaded from
Audio Commons6, a web-based ecosystem for repurposing
crowd-sourced audio such as the Freesound.org7 repository
(see Figure 4). The prototype enables creative embodied
interactions by combining e-textiles with web-based digital
audio technologies.

To date, a number of promising projects have demonstrated
how audio-based applications can be bridged into the web
browser via the Web Audio API. A large amount of these
projects have focused on the musical domain (see, e.g., [115],
[116], [117]). A noticeable exception is represented by the FX-
ive project [118], an online real-time sound effects synthesis
platform. Various algorithms are used to synthesize everyday
sounds, ranging from models for contact between objects [119]

5https://www.w3.org/TR/webaudio/
6http://audiocommons.org
7http://freesound.org

Fig. 4. A schematic representation of the sensor- and actuator-equipped
garment presented in [19], which interacts with the audio content repository
Freesound.org

to models for footstep sounds [89]. FXive represents a service
targeting designers of sound effects, with the aim of replacing
the need for reliance on sound effect sample libraries in sound
design. Designers of sound effects rather than searching for
sound libraries and attempting to modify the retrieved sound
samples to fit a desired goal, can directly shape their sounds
by using the online service.

IV. CHALLENGES

The IoAuT inherits many challenges of the general field
of IoT (see, e.g., [120]). In addition to these, the practical
realization of the envisioned IoAuT poses specific techno-
logical and personal data-related challenges. The realization
of the IoAuT vision described in Section II occurs through
the evolution of the network and services’ infrastructure as
well as of the capabilities of Audio Things connecting to
them. We identify eight areas that currently hinder many
interesting IoAuT application scenarios: i) connectivity; ii)
interoperability and standardization; iii) machine analysis of
audio content; iv) data collection and representation of audio
content; v) edge computing; vi) synchronization; vii) privacy
and security; and viii) Audio Things design.
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A. Connectivity

Communication based on audio-related information may
pose stringent requirements and challenges, which is why
many of the general purpose protocols designed for the IoT
may not be appropriate or feasible for the IoAuT. Distributed
audio sensors may require low delay communications for real
time monitoring and processing [121]. This is the case of
event detection such as crashes and accidents, which could
be monitored by distributed microphones that could also
contribute to the control of traffic lights and car speed in
the neighboring of the event. Moreover, in addition to low
latency, the communication network may have to support high
data rates, such as when the signal to noise ratios are low
and signals will have to be quantized with high resolution in
order to extract the desired information. In this regard, the use
of mmWave wireless communications could be an enabling
technology for IoAuT, because they potentially enable ultra-
low latency and massive bandwidths at the physical layer of
the wireless communications [122]. Audio applications will
experience latency at all layers of the protocol stack. Hence,
many aspects of communication systems will need to be
reconsidered and customized for audio transmission purposes.

IoAuT applications will likely generate large data sets,
which we will have to analyze in real time. Reliable auto-
matic speech recognition can now be performed [123] even
in a noisy environment. To achieve such impressive results,
machine learning needs big data sets and very large com-
putational and communication resources, especially for the
training tasks [124]. However, in IoAuT applications, data sets
of any size will be distributed among several nodes (people,
devices, objects, or machines) that might not be able to timely
share data due to bandwidth or privacy constraints, or may
not have enough computational resources to run the machine
learning training tasks. Existing machine learning methods
and related algorithms are mostly intended for proprietary or
high performing networks (e.g., in data centres), and would
greatly stress public communication networks such as IoT
and 5-6G wireless networks [123], [125]. We expect that the
research community will have to address several fundamental
advancements within machine learning over networks, which
will likely use ideas from active learning and distributed
optimizations over networks.

One major issue to apply machine learning over commu-
nication networks for the IoAuT is the fundamental band-
width limitations of the channels. The huge number of nodes
and their data sets transmissions may congest the practically
available bandwidth. The emerging technology of extremely
low latency communications, will rely on short packets that
carry few bits [121]. The nodes generating audio data may
not have enough communication bandwidth to transmit data
to the place where it has to be analyzed, or simply not
enough computational power to perform local training and data
analysis. A further problem is that privacy and security are
key societal concerns. A malicious observer could reconstruct
a node’s (such as a person’s) private audio information, or
misuse the analysis of data belonging to others.

