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Introduction

Continuous state branching processes (or CSBP in short) are the analogues of Galton-Watson (G-W) processes in continuous time and continuous state space. Such classes of processes have been introduced by Jirina [START_REF] Jiřina | Stochastic branching processes with continuous state space[END_REF] and studied by many authors included Grey [START_REF] Grey | Asymptotic behaviour of continuous time, continuous state-space branching processes[END_REF], Lamperti [START_REF] Lamperti | Continuous-state branching processes[END_REF], to name but a few. These processes are the only possible weak limits that can be obtained from sequences of rescaled G-W processes, see Lamperti [START_REF] Lamperti | The limit of a sequence of branching processes[END_REF].

While rescaled discrete-time G-W processes converge to a CSBP, it has been shown in Duquesne and Le Gall [6] that the genealogical structure of the G-W processes converges too. More precisely, the corresponding rescaled sequences of discrete height process, converges to the height process in continuous time that has been introduced by Le Gall and Le Jan in [START_REF] Gall | Branching processes in Lévy processes : the exploration process[END_REF]. For the approximation by continuous time generalized G-W processes we refer to our recent paper [START_REF] Dramé | Approximation of a generalized continuous-state branching process with interaction[END_REF].

Some work has been also devoted recently to the description of the genealogy of generalized CSBPs, see Dramé and Pardoux [START_REF] Dramé | Approximation of the Height process of a continuous state branching process with interaction[END_REF] and Dramé et al. in [START_REF] Dramé | Non-binary branching process and non-markovian exploration process[END_REF] for the case of continuous such processes and Li, Pardoux and Wakolbinger [START_REF] Li | The Height process of a general CSBP with interaction[END_REF] for the general case. In [START_REF] Dramé | Approximation of the Height process of a continuous state branching process with interaction[END_REF] Dramé and Pardoux give an approximation of the Height process of a continuous state branching process in terms of a stochastic integral equation with jumps, which is well suited for the case of generalized CSBPs. The present paper studies a new approximation of the genealogy of a continuous time GW process to that of a generalized possibly discontinuous CSBP, under the same assumptions as [START_REF] Dramé | Approximation of the Height process of a continuous state branching process with interaction[END_REF]. Note that the two approximations have the same limit.

We start by looking at the convergence of the renormalized population process, which is both a necessary condition for the convergence of the genealogy, and a first step in the proof of that convergence. Note that the genealogical forest of trees contains more information than the population process, which is why we want to prove the convergence of the genealogy. Figure 1 shows a trajectory of a continuous time population branching process, and two distinct compatible genealogical trees. . We have reproduced in Figure 2 a picture from [START_REF] Dramé | Non-binary branching process and non-markovian exploration process[END_REF], which shows the height process associated to a particular tree. Note that Theorem 3.3 in [START_REF] Dramé | Non-binary branching process and non-markovian exploration process[END_REF] establishes a correspondence between the law of the height process and the law of the associated genealogical tree, which will be implictly exploited below. However, its impossible to draw the genealogical tree of a CSBP, but we can study the associated height process, see [START_REF] Li | The Height process of a general CSBP with interaction[END_REF].

The organization of the paper is as follows : In Section 2 we recall some basic definitions and notions concerning branching processes. Section 3 is devoted to the description of the discrete approximation of both the population process and the height process of its genealogical forest of trees. We prove the convergence of the height process. Finally, for the convenience of the reader, we collect in an Appendix, at the end of this paper, detailed proofs of some propositions. We shall assume that all random variables in the paper are defined on the same probability space (Ω, F , P). We shall use the following notations

Z + = {0, 1, 2, ...}, N = {1, 2, ...}, R = (-∞, ∞) and R + = [0, ∞). For x ∈ R + , [x] denotes the integer part of x.

