Laurent Capocchi
email: capocchi@univ-corse.fr

Jean François Santucci

Thorsten Pawletta

Hendrik Folkerts

Bernard P Zeigler

Discrete-Event Simulation Model Generation based on Activity Metrics

Keywords: Activity, Complexity, DEVS, Discrete-event, Model generation, Modeling, Simulation, System entity structure

System entity structure has been used since the 1970s as a formal ontology framework, axiomatically defined, to represent the elements of a system of systems and their hierarchical relationships resulting in a family of hierarchical models. One challenge with this approach is the process of exploring a family of hierarchical models, and selecting a particular composition from which a fit-forpurpose discrete-event simulation model can be automatically synthesized and executed. This paper deals with the definition of performance metrics which are used to guide the Modeler to select the most practical model of a real-world system from among a potentially large set. The discrete-event simulation model is selected among a set of system entity structure family models by using model level activity metrics in order to be able to have a prediction of the accuracy and the performance of the models. A case study is presented to illustrate and validate the relation between activity metrics and system entity structure concepts.

Introduction

Nowadays, System of Systems (SoS) engineering [START_REF] Gorod | System-of-Systems Engineering Management: A Review of Modern History and a Path Forward[END_REF][START_REF] Nielsen | Systems of Systems Engineering: Basic Concepts, Model-Based Techniques, and Research Directions[END_REF][START_REF] Harrison | The Role of Graph Theory in System of Systems Engineering[END_REF][START_REF] Mokhtarpour | A Conceptual Methodology for Selecting the Preferred System of Systems[END_REF][START_REF] Zhu | Performance Assessment in Complex Engineering Projects Using a System-of-Systems Framework[END_REF][START_REF] Chattopadhyay | Combining attributes for systems of systems in multi-attribute tradespace exploration[END_REF] consists in defining a strategy for the design of systems where the search space of alternative designs is practically infinite. Such SoS engineering requires a design methodology within an ontology framework that procures the specification of model composition structure, the specification of model behavior, and the synthesis of a simulation model of large-scale systems [START_REF] Van Ruijven | Ontology for systems engineering[END_REF].

In [START_REF] Mokhtarpour | A Conceptual Methodology for Selecting the Preferred System of Systems[END_REF], a conceptual methodology is introduced for selecting existing systems to form candidate SoS and selecting the preferred candidate SoS to provide a new capability. The decision factors are based on their importance in providing and sustaining the required SoS capability. In this paper, a step-by-step framework that incorporates many of the design considerations for SoS has been proposed.

Ontology is a knowledge representation concerned with describing things and their relationships in a system. The System Entity Structure (SES) [START_REF] Zeigler | Modeling & Simulation-Based Data Engineering: Introducing Pragmatics into Ontologies for Net-Centric Information Exchange[END_REF][START_REF] Cheon | DEVS Model Composition by System Entity Structure[END_REF] is a formal ontology framework, axiomatically defined, to represent the elements of a system and their hierarchical relationships. It is a declarative knowledge representation scheme that characterizes the structure of a family of models in terms of decomposition, component taxonomies, and coupling specifications and constraints [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. It provides a model to describe knowledge of a domain in a structural way. Since it is originated from the representation of simulation model structure, SES is easily accommodated in Modeling and Simulation (M&S) for automation. One challenge with the SES approach is the task of exploring a family of hierarchical models, and selecting a particular composition from which the fit-for-purpose discrete-event simulation model can be automatically synthesized and executed.

In this paper, SES serves as an abstract ontology framework for world state descriptions, particularly involving dynamics in space and time. Our approach is based on working with artifacts of expression in M&S associated with the Discrete-Event system Specification (DEVS) formalism [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. It is a framework based on mathematical systems theory that offers a computational basis for application of M&S to systems engineering and that has become widely adopted for its support of discrete-event, continuous, and hybrid applications. A fundamental representation of DEVS hierarchical modular model structures is the SES. As it has been described in several publications [START_REF] Seo | Expanding DEVS and SES Applicability: Using M&S Kernels Within IT Systems[END_REF][START_REF] Folkerts | An integrated modeling, simulation and experimentation environment in python based on SES/MB and DEVS[END_REF][START_REF] Zeigler | Theory of Modeling and Simulation[END_REF][START_REF] Hagendorf | An Approach to Simulation-Based Parameter and Structure Optimization of MATLAB/Simulink Models Us-ing Evolutionary Algorithms[END_REF], the SES supports development, pruning, and generation of a family of DEVS simulation models. A data engineer (a Modeler) has to select a fit-for-purpose DEVS simulation model among the set of possible models belonging to the family of models which can be obtained using SES. The fit-for-purpose DEVS simulation model is considered the most practical to the Modeler according to a level of detail and/or performance criteria. The number of DEVS simulation models (design alternative prunings) can be large and the Modeler requires support based on a search capability for finding the most suitable design. In [START_REF] Rozenblit | Knowledge-based design and simulation environment (kbdse): Foundational concepts and implementation[END_REF], the authors describe the major theoretical concepts and processes employed to develop and simulate design models. A DEVS-based implementation of a knowledge-based design and simulation environment called KBDSE has been proposed. This work can be considered as one of the first works around SES and the development of simulated design models.

Within the context of ongoing efforts presented in [START_REF] Rozenblit | Knowledge-based design and simulation environment (kbdse): Foundational concepts and implementation[END_REF], the proposed approach is based on the concept of activity [START_REF] Hu | Linking Information and Energy-Activity-Based Energy-Aware Information Processing[END_REF][START_REF] Muzy | Activity-Based Credit Assignment Heuristic for Simulation-Based Stochastic Search in a Hierarchical Model Base of Systems[END_REF]. This concept is used to define metrics allowing to measure the activity of simulation models. Model level and simulation level metrics can distinguish by differentiating between measuring what is actually happening (simulation level) rather than what should happen (model level). Furthermore, the model level activity metrics are computed before simulation while the simulation level metrics are computed after. With this approach, the Modeler has a prediction of the accuracy and the performance of the models, thereby assisting in the selection of the most practical DEVS model among the set of models belonging to a SES family using the model level activity metrics. The accuracy (resp. performance) of models corresponds to faithful models (resp. to the CPU execution time) according to the expected simulation results (i.e. the observed streamflow (the discharge) that we are trying to reach according to a level of abstraction). A case study involving a complex SES modeling with a set of DEVS simulation models according to different levels of abstraction and temporality is presented to illustrate and validate the relation between activity metrics and SES concepts.