Finally, developing efficient communication protocols and

shared conceptualization of the information being distributed
are also important. For example, communication bandwidth
may be saved if IoAuT devices are able to communicate using
short and universally accepted identifiers to signal certain
conditions instead of complex (e.g., XML) data structures.
This will be discussed in the following sections in more detail.

Thus, we suggest that the design and deployment of alter-
native communication techniques and protocols together with
the audio machine learning tasks is necessary to target better
performances for the support of communication of audio-
related information over the IoAuT infrastructure.

B. Interoperability and standardization

What emerges from the survey of the literature presented
in Section III is a picture of the IoAuT as a field rather
fragmented, where various authors have focused on single
technologies or single application domains. Such a fragmen-
tation hinders the development and successful adoption of
the IoAuT technologies. Standardization activities represent
a central pillar for the IoAuT realization as the success of
the IoAuT depends strongly on them. Indeed, standardization
provides interoperability, compatibility, reliability, and effec-
tive operations on both local and global scales. However,
much of this work remains unrealized. Whereas various ad-
hoc solutions exist, their adoption is still low due to the issues
of fragmentation and weak interoperability. More standardized
formats, protocols and interfaces need to be built in the IoAuT
to provide more interoperable systems. This issue is also
common to the more general IoT field [126].

Within the IoAuT, different types of devices are used to
generate, detect, or analyze audio content, and need to be able
to dynamically discover and spontaneously interact with het-
erogeneous computing, physical resources, as well as digital
data. Their interconnection poses specific challenges, which
include the need for ad-hoc protocols and interchange formats
for auditory-related information that have to be common to the
different Audio Things, as well as the definition of common
APIs specifically designed for IoAuT applications. Semantic
technologies, such as semantic web [127] and knowledge
representation [128] can be envisioned as a viable solution
to enable interoperability across heterogeneous audio things.
However, to date, an ontology for the representation of the
knowledge related to IoAuT ecosystems does not exist.

A common operating system for Audio Things can be
considered as a starting point for achieving interoperability.
Recent technological advances in the field of music technology
have led to the creation of platforms for embedded audio that
are suitable for IoAuT applications. To date the most advanced
platform for embedded audio is arguably the Elk Audio OS
developed by Elk8. Elk Audio OS is an embedded operating
system based on Linux. It uses the Xenomai real-time kernel
extensions to achieve latencies below 1 milliseconds, which
makes it suitable for the most demanding of low-latency
audio tasks. It is highly optimized not only for low-latency
and high-performance audio processing, but also for handling
wireless connectivity to local and remote networks using the

8https://www.elk.audio
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most widespread communication protocols as well as ad hoc
ones. Recently, the operating system has integrated the support
for 5G connectivity. Elk Audio OS is platform independent,
supporting various kinds of Intel and ARM CPUs. Thanks
to these features, Elk has the potential to become a standard
for operating systems running on various kind of embedded
hardware for the nodes of the IoAuT.

C. Machine analysis of audio content

Traditionally described as acoustic pressure levels computed
over long time scales, audio is now considered in much
more detail in order to gather rich information of the sound
environment. While in this section the focus will be put on
urban areas monitoring, it is worth noticing that the growing
field of ecoacoustics has also many challenges and potential
applications [107].

The recent availability of large amounts of recordings have
fueled research on the use of machine learning methods to
gather high level information about the sound environment,
particularly in urban areas [25]. A scientific community
emerged in 2010 to address this topic and the first Detection
and Classification of Acoustic Scene and Events challenge was
launched in 2013 [129], sponsored by the IEEE Acoustics,
Speech, and Signal Processing Society. As the name of the
challenge states, two levels of information are considered. One
at the time scale of the event, where precise timing detection is
required and the other at a longer time scale, where an abstract
description of the audio has to be predicted. The typology of
the predicted events and scene types is task dependent.