The Height process of a continuous state branching process 2.1. Continuous state branching process

A CSBP is a R + -valued strong Markov process with the property that P x denoting the law of the process when starts from x at time t = 0, P x+y = P x * P y . More precisely, a CSBP X x = (X x t , t 0) (with initial condition X x 0 = x) is a Markov process taking values in [0, ∞], where 0 and ∞ are two absorbing states, and satisfying the branching property ; that is to say, its Laplace transform satisfies E [exp(-λ X x t )] = exp {-xu t (λ )} , for λ 0, for some non negative function u t (λ ). According to Silverstein [START_REF] Silverstein | A new approach to local times (local time existence and property determination using real valued strong Markov process basis)[END_REF], the function u t is the unique nonnegative solution of the integral equation : u t (λ ) = λ -t 0 ψ(u r (λ ))dr, where ψ is called the branching mechanism associated with X x and is defined by

ψ(λ ) = bλ + cλ 2 + ∞ 0 (e -λ z -1 + λ z1 {z≤1} )µ(dz),
with b ∈ R, c 0 and µ is a σ -finite measure which satisfies ∞ 0 (1 ∧ z 2 )µ(dz) < ∞. We shall in fact assume in this paper that

(H) : ∞ 0 (z ∧ z 2 )µ(dz) < ∞ and c > 0.
The first assumption implies in particular that the process X x does not explode and it allows is to write the last integral in the above equation in the following form

ψ(λ ) = bλ + cλ 2 + ∞ 0 (e -λ z -1 + λ z)µ(dz). (1) 
Let us recall that b represents a drift term, c is a diffusion coefficient and µ describes the jumps of the CSBP. The CSBP is then characterized by the triplet (b, c, µ) and can also be defined as the unique non-negative strong solution of a stochastic differential equation. More precisely, from Fu and Li [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF] (see also the results in Dawson-Li [START_REF] Dawson | Stochastic equations, flows and measure-valued processes[END_REF]), we have

X x t = x -b t 0 X x s ds + √ 2c t 0 X x s 0 W (ds, du) + t 0 ∞ 0 X x s - 0 zM(ds, dz, du), (2) 
where W (ds, du) is a space-time white nose on (0, ∞) 2 , M(ds, dz, du) is a Poisson random measure on (0, ∞) 3 , with intensity dsµ(dz)du, and M is the compensated measure of M.

The height process

We shall also interpret below the function ψ defined by (1) as the Laplace exponent of a spectrally positive Lévy process Y . Lamperti [START_REF] Lamperti | Continuous-state branching processes[END_REF] observed that CSBPs are connected to Lévy processes with no negative jumps by a simple time-change. More precisely, define

A x s = s 0 X x t dt, τ s = inf{t > 0, A x t > s} and Y (s) = X x τ s .
Then, until its first hitting time of 0, Y (s) is a Lévy process of the form

Y (s) = -bs + √ 2cB(s) + s 0 ∞ 0 zΠ(dr, dz), (3) 
where B is a standard Brownian motion and Π(ds, dz) = Π(ds, dz)dsµ(dz), Π being a Poisson random measure on R 2 + independent of B with mean measure dsµ(dz). We refer the reader to [START_REF] Lamperti | Continuous-state branching processes[END_REF] for a proof of that result. To code the genealogy of the CSBP, Le Gall and Le Jan [START_REF] Gall | Branching processes in Lévy processes : the exploration process[END_REF] introduced the so-called height process, which is a functional of a Lévy process with Laplace exponent ψ ; see also Duquesne and Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]. In this paper, we will use the new definition of the height process H given by Li et all in [START_REF] Li | The Height process of a general CSBP with interaction[END_REF]. Indeed, if the Lévy process Y has the form (3), then the associated height process is given by

cH(s) = Y (s) -inf 0 r s Y (r) - s 0 ∞ 0 z + inf r u s Y (u) -Y (r) + Π(dr, dz), (4) 
and it has a continuous modification. Note that the height process H is the one defined in Chapter 1 of [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]. 

Approximation of the Height process

In the following, we consider a specific forest of Bellman-Harris trees, obtained by Poissonian sampling of the height process H. In other words, let α > 0 and we consider a standard Poisson process with intensity α. We denote by τ α 1 ≤ τ α 2 ≤ • • • the jump times of this Poisson process. If H is seen as the contour process of a continuous tree, consider the forest of the smaller trees carried by the vector H(τ α 1 ), H(τ α 2 ), • • • . We have Proposition 3.1 (T heorem 3.2.1 in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]) The trees in this forest are trees which are distributed as the family tree of a continuous-time Galton-Watson process starting with one individual at time 0 and such that : * Lifetimes of individuals have exponential distributions with parameter ψ (ψ -1 (α)) ; * The offspring distribution is the law of the variable η with generating function :