The rest of the paper is organized as follows: the next section presents both the SES ontology framework and the DEVS formalism while Section 3 deals with the concepts of activity. Section 4 introduces the overall approach by highlighting how the concepts of activity are used to guide the SES pruning process and Section 5 is dedicated to the validation of the approach based on a benchmarking process with the generation of seven DEVS simulation models from an SES. The models are first described while the simulation results and their analysis will allow us to validate the proposed approach. Finally, we conclude and propose future work.

Background

The System Entity Structure Ontology Framework

System Entity Structure (SES) [START_REF] Zeigler | Modeling & Simulation-Based Data Engineering: Introducing Pragmatics into Ontologies for Net-Centric Information Exchange[END_REF][START_REF] Cheon | DEVS Model Composition by System Entity Structure[END_REF] is a formal ontology framework, axiomatically defined, to represent the elements of a system (or world) and their hierarchical relationships resulting in a family of hierarchical models. Figure 1 provides a quick overview of the elements and relationships involved in an SES. As mentioned in [START_REF] Zeigler | Modeling & Simulation-Based Data Engineering: Introducing Pragmatics into Ontologies for Net-Centric Information Exchange[END_REF], entities represent things that exist in the real or virtual world. They can have attached variables which can be assigned a value within given range and types. An aspect expresses a way of decomposing an object into more detailed parts and is a labeled decomposition relation between the parent and the children. Multi-aspects are aspects for which the components are all of the one kind. Specialization represents categories or families of specific forms that a thing can assume and is a labeled relation that expresses alternative choices that a system entity can take on.

The SES generated by such a specification is a directed graph (such as depicted in Figure 1), which satisfies the following axioms:

1. Uniformity: nodes that have the same labels have identical attached variable types and isomorphic sub-tree.

Strict hierarchy:

No label appears more than once down any path of the tree. Thus, there is a uniquely labeled path from the root to every node in the expanded graph.

3. Alternating mode: Each node has a mode that is entity, then aspect, or specialization; if the mode of a node is entity, then the modes of its successors are aspect or specialization; if the mode of a node is aspect or specialization, then the modes of its children are entity. The mode of the root and the leaves is entity. The concepts of SES are illustrated with an example where we consider the way a book is constructed from physical pieces (front cover, back cover and pages in Figure 2) and content (preface and main body in Figure 2). An aspect denotes the relationship between the object and the parts into which it has been broken. Thus, we can label the aspect representing the physical construction (resp. content construction) of a book, physicalDec (resp. contentDec). Figure 2 depicts the two items, physicalDec and contentDec, as Aspects of the entity book.

In terms of natural language, we can write: From the physical perspective, a book is made of front cover, pages and back cover ; From the content perspective, a book is made of a preface and a main body. In addition, it is important to note that an aspect is used when you want to represent sub-things of a thing -where 'and' denotes the necessity that all of the sub-things must appear together to comprise the thing.

A specialization denotes the relationship between a general object and its variants belonging to a given category. In Figure 2 the colorSpec (resp. materi-alSpec) specialization denotes the colors (resp. materials) that a back cover can take on. In the restricted natural language we can write: A back cover can be red or black in color ; A back cover can be cardboard or paper in material. It is important to note that a specialization is used when you want to represent an 'or' connective among a sub-string of a thing -where the 'or' denotes the fact that a choice of one of the variants can replace the original.

Concerning multi-aspects, we will consider the core of the book to consist of a collection of pages. In natural language, this can be expressed as: From the physical perspective, pages are made up of more than one page. The multiaspect, physicalM ultiAsp, captures the relationship between the entity, namely pages, and its constituents, which are all instances of the same entity, namely page. It is important to note that a multi-aspect is used for the same objective as an Aspect except that the components are all from the same class.

The process of pruning the SES is that of assigning values to attached variables and (i) reducing the choices represented by the aspect and specialization relations, (ii) increasing the basis for choices by expanding a multi-aspect for pruning.

If the SES contains multi-aspects, variables are introduced in order to bring a pruned entity structure (PES) into a state where no further multi-aspects can be expanded (for example by limiting the total number of entities).

The Discrete-Event System Specification

The DEVS formalism was introduced by Zeigler in the seventies [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF] for modeling discrete-event systems in a hierarchical and modular way [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. DEVS formalizes what a model is, what it must contain, and what it doesn't contain (experimentation and simulation control parameters are not contained in the model). Moreover, DEVS is universal and unique for discrete-event system models. Any system that accepts events as inputs over time and generates events as outputs over time is equivalent to a DEVS model. With DEVS, a model of a large system can be decomposed into smaller component models with couplings between them. DEVS formalism defines two kinds of models: (i) atomic models that represent the basic models providing specifications for the dynamics of a system components using function transitions, (ii) coupled models that describe how to couple several component models (which can be atomic or coupled models) together to form a new model. This hierarchy inherent to the DEVS formalism in that a coupled model behaves like an atomic model is called closure under coupling [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF].

An atomic DEVS model can be considered as an automaton with a set of states and transition functions allowing the state change when an event occurs or not. When no events occur, the state of the atomic model can be changed The mapping from SES to DEVS formalism is depicted in Figure 3 and the transformation rules are summarized in Table 1.

An SES entity can be an atomic or coupled DEVS model. If an entity of an aspect itself has an aspect, this leads to transforming the corresponding component into a coupled model specified by the second aspect (due to closure under coupling [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF] of DEVS). Aspect represents the decomposition rules and the coupling between corresponding to the DEVS model's children. Concerning the multi-aspects, the mapping is similar to that for an aspect except that all models correspond to the entities generated by the multi-aspect's generating entity. alternative decompositions that can be employed to construct a coupled DEVS model corresponding to the parent entity. Thus, a DEVS coupled model is made by pruning an SES, choosing one aspect and one specialization for each entity.

The choice of this model is guided by the assignment of values to SES variables according to their definition in [START_REF] Pawletta | Extended variability modeling using system entity structure ontology within MAT-LAB/Simulink[END_REF] or interactive decisions by the Modeler.