The acoustic scene classification task was originally tackled
by considering probabilistic classification techniques based on
explicitly designed audio features [130]. Those approaches
have now been replaced by end-to-end deep learning methods
[131], that tend to perform better and better as the volume of
available training data increases.

Non-negative Matrix Factorization techniques are well
suited for the acoustic event detection task and methods based
on this techniques perform well [132]. With special care, deep
learning techniques also achieve state of the art results [133].
Due to the scarcity of training data for the acoustic event
detection task, considering data augmentation techniques often
mandatory [134].

New analytic tools are needed to make the most of the
IoAuT. Such tools should be able to process large amounts of
audio-related data and extract meaningful information given
tight temporal constraints. Deep learning [135] offers encour-
aging ways to obtain high level features that could capture the
nature of the event that generated the auditory content.

In this context, a substantial challenge is learning from noisy
[105], [136] and weakly labelled [137] data sets, which are
much more readily available. To this end, the development
of appropriate neural network architectures is ongoing work,
where the use of attention mechanisms [137], [138] provide a
promising direction.

In the envisioned IoAuT ecosystem an Audio Thing may
possess multiple spatially distributed sensors which poses an-
other challenge. While deep learning applied to audio provides

state of the art performance in many tasks and has become a
mature field of research, there is currently very little attention
to problems involving multiple audio sensors while multi-
sensor data processing and integration using deep learning is
in its infancy. This usually involves the use of case-specific
tricks or data fusion techniques [139], while the system may
also need to deal with imperfect time synchronisation in light
of the issues discussed in Section IV-F. There are network
architectures capable of comparing audio signals or processing
them in a sequence (see e.g. [140]) but real-time multi-sensor
processing remains a challenge.

D. Data collection and representation of audio content
Several common challenges exist across the different audio

analysis methodologies mentioned in Section IV-C. These
include the problem that machine learning based techniques
require large amounts of accurate training data that covers
most or all relevant use cases. This is a substantial problem
owing to both the expense and difficulty of collecting data, as
well as the difficulty of accurately annotating data.

For specific domains, such as an office environment, manual
data collection is feasible [14], [130]. This approach does
not necessarily scale however. The problem can be addressed
using crowd sourcing both content and annotation, as is
the cases of Freesound.org, which provides community cre-
ated datasets [141]. These are increasingly annotated within
semantic hierarchies [142] such as those provided by the
AudioSet Ontology [143]. However, an accurate taxonomy, let
alone more complex multi-hierarchical relationships between
sound events are difficult to represent and to agree upon
by multiple annotators. This is a challenge in part because
many existing representations follow a single hierarchical tree
structure, while in the real-world, graph-structured complex
relationships are much more common and potentially more
useful. A comprehensive ontology that addresses this issue is
yet to be developed.

E. Edge Computing
State of the art deep learning models achieve remarkable

performance and are being widely used in multimedia systems
[133], [144], [145], [146], [147]. Many of these models can
have tens of millions of parameters (e.g., AlexNet [148]), to
achieve such high performance. However, the realization of
the IoAuT demands applying these heavy models to cheap
sensor devices. Limited computational and energy resources
prohibit the use of heavy training and/or inference algorithms
[149], short in-device storage challenges the deployment of
heavy pre-trained models [150], and low bandwidth links
and real-time nature of the audio signals hinders the use of
traditional cloud-based inference [151], [152]. Much funda-
mental research is still needed to properly address the urgent
multidisciplinary research problem of edge computing for the
IoAuT.

There are multiple existing solutions to support AI interface
at the edge. Examples include hardware accelerators such as
Intel’s Neural Compute Stick 2 (NCS2)9 or Google’s Edge

9https://software.intel.com/en-us/neural-compute-stick
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Tensor Processing Units (TPU)10. These are compatible with
common single board computers. However, these solutions
are suitable only for simple visual and audio recognition
tasks, with no guarantees on real-time processing or model
compression.