h(s) = E(s η ) = s + ψ((1 -s)ψ -1 (α)) ψ -1 (α)ψ (ψ -1 (α)) .
Duquesne and Le Gall obtain an embedding of (the height processes of) a family of continuous-time Galton Watson processes by a Poissonian sampling from the arguments of H (corresponding to the leaves of the forest). Now we consider a population evolving in continuous time with m ancestors at time t = 0, in which each individual lives for an exponential time with parameter ψ (ψ -1 (α)), and is replaced by η a random number of children according to the probability generating function h.

We will first renormalize this model, then we will present the results of convergence of the population process, and finally we will prove the convergence of the height process of its genealogical tree.

Let N 1 be an integer which will eventually go to infinity. In the next two sections, we choose a sequence δ N ↓ 0 such that, as N → ∞,

1 N +∞ δ N µ(dz) → 0. ( 5 
)
Because of assumption (H) this implies in particular that

1 N +∞ δ N zµ(dz) → 0.
Moreover, we will need to consider the truncated branching mechanism

ψ δ N (λ ) = cλ 2 + ∞ δ N (e -λ z -1 + λ z)µ(dz). (6) 
To get a reasonable approximation, we will now set α = ψ δ N (N) in the limit of large populations, where α was defined in above.

A discrete mass approximation

In this subsection, we obtain a CSBP as a scaling limit of continuous time Galton-Watson branching processes. In other words, the aim of this subsection is to set up a "discrete mass -continuous time" approximation of (2) . To this end, we set

h N (s) = s + ψ δ N ((1 -s)N) Nψ δ N (N) , |s| 1. 
It is easy to see that s → h N (s) is an analytic function in (-1, 1) satisfying h N (1) = 1 and

d n ds n h N (0) ≥ 0, n ≥ 0.
Therefore h N is a probability generating function. and we have

h N (s) = ∑ ≥0 ν N ( )s , |s| 1,
where ν N is probability measure on Z + . Given an arbitrary x > 0, the approximation of (2) will be given by the total mass X N,x of a population of individuals, each of which has mass 1/N. The initial mass is X N,x 0 = [Nx]/N, and X N,x follows a Markovian jump dynamics : from its current state k/N, X N,x jumps to

   k+ -1 N at rate ψ δ N (N)ν N ( )k, for all ≥ 2; k-1 N at rate ψ δ N (N)ν N (0)k.
In this process, each individual dies without descendant at rate

ψ δ N (N) N = cN + ∞ δ N zµ(dz) - 1 N ∞ δ N (1 -e -Nz )µ(dz),
it dies and leaves two descendants at rate

cN + 1 N ∞ δ N (Nz) 2 2 e -Nz µ(dz),
and it dies and leaves k descendants (k ≥ 3) at rate

1 N ∞ δ N (Nz) k k! e -Nz µ(dz).
We note that NX N,x t is a continuous time branching process with m = [Nx] ancestors. More precisely, each individual lives for an exponential time with parameter ψ δ N (N), and is replaced by a random number of children according to the probability generating function h N . Let D([0, ∞), R + ) denote the space of functions from [0, ∞) into R + which are right continuous and have left limits at any t > 0. We shall always equip the space D([0, ∞), R + ) with the Skorohod topology. The main limit proposition of this subsection is a consequence of Theorem 4.1 in [START_REF] Dramé | Approximation of a generalized continuous-state branching process with interaction[END_REF].

Proposition 3.2 Suppose that Assumptions (H) is satisfied. Then, as N → +∞, {X N,x t , t 0} converges to {X x t , t 0} in distribution on D([0, ∞), R + )
, where X x is the unique solution of the SDE (2).