The value assignment to SES variables has to be done before the pruning in accordance with value range definitions in semantic conditions according to [START_REF] Pawletta | Extended variability modeling using system entity structure ontology within MAT-LAB/Simulink[END_REF].

By evaluating the SES variables, all simulation models are generated with different structure and parameters.

In [START_REF] Durak | Model-Based Testing for Objective Fidelity Evaluation of Engineering and Research Flight Simulators[END_REF], SES is used for meta-modeling of abstract test case generation of the test flight simulation. Selection conditions are used to set the specific configuration for a particular test case. An implementation is carried out in MATLAB/SIMULINK c [START_REF][END_REF] with a specific SES Toolbox implementation. This paper presents an excellent Model-Based Testing approach for flight simulator objective fidelity evaluation. The purpose of this paper can be viewed as a complement of this work by setting the SES variables involved in the pruning process with special metrics related to the fidelity concept. The goal is to show that it is possible to guide the Modeler through the activity model metrics by considering the notion of performance and accuracy of models. The following section introduces the activity concepts and metrics with a special focus on the DEVS M&S aspects.

Activity Concepts

Activity is a concept and refers to the state transition distribution in the components of a system [START_REF] Hu | Linking Information and Energy-Activity-Based Energy-Aware Information Processing[END_REF][START_REF] Muzy | Activity-Based Credit Assignment Heuristic for Simulation-Based Stochastic Search in a Hierarchical Model Base of Systems[END_REF]. Activity metrics have been used to speed up simulation in the form of activity-tracking,which focuses computational resources on components based on their activity level.

The concept of activity can be exploited in the field of the model engineering and more especially in system engineering with SoS. Activity can be used as an engineering methodology in order to estimate the complexity of an SoS model for its construction, management and maintenance. Depending on the definition of complexity, the activity analysis can improve the structural and behavioral properties of SoS during the design process.

The activity notion for a DEVS system is commonly referred to as the number of transition functions executions [START_REF] Muzy | What is New With the Activity World View in Modeling and Simulation? Using Activity as a Unifying Guide for Modeling and Simulation[END_REF]. Usually, the activity notion is known as Quantitative-Activity (QA in A.1). The activity concept, on the other hand, has been used to connect information processing and energy consumption, as proposed in [START_REF] Muzy | The Activity-Tracking Paradigm in Discrete-Event Modeling and Simulation: The Case of Spatially Continuous Distributed Systems[END_REF]. In this case, it is called Weighted-Activity (WA) and allows for example when counting the number of transitions to compute the weight of a transition proportionally to the time spent in state before the transition. In both cases (for the QA and WA notions), the activity is a notion defined at the simulation level and computed during the simulation (see Figure 4). However, activity of a DEVS system can be tracked using two approaches: considering the modeling level and/or the simulation level [START_REF] Muzy | The Activity-Tracking Paradigm in Discrete-Event Modeling and Simulation: The Case of Spatially Continuous Distributed Systems[END_REF]. Figure 4 shows the position of the Activity Tracking (AT) process in these two levels.

We can distinguish two kinds of AT metrics: (i) at the modeling level, the metrics are computed without any DEVS simulations (they are called analyticbased metrics), (ii) at the simulation level, the metrics are computed by performing the DEVS simulation process (they are called simulation-based metrics). From both modeling and simulation levels, tracking the activity of a DEVS model can be considered as:

1. Counting the number of state-to-state transitions in a model over some time interval [START_REF] Muzy | What is New With the Activity World View in Modeling and Simulation? Using Activity as a Unifying Guide for Modeling and Simulation[END_REF]. Simulation-based and analytic-based activity metrics are described in the following subsections.

Computing the McCabe Cyclomatic Complexity (MCC in

Simulation-based Activity Metrics

Simulation-based metrics are considered during the execution of a program (simulation process). In [START_REF] Muzy | What is New With the Activity World View in Modeling and Simulation? Using Activity as a Unifying Guide for Modeling and Simulation[END_REF], the authors define the Quantitative-Activity (QA) of a system as "the number of discrete-events received by the system, over a simulation time period." According to [START_REF] Hu | Linking Information and Energy-Activity-Based Energy-Aware Information Processing[END_REF], a measure of activity can be considered as a measure of information processing by counting over some time interval the number of state-to-state transitions in a model.

In [START_REF] Muzy | Activity-based Credit Assignment (ACA) in Hierarchical Simulation[END_REF], the authors give the following definition of the total activity for an atomic DEVS model AM i and a coupled DEVS model CM i during a simulation time interval T:

QA AMi (T) = QA δint AMi (T) + QA δext AMi (T), (1a
)
QA CMi = N i=1 QA AMi (T), (1b)
where QA δext AMi (resp. QA δint AMi) is the external (resp. internal) activity. The external (resp. internal) activity is defined as a natural number equal to the Based on the same principle, the CPU time (A.1) for an atomic (resp. coupled) DEVS model AM i (resp. CM i) can be defined as:

CP U AMi (T) = CP U δint AMi (T) + CP U δext AMi (T), (2a
)
CP U CMi = N i=1 CP U AMi (T), (2b)
where CP U δext AMi (resp. CP U δint AMi) is the external (resp. internal) CPU time spent on the processor running the DEVS external (resp. internal) transitions δ ext (resp. δ int) functions of the atomic DEVS model AM i .

The simulation-based activity metrics are used to corroborate the choice of a DEVS simulation model among a set of SES family models based on analyticbased activity metrics.

Analytic-based Activity Metrics

Getting a good activity metric of models -in order to evaluate their performance, for example -after the simulation is very difficult. These activity metrics can be defined from metrics which have been defined in software engineering.

A software metric is usually used to determine the degree of maintainability of software products. However, software metrics may be also used to predict the execution time consumption of functions or methods of an object. In a DEVS M&S context, these kinds of metrics can be employed to evaluate the analytic-based activity of models.

Among the list of recommended metrics proposed in most software engineering sub-fields (Halstead complexity [START_REF] Halstead | Elements of software science, Operating and Programming Systems Series[END_REF], McCabe cyclomatic Complexity (MCC) [START_REF] Mccabe | A Complexity Measure[END_REF], Coupling [START_REF] Stevens | Structured Design[END_REF][START_REF] Beck | On the Congruence of Modularity and Code Coupling[END_REF], etc.), MCC [START_REF] Mccabe | A Complexity Measure[END_REF] has been chosen because: (i) it is one of the most popular metrics in software engineering, (ii) it has strong implications for software testing, (iii) it can be used as an estimation of the time required for the execution of the transition functions.