A series of recent works focused on compressing big
neural networks to save storage, energy, communication, and
computational resources at the edge nodes. The proposed
approaches for solving this problem could be broadly classified
into two categories. The first class includes methods that
reduce the number of parameters in the model [153], [154].
The second class includes methods to reduce the quantization
precision for storing and processing model parameters [155].
Forrest et al. proposed smaller modules as building blocks
for emulating AlexNet [153]. With their approach, the authors
designed an architecture that has 50x fewer parameters than
AlexNet [148] with almost no loss in the inference accuracy.
However, this approach is specifically designed for AlexNet,
and it is not easily applicable to compress other big models.
Simpler approaches include pruning, deleting the connections
of the trained model with small values, and quantization,
reducing the number of bits needed to store a parameter. Han
et al. proposed the Deep Compression algorithm that combines
both pruning and quantization, leading to 35x compression of
AlexNet [156] . These solutions often need the availability of
the original dataset to retrain the new (small) model, which is
not available in many use cases due to privacy or intellectual
property protections. Krishnamoorthi proposed a quantization-
aware training, in which the authors add artificial quantization
noise to the parameters during the training phase to make it
more robust to potential future quantization [157]. However,
this approach suffers an inherent tradeoff that adding more
quantization noise to the training pipeline may lead to a very
bad solution for the original less-noisy problem. Moreover, in
the literature, the model compression techniques have been
applied mostly to natural language processing and image
classification, whose signal statistics and machine learning
methods are very different from real-time audio processing.

In many scenarios, e.g., WASNs, edge computing may face
a massive connectivity challenge where many edge devices
may need to coordinate and send some locally processed
information to a central coordinator [158]. Reference [159]
proposed a framework to exploit the network-wide knowledge
at the cloud center to guide edge computing at local IoT
devices. However, it cannot address the problem of massive
connectivity and the resulting significant performance drop of
wireless networks. Device-to-device communications and local
collaborations among the audio things are essential, yet the
area is very open in the literature. Such collaboration can also
improve the robustness of the decision making and real-time
data analytic to potential outlier and/or straggler devices and
compensate for per-device performance reduction due to the
use of compressed models and lower precision.

10https://coral.ai/

F. Synchronization

Distributed computational resources needs to be synchro-
nized in time, though the degree of precision to which this
synchronization shall be is application dependent.

In order to maintain a good level of synchronization between
nodes of a processing graph, two quantities shall be controlled:
the local time of each node and the delay, i.e. the amount of
time needed by the node to record or playback and audio
signal once the request to do so have been received. Quality
of service is ensured minimizing the following quantities: the
variance of the difference between the local time of each node
σt and the variance of the difference between the delays of
each node σd. In order to better grasp the importance of these
quantities, three use-cases are now described, with growing
requirements in terms of synchronization accuracy.

• In WASN, the data has to be synchronized in order to
be able to interpret some behaviors happening across
different nodes. In this case, σt and σd shall remain below
the second.

• On contrary, distributed playback systems that operate
over the Internet Protocol (IP) [160], like RAVENNA
[161] or Dante [162], reducing σt and σd below the
millisecond is critical as the human auditory system is
highly sensitive to phase delays. In this case, σd is not
a strong issue as the nodes are simple playback systems
that are not in charge of audio processing or synthesis
and in most commercial systems of very similar hardware
specifications.

• Laptop [163], [164] or smartphone [165] orchestras are
much more challenging as they have the same require-
ments as distributed playback systems but have to face
much more stress on σd as the nodes of the network have
to process and synthesize audio before rendering using a
wide diversity of hardware platform. The latter calls for
software based solutions [166] that are inherently limited
in terms of precision.

Time synchronization issues is ubiquitous in distributed
computing, therefore many tools are available to minimize σd.
It has been tackled for standard usage by the Network Time
Protocol (NTP) proposed in [167]. this protocol stands out by
virtue of its scalability, self-configuration in large multi-hop
networks, robustness to failures and sabotage, and ubiquitous
deployment. NTP allows construction of a hierarchy of time
servers, multiply rooted at canonical sources of external time.