The approximate height process

In this subsection, we shall define {H N (s), s ≥ 0}, the height process associated to the population process {X N,x t , t ≥ 0}. After we show that the rescaled exploration process of the corresponding Galton-Watson genealogical forest of trees, converges in a functional sense, to the continuous height process associated with the CSBP. We will first need to write precisely the evolution of {H N (s), s ≥ 0}, the height process of the forest of trees representing the population described in section 3. To this end, to any δ > 0, we define

Y δ (s) = -b + ∞ δ zµ(dz) s + √ 2cB(s) + s 0 ∞ δ zΠ(dr, dz).
and we associate H δ the exploration process defined with the Lévy process Y δ . In other words, we have suppressed the small jumps, smaller than δ , i.e (4) takes the following form

cH δ (s) = Y δ (s) -inf 0≤r≤s Y δ (r) - s 0 ∞ δ z + inf r≤u≤s Y δ (u) -Y δ (r) + Π(dr, dz). ( 7 
)
We consider for each N ≥ 1 a Poisson process {P N s , s ≥ 0} with intensity ψ δ N (N) independent from {Y (s), s ≥ 0}. We denote by τ N 1 ≤ τ N 2 ≤ • • • the jump times of this Poisson process. The height process {H N (s), s ≥ 0} is simply the piecewise affine function of slope ±2N passing through the values

0, H δ N (τ N 1 ), min s∈[τ N 1 ,τ N 2 ] H δ N (s), H δ N (τ N 2 ), min s∈[τ N 2 ,τ N 3 ] H δ N (s), • • • , H δ N (τ N n ), min s∈[τ N n ,τ N n+1 ] H δ N (s), • • •
see Duquesne and Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]. We are ready to state the main result of this paper. Recall the process H defined in (4).

Theorem 3.3 For any s > 0, H N (s) -→ H(s) in probability, locally uniformly in s, as N → ∞.

To prove this theorem, we will proceed in several steps. So, for any s > 0, we define

Y re f (s) = Y (s) -inf 0≤r≤s Y (r) and Y re f δ N (s) = Y δ N (s) -inf 0≤r≤s Y δ N (r).
From now on, we do as if Y re f and Y re f δ N

were deterministic, only P N (and the τ N k 's) are random. For any N ≥ 1, s > 0, we define

K N (s) = 1 2N H δ N (τ N 1 ) + 1 2N [ψ δ N (N)s] ∑ k=1 (H δ N (τ N k ) -min r∈[τ N k ,τ N k+1 ] H δ N (r)) + (H δ N (τ N k+1 ) -min r∈[τ N k ,τ N k+1 ] H δ N (r)) (8) 
It is not hard to see that K N (s) is the time taken by the process H N to reach the point

H δ N τ N [ψ δ N (N)s]
. So we get by our construction that

H N (K N (s)) = H δ N τ N [ψ δ N (N)s] . (9) 
For the proof of Theorem 3.3 we will need the two following Propositions.

Proposition 3.4 For any s > 0, τ N [ψ δ N (N)s] -→ s a.s, as N → ∞. Proof. It is easy to see that τ N [ψ δ N (N)s] = 1 ψ δ N (N) ∑ [ψ δ N (N)s] k=1
ξ k , where (ξ k ) k≥1 is an sequence of independent and identically distributed (i.i.d)∼ Exp(1). The desired result follows easily from the law of large numbers. Proposition 3.5 For any s > 0, K N (s) -→ s in probability, as N → ∞.

Proof. Let us rewrite (8) in the form

K N (s) = 1 N [ψ δ N (N)s] ∑ k=1 (H δ N (τ N k ) -min r∈[τ N k ,τ N k+1 ] H δ N (r)) + 1 2N   H δ N (τ N 1 ) + [ψ δ N (N)s] ∑ k=1 (H δ N (τ N k+1 ) -H δ N (τ N k )   = K N 1 (s) + K N 2 (s) + K N 3 (s), with K N 1 (s) = 1 cN [ψ δ N (N)s] ∑ k=1 (cH δ N (τ N k ) -min r∈[τ N k ,τ N k+1 ] cH δ N (r)) -(Y re f δ N (τ N k ) -min r∈[τ N k ,τ N k+1 ] Y re f δ N (r)) K N 2 (s) = 1 cN [ψ δ N (N)s] ∑ k=1 (Y re f δ N (τ N k )-min r∈[τ N k ,τ N k+1 ] Y re f δ N (r)) and K N 3 (s) = 1 2N H δ N τ N [ψ δ N (N)s] .
A standard argument combined with Proposition 3.4 yields K N 3 (s) → 0 a.s, as N → ∞, for any s > 0. The Proposition is now a consequence of the two next Propositions.