MCC depends only on the decision structure of a program. The cyclomatic number of a directed graph G, where each node corresponds to a block program, is a graph-theoretic complexity [START_REF] Harrison | The Role of Graph Theory in System of Systems Engineering[END_REF]:

M CC(G) = e -n + p, (3)
where e is the number of edges of the graph, n the number of nodes, and p the number of connected components (exit nodes). This number depends on the number of linearly independent paths, i.e., to the decision (if statement, conditional loops, etc.) structure of a program.

MCC usually correlates with the amount of work required to test a program.

Therefore it is used to have a measure of the test complexity of a program.

However, in a DEVS M&S context, MCC can be used at atomic function level considering all the functions as a 'block program'. Indeed, the higher the number of independent decision paths, the more the system is expected to be an event hub of high CPU activity: if the MCC of an atomic function is high, there is a significant probability that the time spent in the function execution will be high too. Moreover, the MCC can be considered as a metric which provides useful feedback to the DEVS Modelers. The MCC of an atomic DEVS model AM i can be defined as follows:

M CC AMi = M CC δext AMi + M CC δint AMi (4)
MCC is useful because it gives a prediction of the complexity and the efficiency of some programs, but is not a good candidate to estimate computational complexity due to the well-known nesting problem [START_REF] Suleman Sarwar | Cyclomatic complexity: The nesting problem[END_REF]. This is the reason why Defining a metric based on code execution is language dependent. Best and worst case are computed from DEVS transition functions code (δ ext and δ int).

In the case of external transition function, the function is executed with inputs generated randomly in order to have an estimation of the activity measure using a decorator based on the Python language timeit module. This module uses a platform-specific method to get the most accurate run time of a specific function by running the code N number of times and returning a list of times it took to run (best-case, worst-case and average-case). The average (or median measures) can be calculated according to the worst and best-case values. However, the best-case values correspond to the sum of minimal execution time to perform transition functions. The best-case metric has been considered in this paper,but the average-case could have been considered. This would not have affected the order of models classified by activities calculated with timeit.

Activity Metrics Implementation

DEVSimPy (Python Simulator for DEVS models) [START_REF] Capocchi | DEVSimPy: A Collaborative Python Software for Modeling and Simulation of DEVS Systems[END_REF][START_REF] Capocchi | [END_REF] is a user-friendly interface (based on wxPython [START_REF] Hunt | The wxPython GUI Library[END_REF] graphic library) for collaborative M&S of DEVS systems implemented in the Python [START_REF] Nagpal | Python for Data Analytics, Scientific and Technical Applications[END_REF] language and based on the PyDEVS and PyPDEVS [START_REF] Van Tendeloo | The Modular Architecture of the Python(P)DEVS Simulation Kernel (WIP)[END_REF] (the Parallel DEVS implementation of PyDEVS)

APIs. DEVSimPy has been set up to facilitate both the coupling and the reusability of the DEVS models that can be stored in a library in order to be reused and shared (Figure 5). The DEVSimPy AT plug-in works as follows:

• The user enables the plug-in (see Figure 6) and chooses the set of DE-VSimPy atomic models for activity-tracking (see Figure 7). Before the simulation, the DEVS models are scanned in a recursive way to collect all atomic models selected by the user in the plug-in interface. The DEVS transition functions of all selected models are decorated with a new method aimed at introducing an AT computation of these functions. A decorator 4) can be performed before the simulation. We also compute how long it takes to execute the transition functions using the timeit Python module. In the same way, the coupling metrics can be computed from coupling relationships between models inside all coupled models.

• The user can now perform the simulation of the model during which the QA metric (Equation 1a) is measured by counting the number of DEVS transition functions executions. From the previous dictionary, QA is measured by counting the number of its keys after the simulation.

• Finally, when the simulation is over, the plug-in offers tables resuming all of the computed metrics.

While the simulation is running, the plug-in offers dynamically, amongst others, the QA and CPU time. The MCC, worst-case and best-case metrics are computed before simulation for each tracked model.

Activity Metrics to Guide the Pruning of System Entity Structure

Motivation

In [START_REF] Müller | Automatic Generation of Simulation Models for Early Stage Evaluation of Physical System Topologies (wip)[END_REF], the authors demonstrate how their tools are used in the early stages of the system design and classify the approaches to automatically generate and execute simulation models according to different criteria. This work in progress used the same proposed approach based on criteria to guide the generation of simulation models, but it is not SES-oriented. The paper [START_REF] Hagendorf | An Approach to Simulation-Based Parameter and Structure Optimization of MATLAB/Simulink Models Us-ing Evolutionary Algorithms[END_REF] proposes the reconfiguration of both the model structure and model parameters using an automatic optimization based on evolutionary algorithm and SES/model base framework. This approach maps knowledge coded in the SES to a set of numerical (structure) parameters in order to generate different system configurations automatically. As a complement, the proposed approach in this paper is based on knowledge, encoded in SES with metrics derived by the model complexity.

The concepts and metrics introduced in the previous section can be used to guide the SES pruning phase. Indeed, if we consider the hypothesis that a faithful model (which comes closest to the real system in terms of the correspondence of the input/output values) has a significant complexity, we can also consider that its CPU execution time will be important. So, if the Modeler wants a model that executes quickly, the least complex models should be chosen in the pruning phase. If the Modeler wants a faithful model, the pruning phase will be oriented towards complex models to the detriment of an important CPU execution time.

When the Modeler has to perform the SES pruning process, a set of SES variables which will allow to generate a fit-for-purpose resulting DEVS model tion can be obtained. It is possible to have an extremely complex model that produces very poor results. Indeed, if the model is poorly designed, the results may be bad although the model is complex. This aspect is not considered in this paper, which is based on the principle that the models are consistent and well-designed (without infinite loops for example).