Despite being in use in many sensor networks, it may face
issues with this specific application. The first is that NTP
assumes that computational and network resources are cheap
and available. While this may hold for traditional networks
of workstations, it may not be the case for low consumption
sensor networks. Furthermore, the dynamic topology of the
network can influence the degree of precision to which a
recently disconnected node is synchronized. Fortunately, NTP
operates well over multi-hop networks. If those matters are
of importance for the considered use case, other approaches
such as the ones researched in [168] and the ones based on
flooding proposed in [169], [170] may be considered.
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When there is a need for very precise synchronization, the
Precision Time Protocol (PTP) can be considered. Indeed,
NTP targets millisecond-level synchronization, whereas the
PTP targets nano second level synchronization. This can only
be achieved by considering dedicated hardware at least for the
masters responsible for broadcasting the trusted time.

Tackling the issue of minimizing the delay for laptop or
smartphone orchestra can only be achieved for most appli-
cations by considering calibration in order to estimate the
maximal delay achieved by the nodes. Mostly based on
standard software tools such as Web Audio, the proposed
solutions will improve as the software tools improves over
those matters. Still, the results presented in [114] are already
quite satisfying, as they report σd of 0.2 to 5 ms for a wide
range of devices. If use of hardware is possible, one can
consider low-cost alternatives to PTP hardware that broadcast
GPS reference time over the network [171].

G. Privacy and security challenges

The IoAuT paradigm brings challenges related to personal
data such as privacy and security, since some Audio Things
have the ability to automatically collect, analyze, and exchange
data related to their users.

Given the pervasive presence of the IoAuT, transparent
privacy mechanisms need to be implemented on a diverse
range of Audio Things. It is necessary to address issues of
data ownership in order to ensure that Audio Things users feel
comfortable when participating in IoAuT-enabled activities.
IoAuT users must be assured that their data will not be used
without their consent. Concerning the IoT field, Weber recently
highlighted the growing need for technical and regulatory
actions capable of bridging the gap between the automatic
data collection by IoT devices and the rights of their users,
who are often unaware of the potential privacy risk to which
they are exposed [172], [173]. Examples include data leaks and
unauthorised collection of personal information [174], [175].
Necessarily, the same holds for the IoAuT. The definition of
privacy policies is one approach to ensure the privacy of infor-
mation. Audio Things can be equipped with machine-readable
privacy policies, so that when they come into contact they can
each check the other’s privacy policy for compatibility before
communicating [176]. Security risks also come from hardware
hacking, which points toward the necessity of hardware level
encryption to ensure privacy policies are adhered to. Thus, it
is paramount that Audio Things designers and manufacturers
adopt a “privacy by design approach” as well as incorporate
privacy impact assessments into the design stage of Audio
Things.

Since Audio Things are wireless devices they are subject
to the security risks of wireless communications. In today’s
Internet, encryption is a key aspect to ensure information
security in the IoT. As a consequence, Audio Things should
be designed to support robust encryption, which poses the
challenge of making these devices powerful enough to support
it. Nevertheless, enabling encryption on Audio Things requires
algorithms more efficient and less energy-consuming, along
with the development of efficient key distribution schemes

[177]. Importantly, a uniform security standard should be
developed by the IoAuT research community and industry
in order to ensure the safety of the data collected by Audio
Things. This challenge is currently unsolved also in the IoT
field [172].

WASNs can be very useful to gather rich information about
different aspects of the quality of life in urban areas. Hav-
ing precise knowledge about that is mandatory for effective
actuation. This, in the end, will improve the quality of life
of citizens. That being said, the deployment of WASNs shall
be performed with a lot of care regarding the preservation
of the privacy of citizens. Even if speech is a rather weak
bio-metric indicator, the information gathered using WASNs
must not contain any speech information that could be used
by humans or computer to capture information about the
location or spoken sentences of individuals. Following the
different designs detailed in Section III-A, different means can
be considered. If only the detection labels are propagated on
the network, this privacy is guaranteed by design. If spectral
features are sent, the frame rate must be sufficiently low to
ensure that speech cannot be reproduced [26]. If the raw audio
has to be transmitted, source separation techniques can be
considered to remove speech before transmission [178].