We now state two Propositions whose proofs will be given in the Appendix. Proposition 3.6 For any s > 0, K N 1 (s) -→ 0 in probability, as N → ∞.

Proposition 3.7 For any s > 0, K N 2 (s) -→ s in probability, as N → ∞.

For the proof of the last Proposition, we need a basic result on Lévy processes. To this end, let us define Γ(s) = max 0≤r≤s (-Y δ N (r)), where Y δ N is a again a Lévy process with characteristic exponent ψ δ N . The following result is Corollary 2, chapter VII in [START_REF] Bertoin | Lévy processes[END_REF]. We shall also need below the Proposition 3.9 For all ε > 0, lim δ →0 lim sup N→∞ P w N δ (a, b) ≥ ε = 0.

Proof. We have

w N δ (a, b) > ε ⊂ sup a<s<b |H N (s) -s| + sup k a ≤k≤k b (τ N k+1 -τ N k ) > δ w N,3δ (a -δ , b + δ ) > ε ,
where

H N (s) = τ N [ψ δ N (N)K -1 N (s)] , k a = [ a ψ δ N (N) ] and k b = [ b ψ δ N (N) ] -1.
So the result follows from both the two following facts : for each δ > 0,

∀δ > 0, P sup a<r<b |H N (r) -r| > δ → 0, as N → ∞, ( 10 
) ∀ε > 0, lim δ →0 lim sup N→∞ P w N,3δ (a -δ , b -δ ) > ε = 0. ( 11 
)
PROOF OF [START_REF] Lamperti | Continuous-state branching processes[END_REF]. It follows from a combination of Propositions 3.4 and 3.5 that H N (s) → s in probability, for any s > 0. Moreover for any N, s

→ H N (s) is increasing. Let M ≥ 1 and a = s 0 < s 1 < • • • < s M = b be such that sup 0≤i≤M-1 (s i+1 -s i ) ≤ δ /2. For any ε > 0, we can choose N ε large enough such that for all N ≥ N ε , P M i=0 {|H N (s i ) -s i | ≤ δ /2} ≥ 1 -ε. But for any s I ≤ s ≤ s i+1 , on the event M i=0 {|H N (s i ) -s i | ≤ δ /2}, s -δ ≤ s i -δ /2 ≤ H N (s i ) ≤ H N (s) ≤ H N (s i+1 ) ≤ s i+1 + δ /2 ≤ s + δ ,
hence we have shown that for N ≥ N ε , the following property equivalent to (10)

P sup a<s<b |H N (s) -s| ≤ δ ≥ 1 -ε.
PROOF OF [START_REF] Lamperti | The limit of a sequence of branching processes[END_REF]. Since

H δ N (s) → H(s) uniformly in [(a -1) ∨ 0, b + 1] in probability, hence it converges in law in C ([(a -1) ∨ 0, b + 1]), hence the sequence {H δ N , N ≥ 1} is tight in C ([(a -1) ∨ 0, b + 1]), from which (11) follows.
Proof of Theorem 3.3 : From (9), we have

|H N (s) -H(s)| ≤|H N (s) -H N (K N (s))| + H δ N τ N [ψ δ N (N)s] -H τ N [ψ δ N (N)s] + H τ N [ψ δ N (N)s] -H(s) .
A combination of Propositions 3.5 and 3.9 implies that the first term on the right tends to 0 in probability, as N → +∞. Since H δ N → H a.s. locally uniformly in s, and from Proposition 3.4, τ [ψ δ N (N)s] → s a.s., the second term tends to 0 a.s. Finally the last term tends to 0 a.s. thanks again to Proposition 3.4 and the continuity of H.

We have juste proved that for each s > 0, H N (s) -→ H(s) in probability, as N → +∞. Since from Proposition 3.9, H is tight in C ([0, s]) for all s > 0, the convergence is locally uniform in s.