Based on the activity metrics presented previously, we propose: (i) to estimate the simulation accuracy of a given model, (ii) to estimate the simulation performance of a given model, (iii) to use the estimation to propose a guided assignment of the SES pruning parameters according to the requirements of the Modeler (corresponding to a trade-off between the two previous extreme choices). To provide such capabilities an algorithm has been proposed that, given an SES, is capable of computing for each pruning the associated metric by iterating through them one at a time, each time synthesizing the associated hierarchical simulation model from the SES and evaluating it (computation of the metric). In the following, we describe such an algorithm.

Contribution

The recursive algorithm 1 shows how to compute the number of simulation model structures from an SES tree entities. This algorithm is based on the Depth-first search algorithm which is traditionally used for tree traversal on graph or tree data structures.

The getSimulationM odels procedure takes three parameters: (i) an entity node which can be a root, (ii) a string variable used to store the result, (iii) a

Boolean flag used to specify if the result can be evaluated as an arithmetical operation in order to obtain the desired number of simulation model structures.

When the procedure starts with an entity root (the highest level entity), it explores all children nodes at the current depth prior to moving on the nodes at the next depth level. If the current node is unvisited (line 5), it is marked as visited (to keep track of visited nodes), its parent object is defined (lines 6 to 7) and the result variable is updated depending on the type of the node (lines 9 to 23). Then, the algorithm recurs on its all children nodes (lines 25 to 27).

If the current node is a leaf and is type of aspect or multi-aspect (line 11), the result variable is concatenated with the label of the node and the multiplication sign. If the current node is type of specialization (line 15), the labels of its children nodes and the sum sign are concatenated (lines 16 to 20). The method getLabel(f lag) of the class node returns a string corresponding to the name of the node if the Boolean parameter flag is True or the integer 1 if False, with the exception of a multi-aspect node where the number of replications is returned.

Therefore, the Boolean parameter flag allows to generate all possible structure variants specified in the SES as a list of strings (f lag = F alse) or the number of possible simulation models (f lag = T rue).

Moreover, for one simulation model, if the name of all leaf nodes are replaced by the corresponding analytic activity values, the total analytic activity of the simulation model can be computed. By this way, the list of simulation models can be ordered by analytic-activity metrics before simulation at modeling level. If the Modeler wants a simulation model with the best/worst accuracy, the higher/lower total analytic-activity (Equation 4) value must be chosen. If the Modeler wants the lower/higher CPU time, the simulation model with the lower/higher best-case (Section 3.2) metric value must be chosen.

The proposed recursive algorithm has been applied on the SES of the book example (Figure 2). From the book entity (root), all possible combinations of SES are:

pref ace×mainbody×f rontcover×N b page ×((red+blue)×(cardboard+paper))
where N b page is the number of pages from the 'physicalMultiAsp' entity (the number of replications returned by the getLabel(T rue) (line 12 of the algorithm 1)). If all entities are replaced by 1 and N b page = 1, the total number of simulation models is 1 × 1 × 1 × 1((1 + 1) × (1 + 1)) = 4 and the list of obtained simulation models is:

• Model1: pref ace -mainbody -f rontcover -red -cardboard • Model2: pref ace -mainbody -f rontcover -red -paper • Model3: pref ace -mainbody -f rontcover -blue -cardboard • Model4: pref ace -mainbody -f rontcover -blue -paper
The Python code of the algorithm 1 with the example of the Book is available from this url.

The total MCC analytic-activity metric associated with a simulation model can be computed by performing the sum of the MCC (Equation 4) of all atomic DEVS models that compose the simulation model. For example in Model1, this total metric is performed as follow:

The total best-case analytic-activity metric can be computed and obtained in the same way. These analytic metrics can constitute a base to rearrange simulation models by performance/accuracy. The next section presents the proposed approach in a real case study.

Although previously only different structure variants were discussed, it should be mentioned that different parameter configurations can, of course, also be modeled with an SES. The attached variables of a SES can specify static parameters or variable parameters. Possibilities of configuration-dependent parameterization using SES variables and SES functions are discussed in [START_REF] Pawletta | Extended variability modeling using system entity structure ontology within MAT-LAB/Simulink[END_REF][START_REF] Pawletta | Chapter 18 -modeling and simulation of versatile technical systems using an extended system entity structure/model base infrastructure[END_REF].

Furthermore, semantic constraints can be defined to ensure well-designed and consistent models.

Case Study: A Hydrologic Behavior of a Watershed

This section deals with a case study that illustrates and validates the relation between activity metrics and SES concepts. The case study concerns the hydrologic behavior of a watershed (A.1) that enables to design prediction models of the watershed river flow discharge (streamflow). The behavior will involve an SES modeling whose pruning will allow to obtain a set of DEVS models according to different levels of abstraction and temporality.

Description

An informal description of the hydrologic behavior of a watershed involving two kinds of abstraction specialization and one example of temporal specialization is given in this section. The considered example concerns a watershed belonging to a mountainous part of France (Alpes) [START_REF] Coron | On the Lack of Robustness of Hydrologic Models Regarding Water Balance Simulation: A Diagnostic Approach Applied to Three Models of Increasing Complexity on 20 Mountainous Catchments[END_REF].

It involves both liquid (rain) and solid (snow) precipitation over a one-year period. Depending on seasons (temperatures) and the geographical area concerned, the amount of solid precipitation will be different, moving between any solid (only snow) and liquids (only rain). When precipitation falls as snow, the hydrological response of the watershed is not the one observed in the case of rain: there is a lack of response in the short-term watershed due to the accumulation of solid precipitation in the form a snow cover at the surface. Then, when the conditions of melting are met (which can occur several days to several months after the occurrence of precipitation), this water is remobilized. It causes a delayed reaction of the watershed.

The behavior of the watershed is obtained by studying the rainfall data (expressed daily) and temperature data (expressed daily and hourly). Different models defined at different levels of abstraction or time granularity are defined and simulated. The simulation results are then compared with the observed streamflow of the watershed (Figure 8). Given our objectives, we have analyzed the different aspects of the water cycle based on studies describing this cycle within the watershed [START_REF] Castany | Principes et méthodes de l'hydrogéologie[END_REF][START_REF] Llamas | Hydrologie générale : principes et applications[END_REF]. As depicted in Figure 9, the distribution of precipitation is as follows: three flows (runoff, hypodermic and deep flow) feed the river and constitute the streamflow.