Novel business models can emerge leveraging data arising
from IoAuT technologies, for example to provide services
related to monitoring activities (such as ambient intelligence
or surveillance). Ethical and responsible innovation are crucial
aspects that need to be considered when designing such ser-
vices to ensure that they are socially desirable and undertaken
in the public interest. Ultimately, key to the success of the
IoAuT will be the users’ confidence. Hardware and software
manufacturers will need to convince consumers that the use
of Audio Things is safe and secure and to do this, much work
is still needed.

H. Audio Things design

One of the most stringent design challenges for Audio
Things relates to the limited energy resources available to
most of them (e.g., the nodes of WASNs). Indeed, the battery
life of the devices represents a constraint for communica-
tion and computational energy usage. Typically, besides a
system for wireless communication Audio Things encompass
microphones and a processing board, and in other cases also
loudspeakers and various kinds of sensors. All these com-
ponents require a substantial (and in most cases continuous)
amount of energy. Solar panels have been utilized in various
systems to cope with this issue (see, e.g., [34]) but advances in
miniaturization and power of batteries are necessary. Another
possibility would be to augment existing objects deployed in
smart cities that are distributed and by default are connected to
a power supply, such as smart street lights, as in the CENSE
project [41].

Another design challenge relates to the creation of solu-
tions able to provide high quality in recording and/or sound
production, while still being cost-effective. To date, cost-
effective solutions that can be deployed on large scale are
MEMS microphones, which on average, however, do not offer
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a wide frequency response (typically 100 Hz - 10K Hz) and
resolutions, which may translate into low analytics capabilities.
In addition, miniaturization of the components of an Audio
Thing (from the microphone to the computational unit) is also
a desirable feature.

Furthermore, novel design paradigms should be devised for
systems exploiting the yet unexplored opportunities offered
by linking the IoT field with that of sonification or interac-
tive sonification. The IoT has the potential to facilitate the
emergence of novel forms of interactive sonifications that are
the result of shared control of the sonification system by
both the user performing the gestures locally to the system
itself, and one or more remote users. This can for instance
impact therapies based on auditory feedback where the control
of the sound generation is shared by the patient and the
doctor (see the smart sonic shoes reported in [5]). The effect
of such therapy can be remotely monitored and data from
several patients performing such a sound-based therapy can
be collected by means of big data analytics techniques.

V. CONCLUSIONS

This paper introduced the Internet of Audio Things as a
novel paradigm in which heterogeneous devices dedicated to
audio-based tasks can interact and cooperate with one another
and with other things connected to the Internet to facilitate
audio-based services and applications that are globally avail-
able to the users. We presented a vision for this emerging
research field, which stems from different lines of exist-
ing research including Internet of Things, sound and music
computing, semantic audio, artificial intelligence, and human-
computer interaction. The IoAuT relates to wireless networks
of smart devices dedicated to audio purposes, which allow for
various forms of interconnection among different stakeholders,
in both co-located and remote settings. The IoAuT vision
offers many unprecedented opportunities but also poses both
technological and non-technological challenges that we expect
will be addressed in upcoming years by both academic and
industrial research.

This is arguably the first paper to introduce the IoAuT
paradigm and to identify its requirements and issues. We
believe that substantial standardization efforts are needed to
address the open issues in order to realize the true potential
of the envisioned IoAuT. Just like for the general IoT field,
the success of the IoAuT strongly relies on standardization
requirements, which are currently unmet. The definition of
standards for platforms, formats, protocols, and interfaces will
allow for the achievement of interoperability between systems.
Issues related to security and privacy of information, which are
also common to the IoT, need to be addressed, especially for
IoAuT systems deployed for the masses. In addition, research
will need to address the challenge of how to design systems
capable of supporting rich interaction paradigms that enable
users to fully exploit the potentials and benefits of the IoAuT.