Appendix

In this section we detail the proofs of Propositions 3.6 and 3. We first note that V U δ N [0, s], the total variation of U δ N on the interval [0, s], satisfies 

However, we can rewrite [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF] indexed by δ N in the following form cH δ N (s) = Y re f δ N (s) -U δ N (s). It is not hard to obtain the following inequality

U δ N (r k,N Y ) = Y re f δ N (r k,N Y ) -cH δ N (r k,N Y ) ≤ min τ N k ≤r≤τ N k+1 Y re f δ N (r) -min τ N k ≤r≤τ N k+1 H δ N (r) ≤ Y re f δ N (r k,N H ) -cH δ N (r k,N H ) = U δ N (r k,N H ) (13) 
Now, we have

K N 1 (s) = 1 cN [ψ δ N (N)s] ∑ k=1 (cH δ N (τ N k ) -min r∈[τ N k ,τ N k+1 ] cH δ N (r)) -(Y re f δ N (τ N k ) -min r∈[τ N k ,τ N k+1 ] Y re f δ N (r)) = 1 cN [ψ δ N (N)s] ∑ k=1 -U δ N (τ N k ) + min r∈[τ N k ,τ N k+1 ]
Y re f 

Figure 1 .

 1 Figure 1. Population process with two distinct compatible genealogical trees.

Figure 2 .

 2 Figure 2. (A) The tree and its associated height process. (B) The height process. The t-axis is real time as well as exploration height, the s-axis is exploration time.

  i.e cH(s) = |{Y s (r); 0 ≤ r ≤ s}|, where Y s (r) := inf r≤u≤s Y (u) and |A| denotes the Lebesgue measure of the set A. A graphical interpretation of (4) is as shown on Figure 3. Suppose that Y has a unique jump of size z at time s, and let s := inf{r > s, Y r = Y s-}. On the interval [s, s ], H r equals Y rz, reflected above Y s-= Y sz, while for r ∈ [s, s ], H r = Y r .

Figure 3 .

 3 Figure 3. Trajectories of Y and H

Lemma 3 . 8

 38 Since τ N 1 is an exponential random variable with parameter ψ δ N (N), independent of Y δ N , Γ(τ N 1 ) has an exponential distribution with parameter N. Now, let us define w N δ (a, b) = sup a≤r,s≤b,|s-r|≤δ |H N (s) -H N (r)|, and w N,δ (a, b) = sup a≤r,s≤b, |s-r|≤δ |H δ N (s) -H δ N (r)|.

7 .

 7 Proof of Proposition 3.6 : In this proof, we will use the following notations min r≤u≤s Y δ N (u) -Y δ N (r) + Π(dr, dz).

  N (N)s] ∑ k=1 γ N (k),and[START_REF] Li | The Height process of a general CSBP with interaction[END_REF] implies that |γ N (k)| ≤ sup r k,N Y ≤r≤r k,N H |U δ N (τ N k ) -U δ N (r)|. Now from[START_REF] Gall | Branching processes in Lévy processes : the exploration process[END_REF] 
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zΠ(dr, dz).

The result follows easily from this estimate combined with [START_REF] Dramé | Approximation of the Height process of a continuous state branching process with interaction[END_REF].

Proof of Proposition 3.7 : We have

We first notice that 0 ≤ e -λ -1 + λ ≤ λ , for all λ ≥ 0, this implies

Let Γ and Y δ N be independent copies of Γ and Y δ N respectively. We notice that

Let (Ξ k ) k≥1 be an sequence of i.i.d random variables whose common law is that of NΓ(τ N 1 ), such that in addition for any k ≥ 1, Ξ k and {Y re f δ N (r), r ≤ τ N k } are independent. We notice from Lemma 3.8 that Ξ 1 has an standard exponential distribution. The Proposition is now a consequence the next lemma.

Lemma 5.1 For any s > 0, 1

Proof. Let ε > 0, which will eventually go to zero. Let g ε , h ε : R + → R be two functions defined by

It is not hard to see that

where

[where using the identity E(Ξ k ∧ Nε) = 1e -Nε ],
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However, we first have

We can prove similarly that E[J N 3 (s, ε)] 2 -→ 0, as N → +∞. Combining Lemma 5.2 below and the fact that Y re f (r) > 0 dr a.s, we deduce

In addition, we deduce from the law of large numbers that J N 1 (s) -→ s, as N → +∞. The desired result follows by combining the above arguments. We finally establish a last result which we have used in the last proof.

Lemma 5.2 For any h

Proof. We have 1

We have E[B N (s)] = 0, while Var(B N (s)) =