Each flow corresponds to a layer whose functioning is similar to that of a tank: The modeling approach considers storage and flow variables jointly. According to [START_REF] Dierickx | Asset stock accumulation and sustainability of competitive advantage[END_REF], the flow patterns in a system can be radically different above and below a 'critical mass' level of some stock variables. In this paper, the critical mass is taken into account according to the temperature threshold, which allows to determine the amount of water from melting snow. When the altitude is high, only a small (resp. large) part of the received flows is going to be found in the river flow, reflecting the storage of the water under the snow format (resp.

the snow melting effect). In addition, the critical mass level is also considered by using the delay associated with the three layers, as explained above.

Snow is an important element that can substantially alter the waterbalance from one month to another, especially in mountainous areas. For that, the following rules are implemented: • Compute the proportion of rain transformed into snow based on the data of a reference thermometer station. More specifically, the rain is considered as snow when the temperature is lower than 0 • C.

• Manage the effect of the snow which consists in storing the snow when the temperature is lower than 0 • C and compute the quantity of water which will be generated from the stored snow when the temperature is greater than 0 • C.

Concerning the time granularity aspect, at the daily basis, the input representing the observed daily temperatures and the input representing the observed rainfall allow to compute the quantity of water (flow) coming out from the basin model by taking into account the effect of the snow (melting and rain transformed into snow). The description is similar for the hourly basis. 2). Only one hydrogeological layer has been considered (N umRepDelay = N umRepLayer = 1 in Table 2).

System Entity Structure Modeling

• Model4: At the same level of abstraction as Model3, but two hydrogeological layers have been considered.

• Model5: Is the same as Model4 with three hydrogeological layers.

• Model6: Is the same as Model4 with hourly time basis (N umRepArea = 2 in Table 2) and two hydrogeological layers.

• Model7: Is the same as Model6 with three hydrogeological layers.

Model 3 is chosen the as baseline for comparison and the models 4, 5, 6, 7 are introduced by varying the number of hydrogeological layers as is the time granularity for measurement of temperature.

The previous seven DEVS simulation models of the Table 2 and linked to SES entities in order to obtain the simulation models. The seven DEVS simulation models are analyzed using the Algorithm 1 and the AT plugin before the simulation (at modeling level) in order to obtain the MCC and the best-case metrics.

In this paper, a DEVS-based approach with an object-oriented M&S implementation is chosen to study the hydrological behavior of a watershed. This approach makes it possible to obtain an incremental model taking into account the complexity of the system due to the hierarchical and modular aspects of DEVS [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. In particular, it makes it possible to decompose the watershed into several independent entities, having their own behavior, which will be described using the concept of object. In addition, the delays aspects involved in the classical behavior of the hydrological layers (SURFACE, SOIL, AQUIFER) fit very well with the DEVS time advance aspect. Finally, the explicit separation between M&S allowed by DEVS makes it easy to modify the model without changing the simulation algorithms.

The next section details the obtained M&S metrics results using the seven DEVS simulation models.

Simulation Results and Analysis

The seven DEVS simulation models described previously are simulated with the AT plug-in in order to obtain the QA, the CPU time and the Root-Mean-Square Error (RMSE in A.1) metrics (at simulation level). The RMSE is used to measure the accuracy by performing the difference between the observed stream (Figure 8) flow and the simulated one. All of these results are used to point out the correlation between the values of the modeling level metrics (MCC and best-case) and the choice of the SES variables values (W SLevel, M ntLevel, BasinLevel, N umRepArea, N umRepDelay, N umRepLayer). This correlation is validated by the simulation level metrics (QA and CPU).

Table 3 shows the M&S metrics obtained before and after the simulation grow with the abstraction level of the model expected for the best-case metrics of the Model3, which is lower than the Model2. In this case, the prediction is not accurate (as it is pointed out for the RMSE value in the Table 3) because there is only one layer (N umRepLayer = 1) and delay model (N umRepDelay = 1) instead of three for the Model2. Moreover, the addition of the three DEVS coupled models (M ntLevel = BasinLevel = N umRepArea = 1) including additional atomic models (14 atomic models for Model3 instead of 13 for Model2) in the Model3 are responsible for the increasing value of the CPU due to the DEVS simulation algorithm (more simulation messages). Furthermore, the best-case and the MCC are computed before simulation only for the atomic models, but the best-case is more reliable than MCC that only points out the complexity of atomic models, excluding their execution time. So, a conflict between the MCC and the best-case metrics may highlight a design fault resulting in a wrong accuracy prediction (the increasing of the RMSE for the Model3 in Table 3).

A solution to the design issue can be to increase the number of atomic models related to the multi-aspect variables (N umRepDelay, N umRepArea and N umRepLayer) as it is proposed in models 4, 5, 6 and 7.

Considering the two modeling level metrics (MCC and best-case) the proposed approach is able to predict which model will be the best in term of performance (the lowest value for MCC and best-case) and the best in terms of accuracy (the highest value for MCC and best-case). In Figure 11 the Model1 (resp. Model7) is the less (resp. most) execution time-consuming (performance) and the less (resp. most) accurate model (accuracy). If the Modeler wants a compromise between accuracy and performance, the Model5 should be chosen as pointed out in Figure 11.

The seven DEVSimPy models associated with the WSpyc DEVS models library can be downloaded from this url. They require the version 4.0 of DE-VSimPy and they can be simulated after having both imported the WSpyc directory as a library and the activity tracking.pyc plug-ins. The archive contains a video dedicated to guide the user in installing and simulating the models.

Conclusion

This paper deals with the definition of activity metrics, which are used to approach can be used in this context, either as a supplement or as an alternative in cooperation with the established tools in this field of application, has been published several times, for example in [START_REF] Deatcu | [END_REF][START_REF] Pawletta | Chapter 18 -modeling and simulation of versatile technical systems using an extended system entity structure/model base infrastructure[END_REF]. The further development of the method shown here is seen as a logical step toward better mastering the multiresolution modeling of complex and adaptive systems according to [START_REF] Zeigler | Multi-resolution modeling for adaptive UAV service systems[END_REF]. There is in this development a effort tradeoff. Where the tradeoff is more beneficial might be in multi-resolution where multiple objectives can lead to big SESs and where each resolution set is relatively small.