This work presented a vision for the IoAuT, highlighted
its unique characteristics in contrast to the IoT, and identified
the major challenges and requirements in order to realize it.
The realization of the proposed IoAuT vision would ultimately

benefit society, by providing a widespread use of ambient
intelligence mechanisms involved to monitor environments in
smart cities, as well as by offering new ways of interacting
with sounds across the network (such as sound-based therapies
involving remotely connected users).

We propose a roadmap for the implementation of the IoAuT
vision:

1) To progress the design of Audio Things, with new
solutions for the analysis of audio-related information
based on the edge computing paradigm;

2) To advance the current connectivity infrastructure, with
the implementation of novel interoperable protocols for
the exchange of audio-related information;

3) To tackle the challenges of privacy and security of
personal data, with a “privacy by design” approach;

4) To define standards and shared ontologies that will allow
one to avoid fragmentation and facilitate interoperability
among Audio Things as well as the services they offer.

It is hoped that the content of this paper will stimulate dis-
cussions within the sound and music computing and Internet
of Things communities, so for the IoAuT to flourish.
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for integrating domain-specific applications into the iot,” in IEEE
International Conference on Future Internet of Things and Cloud.
IEEE, 2014, pp. 124–131.

[127] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 34–43, 2001.

[128] J. Sowa, Knowledge representation: logical, philosophical, and compu-
tational foundations. Brooks/Cole Pacific Grove, CA, 2000, vol. 13.

[129] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumb-
ley, “Detection and Classification of Acoustic Scenes and Events,”
IEEE Transactions on Multimedia, vol. 17, no. 10, 2015.

[130] D. Barchiesi, D. Giannoulis, D. Stowell, and M. D. Plumbley, “Acoustic
scene classification: Classifying environments from the sounds they
produce,” IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 16–
34, 2015.

[131] M. Valenti, A. Diment, G. Parascandolo, S. Squartini, and T. Virtanen,
“Dcase 2016 acoustic scene classification using convolutional neural
networks,” in Proc. Workshop Detection Classif. Acoust. Scenes Events,
2016, pp. 95–99.



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, NOVEMBER 2019 16

[132] J. F. Gemmeke, L. Vuegen, P. Karsmakers, B. Vanrumste et al., “An
exemplar-based nmf approach to audio event detection,” in 2013 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics.
IEEE, 2013, pp. 1–4.

[133] M. Espi, M. Fujimoto, K. Kinoshita, and T. Nakatani, “Exploiting
spectro-temporal locality in deep learning based acoustic event detec-
tion,” EURASIP Journal on Audio, Speech, and Music Processing, vol.
2015, no. 1, p. 26, 2015.

[134] N. Takahashi, M. Gygli, B. Pfister, and L. Van Gool, “Deep con-
volutional neural networks and data augmentation for acoustic event
detection,” arXiv preprint arXiv:1604.07160, 2016.

[135] Q. Le, R. Monga, M. Devin, G. Corrado, K. Chen, M. Ranzato, J. Dean,
and A. Ng, “Building high-level features using large scale unsupervised
learning,” in IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE, 2013, pp. 8595–8598.

[136] E. Fonseca, M. Plakal, D. P. Ellis, F. Font, X. Favory, and X. Serra,
“Learning sound event classifiers from web audio with noisy labels,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019.

[137] Q. Kong, C. Yu, Y. Xu, T. Iqbal, W. Wang, and M. D. Plumbley,
“Weakly labelled audioset tagging with attention neural networks,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 27, no. 11, p. 1791–1802, 2019.

[138] D. Bahdanau, K. Cho, and Y. Bengio., “Neural machine translation by
jointly learning to align and translate,” Technical report, arXiv preprint
arXiv:1409.0473, 2014.

[139] G. Psuj, “Multi-sensor data integration using deep learning for char-
acterization of defects in steel elements,” Sensors, vol. 18, no. 2, pp.
292–307, 2018.

[140] D. Sheng and G. Fazekas, “A Feature Learning Siamese Model for
Intelligent Control of the Dynamic Range Compressor,” in Proc. of
the International Joint Conf. on Neural Networks (IJCNN), July 14-
19, Budapest, Hungary, 2019.

[141] E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov, A. Ferraro,
S. Oramas, A. Porter, and X. Serra, “Freesound datasets: a platform
for the creation of open audio datasets,” in 18th International Society
for Music Information Retrieval Conference (ISMIR 2017), Suzhou,
China, 2017, pp. 486–493., 2017.

[142] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory, J. Pons,
and X. Serra, “General-purpose tagging of freesound audio with
audioset labels: Task description, dataset, and baseline,” in Workshop on
Detection and Classification of Acoustic Scenes and Events (DCASE)
2018, 2018.

[143] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology
and human-labeled dataset for audio events,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
2017.

[144] “Awesome deep vision,” https://github.com/kjw0612/
awesome-deep-vision, accessed: 2020-01-14.

[145] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I.
Sánchez, “A survey on deep learning in medical image analysis,”
Medical image analysis, vol. 42, pp. 60–88, 2017.

[146] H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer: Acoustic-
to-word lstm model for large vocabulary speech recognition,” arXiv
preprint arXiv:1610.09975, 2016.

[147] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video paragraph cap-
tioning using hierarchical recurrent neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 4584–4593.

[148] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
no. 6, pp. 84–90, May 2017. [Online]. Available: http://doi.acm.org/
10.1145/3065386

[149] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

[150] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless
network intelligence at the edge,” CoRR, vol. abs/1812.02858, 2018.
[Online]. Available: http://arxiv.org/abs/1812.02858

[151] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing,”
IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 59–69, 2011.

[152] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double qlearning,” Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[153] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and ¡0.5mb model size,” 2016.

[154] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in neural
information processing systems, 2015, pp. 1135–1143.

[155] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantiza-
tion of convolutional networks for rapid-deployment,” in Advances in
Neural Information Processing Systems, 2019, pp. 7948–7956.

[156] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2015.

[157] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[158] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[159] S. K. Sharma and X. Wang, “Live data analytics with collaborative
edge and cloud processing in wireless iot networks,” IEEE Access,
vol. 5, pp. 4621–4635, 2017.

[160] A. Hildebrand, “Aes67-2013: Aes standard for audio applications of
networks-high-performance streaming audio-over-ip interoperability,”
2018.

[161] A. Holzinger and A. Hildebrand, “Realtime linear audio distribution
over networks: A comparison of layer 2 and 3 solutions using the
example of ethernet avb and ravenna,” in Audio Engineering Society
Conference: 44th International Conference: Audio Networking. Audio
Engineering Society, 2011.

[162] J.-S. Sheu, H.-N. Shou, and W.-J. Lin, “Realization of an ethernet-
based synchronous audio playback system,” Multimedia Tools and
Applications, vol. 75, no. 16, pp. 9797–9818, 2016.

[163] D. Trueman, P. Cook, S. Smallwood, and G. Wang, “Plork: The
princeton laptop orchestra, year 1,” in Proceedings of the International
Computer Music Conference, 2006.

[164] G. Wang, N. J. Bryan, J. Oh, and R. Hamilton, “Stanford laptop
orchestra (slork),” in ICMC, 2009.

[165] J. J. Arango and D. M. Giraldo, “The smartphone ensemble. exploring
mobile computer mediation in collaborative musical performance,” in
Proceedings of the international conference on new interfaces for
musical expression, vol. 16, 2016, pp. 61–64.

[166] N. Schnell, V. Saiz, K. Barkati, and S. Goldszmidt, “Of time engines
and masters an api for scheduling and synchronizing the generation
and playback of event sequences and media streams for the web audio
api,” 2015.

[167] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[168] J. E. Elson, “Time synchronization in wireless sensor networks, 2003,”
University of California Los Angeles.

[169] K. S. Yildirim and A. Kantarci, “Time synchronization based on slow-
flooding in wireless sensor networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 1, pp. 244–253, 2013.
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