With regard to practical applications, the method introduced in this paper will be applied in the next step to M&S of a production system family of Industry 4.0 as shown in [START_REF] Pawletta | A multimodeling approach for the simulation of energy consumption in manufacturing[END_REF]. Variants of flexible production must be examined, taking into account the energy consumption of the production facilities. In [START_REF] Pawletta | A multimodeling approach for the simulation of energy consumption in manufacturing[END_REF],

the modeling of the individual manufacturing facilities was done modularly on three levels (material flow, process control, process physics). In particular, for the process control and process physics levels, models were developed with varying degrees of detail, which resulted in considerable differences in accuracy and

• CPU time: is the time spent running code in the operating system kernel on behalf of a program.

• MCC: is the McCabe cyclomatic complexity metric that measuresthe complexity of a program.

• Worst (resp. Best) case execution time: is the longest (resp. shortest) execution time of a function for any possible combination of inputs.

• RMSE: is the root-mean-square error metric which is used to measure the accuracy between simulated values and observed values.

Figure 1 :

 1 Figure 1: Overview of SES Items and Relationships (from [8]).

4 .

 4 Valid brothers: No two brothers have the same label. 5. Attached variables: No two variables attached to the same node have the same name. 6. Inheritance: The parent and any child of a specialization combine their individual variables, aspects and specializations,when pruning is done.

Figure 2 :

 2 Figure 2: SES representation of a book.

 by an internal transition function noted δ int . When an external event occurs, the atomic model can intercept it and change its state by applying an external transition function noted δ ext . The life time of a state is determined by a time advance function called t a . Each state change can produce output messages via an output function called λ. Examples of such DEVS models,including atomic and coupled models in operation,are to be found in [10]. Abstract simulator algorithms are associated with the DEVS formalism in order to execute instructions of a model to actually generate its behavior. DEVS allows automatic simulation on multiple different execution platforms, including those on desktops (for development) and those on high-performance platforms (such as Clusters or High Performance Computers).

Figure 3 :

 3 Figure 3: SES to DEVS simulation models transformation (from [8]).

 specialization provides a family of alternatives for a DEVS model corresponding to the parent entity. If one entity has more than one aspect, the aspects offer SES element DEVS model Entity Atomic or coupled DEVS model Aspect Decomposition of a coupled model into DEVS models corresponding to the aspect's children. Specifies the connection of input and output ports for information flow among the atomic/coupled models corresponding to the aspect's children Multi-aspect Decomposition of a coupled model into DEVS models corresponding to the multi-aspect's children, each of which is derived from the aspect's single children entity Specialization A family alternative plug-ins for a DEVS model corresponding to the parent entity Attached variables Variables, including state variables and parameters, of the DEVS model to the entity

Figure 4 :

 4 Figure 4: Activity Tracking paradigm at the M&S levels.

3 . 4 .

 34 A.1)[START_REF] Mccabe | A Complexity Measure[END_REF] of transition functions -which can be used to measure the complexity of a model. Estimating the CPU time (A.1) using a metric based on software performance measurements. Measuring the CPU time in order to measure the time spent on the processor running the code of the transition functions.

 sum of DEVS external (resp. internal) transitions δ ext (resp. δ int) execution. The activity of a coupled DEVS model CM i defined in Equation 1b is the sum of the total activity of its N atomic models QA AMi with i ∈ {1, • • • , N } during the time interval T. Let's consider the definition of activity given in Equation 1a (resp. Equation 1b) as the definition of the QA for an atomic (resp. coupled) DEVS model.

 the authors add a new best-case metric as an analytic-based activity metrics in order to estimate the computational complexity of DEVS transition functions from their execution time. Generally, program execution time is measured from program initiation at presentation of some inputs to termination at the delivery of the last outputs. Several different measures of software performance are of interest (A.1): (i) Worst-case execution time -the longest execution time for any possible combination of inputs, (ii) Best-case execution time -the shortest execution time for any possible combination of inputs, (iii) Average-case execution time for typical inputs.

Figure 5 :

 5 Figure 5: The DEVSimPy general interface with a diagram (right part) and libraries panel (left part).

Figure 6 :

 6 Figure 6: Activation of the AT plug-in through the DEVSimPy Preferences Manager.

Figure 7 :

 7 Figure 7: AT plug-in settings for DEVSimPy models.

 among a family of simulation models must be defined. Unfortunately, the setup of these variables depends on the requirements of the Modeler concerning the resulting DEVS model. These requirements have to balance the need for simulation accuracy versus the desire for good simulation performance. Indeed a detailed DEVS model obtained after the SES pruning phase should produce more accurate simulations results, but should result in a slower simulation. At one extreme, the Modeler is interested only in DEVS models allowing accurate simulations. At the other extreme, the Modeler only wants to obtain DEVS models with very fast simulation in terms of CPU time consumption. Between these two extreme, a wide range of DEVS models belonging to the SES defini-

Figure 8 :

 8 Figure 8: Observed streamflow in mm/day during 365 days for the year 2009.

 the runoff flow corresponds to the SURFACE layer, hypodermic flow to the SOIL layer and the deep flow to the AQUIFER layer. The three corresponding tanks feed on precipitation and have an exponential type discharge law. On the other hand, each layer is characterized by its inertia (delay between incoming and outgoing flows).

Figure 9 :

 9 Figure 9: Three flows (Runoff, Hypodermic and Deep) of water in a watershed depending on the three layers (SURFACE, SOIL and AQUIFER).

Figure 10

 10 Figure 10 depicts the SES of the watershed model in the SESToPy [41] environment. Figure 10 (b) displays the value of the SES variables involved by the proposed case study and used by the pruning process. Figure 10 (a) displays the SES tree with all entities, aspects, specializations and multi-aspects components. Seven DEVS simulation models have been proposed by traversing this model hierarchical structure, retrieving component implementation stored in a organized library of atomic/coupled DEVS models and coupling them together.

Figure 10 :Figure 9)

 109 Figure 10: SES of the watershed case study in the SESToPy framework: (a) the SES tree (b) the SES variable setting interface.

 are imported from SESToPy to DEVSimPy automatically. A new Python class method has been implemented and added into SESToPy code to export the PES in DE-VSimPy simulation model. A library of DEVS models has been implemented

 of the benchmark. Each model has been simulated and observed using daily flows for a one-year period (365 days for the year 2009). The simulation time corresponding to each simulation execution has been presented. The simulations have been performed with DEVSimPy v4.0 (involving wxPython 4.0.6 msw (phoenix) and python 3.7.4) on a Windows 10 operating system with an Intel (R) Xeon (R) (E-2176M CPU @ 2.70GHz, 2712 MHz, 6 cores) processor and 32GB of RAM.

Figure 11 displays

 11 Figure 11 displays the four normalized activity metrics obtained before and after simulation and the RMSE. All of the metric values (except for the RMSE)

Figure 11 :

 11 Figure 11: Normalized graphical view of the four activity metrics and the RMSE values.

 guide the system design phase involved in SoS engineering when a Modeler has to select a fit-for-purpose simulation model (design alternatives) from among a potentially large set. This paper focused on SES framework and proposed a set of activity metrics computed before simulation allowing to estimate the accuracy and performance of DEVS models. In order to validate the proposed activity metrics, one stemming from software engineering and allowing to estimate the complexity of a model (MCC) and another stemming from performance estimation best-case metric allowing to estimate the CPU execution time corresponding to the simulation of the studied model, a benchmark has been proposed involving seven DEVS simulation models. The simulation results point out that the best-case metric is a good estimation of the CPU execution time. With the level of method development already achieved, we see a high application potential in the context of Model-Based Design (MBD) of autonomous and adaptive systems, such as Cyber-Physical-Systems (CPS), production systems of Industry 4.0 or IoT (Internet of Things) systems. In accordance with the MDB's objective of providing model-based support for the development process and operation at an early stage and throughout, a wide range of model variants with different levels of detail and run-time requirements is developed and maintained in this context. While widely used tools in this area (such as MATLAB/SIMULINK c or Modelica c [42]) already support well-defined approaches for modular and hybrid modeling of system dynamics, the authors estimate that an innovative methodology for variant management of models and simulation experiments as well as the automated generation of simulation models and simulation experiments is missing. How the SES-based modeling

Table 1 :

 1 Mapping SES elements to DEVS models.

Table 2 :

 2 Specification of the seven DEVS simulation models involves in the analysis.

					SES variables			DEVS specifications
	Name	WSLevel MntLevel BasinLevel NumRepArea NumRepDelay NumRepLayer AM CM Coupling
	Model1	0	0	0	0	0	0	4	0	3
	Model2	1	0	0	0	3	3	13	4	36
	Model3	1	1	1	1	1	1	14	7	38
	Model4	1	1	1	1	2	2	16	7	42
	Model5	1	1	1	1	3	3	18	7	46
	Model6	1	1	1	2	2	2	20	7	51
	Model7	1	1	1	2	3	3	22	7	56

Table 3 :

 3 Activity metrics at the M&S level obtained after and before simulation for the seven DEVS simulation models.

		Modeling Level		Simulation Level	
	Name	MCC Best-case [s]	QA	CPU [s] Simulation time [s]	RMSE
	Model1	9	8.48E-9	183.5	1.56E-4	0.224	7.7760451
	Model2	39	5.35E-8	917.5	5.14E-4	0.687	5.3294219
	Model3	58	4.61E-8	4330.6 6.38E-4	3.188	6.8702930
	Model4	63	5.44E-08	4807.7 8.57E-04	4.567	5.6781211
	Model5	68	6.13999E-08 4991.2 1.02E-03	5.023	4.8921623
	Model6	70	7.86708E-08 5174.7 1.12E-03	5.986	3.5626891
	Model7	81	9.00413E-08 5505.0 1.21E-03	6.120	2.6782221

Algorithm 1 Recursive algorithm that computes the number of simulation model structures from the SES entity node.

1: node is an Entity object The description of Snowbasin model is similar to the previous description.

The only difference is that when events are arriving on the inputs, the level of temporality is different (instead of a daily time step, it is now an hourly time step which has to be considered). The conversion between the two time granularities is performed in order (i) to split the events arriving on the inputs at time t into 24 events at different time units respectively t + 0.025, t + 0.05, t + 0.075, t + 0.1, t + 0.125, • • • , t + 1 (ii) to aggregate the 24 last events arriving from the output port into one event at time t+1.

The N umRepDelay variable points out how many layers are taken into Table 2 shows also three DEVS simulation model specifications (the number of atomic/coupled DEVS models -AM/CM and the number of coupling -Coupling).

The seven different DEVS simulation models can be specified as follows:

• Model1: At the highest level of abstraction, the behavior is the simplest one, just considering a percentage of the rainfall (20 per-cent).

• Model2: At a lower level of abstraction, the behavior is expressed by taking into account three hydrogeological layers (SOIL layer, SURFACE layer and AQUIFER layer -N umRepLayer = 3 in Table 2) including three kinds of delay (N umRepDelay = 3 in Table 2).

• Model3: At another lower level of abstraction, the M ountain model is detailed in order to take into account the snow effect (M ntLevel = BasinLevel = 1 in Table 2) at a lower level of temporality considering a runtime. The model library with the individual components has a high level of complexity, which makes it difficult to assemble overall models from the perspective of the required model accuracy in different planning phases. Furthermore, runtime requirements have to be taken into account if the model is used under real-time conditions in the operating phase.

The following perspectives could be also considered: (i) in the short-term, implement the use of activity metrics introduced in this paper in the SES-ToPy [START_REF] Folkerts | A Python Framework for Model Specification and Automatic Model Generation for Multiple Simulators[END_REF] framework developed in Python language by Pawletta et al. in order to propose support for pruning SES and transforming pruned entity structures into DEVS models stored in libraries, (ii) to extend the case study by considering available data of other catchment basins on several years, (iii) in the long term, to investigate the coupling of machine learning features in order to automatically propose the assignment of SES variables required to generate DEVS models from SES. We think that it is possible that the Modeler needs more than a guiding based on activity metrics, but will appreciate a learning process allowing him to generate some desired models according to specific applications.

Appendix A. Relevant Terminology

• Activity: is a concept and refers to the state transition distribution in the components of a system

• A watershed: describes an area of land that drains downslope to the lowest point.

• A Watershed hydrologic behavior: is the watershed river flow discharge (streamflow).

• Discharge or streamflow: is a surface water which corresponds to the river channel.

• QA: is the quantitative activity metric which represents the number of discrete-events received by the system, over a simulation time period.