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A NOTE ON SOME MICROLOCAL ESTIMATES USED TO PROVE
THE CONVERGENCE OF SPLITTING METHODS RELYING ON
PSEUDO-SPECTRAL DISCRETIZATIONS.

JOACKIM BERNIER, FERNANDO CASAS, AND NICOLAS CROUSEILLES

ABSTRACT. In [BCC20], we used some classical microlocal estimates to prove the conver-
gence of our splitting methods (for example page A671). In this note, through Corollary
2 and Remark 1, we provide a detailed proof of these estimates. All the proofs rely on
results presented in [NRI0].

We consider the classes of symbols S((x)®1 + (£)*2; (£), (x)), s1,s2 € R. By definition
(see Definition 1.1.1 page 19 in [NR10]), it contains the symbols a(z, &) such that

V3,6 € N, [0008a(2,6)] Sys (@) + (€)2)(2) (€)%,
We are going to prove the following proposition.
Proposition 1. If s1,s9 > 0 and b € S((x)®* + (£)°2; (£), (x)) then
Vu e FRY, | b7) 2] Shrapp (1 () + (€)°2)70) 2.
This proposition is useful to get the following corollaries.
Corollary 1. If s > 0 and a € S({(x)® + (£)*; (£), (x)) then
Yu € S (RY), [la®ullzz Sas llullxs

where

fulfe = [ (e lutoPas+ [ (fato)Pas

Rd
Proof of Corollary[dl. Since we have
((z)* 4 (€)*)? < 2((x)* + (£)*),

applying the Proposition 1.2.9 page 29 and the Theorem 1.2.16 page 31 in [NR10|, we get
a symbol

c € S(((2)° + (€))% (), (x)) T S(x)* + (€)™ (€), (),
such that
Consequently, applying Proposition [} for u € .#(R%), we have
la®ullFe = (u, )2 < cas(u, ()% 4+ (€)*) " u) 12 = ca,slullks

where ¢4 s is a constant depending only on a and s. U

J.B. thanks Paul Alphonse for his help and his advices to write this note.
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Corollary 2. If s > 0 and o, 8 > 0 are such that o + 5 < s then
vu e Z(RY), [(2)*(V) ullr2 Sas llullxs-
Proof of Corollary[dl. Since, by Young, we have

@707 < 550 + L0 < (0 + )"

applying the Theorem 1.2.16 page 31 in [NR10], we get a symbol
a € S((x)*(€); (€), (x)) C S((2)° + (€)% (€), (2)),
such that
a¥ = (z)¥(V)P.
Consequently, we conclude by applying the Corollary [ U

Remark 1. This corollary could be easily extended to control the terms we had in
[BCC20]. For exemple, provided that o + 8 4+ v < s, we could also control things like

V) @) (V) ull L2 ey 0F [1(0r, )7 (22)* {0yt 12 (Ra)

The proof of the Proposition [I] relies on the following technical lemma whose proof is
given in the subsection [[.T] of the Appendix.

Lemma 1. If a € S((z)%t + (£)%2; (€), (x)), there ewists r1 € S({z)*171 + (£)2;(£), (z)),
re € S({z)% + (£)%27 1 (€), (x)) such that

Ay =a¥ + 1) +ry
where A, is the Anti- Wick operator with symbol a (see Definition 1.7.8 page 53 in [NR10] ).

Finally, we focus on the proof of the Proposition [l

Proof of Proposition[l Let s1,s2 > 0 and b € S({z)5 4 (£)*2; (£), (x)). We aim at proving
that

(1) Yu € F(RY), [(u,0%w) 2] Spsr,s (u, ((2)° + (6)%2)" ) 2.
Since b € S((x)®* + (£)*2; (£), (x)), there exists a constant ¢; > 0 such that
V& € R a(w,€) = ap((@) +(§)™) £ b(z,€) > 0.

Since it is clear that (z)®1 + (£)*2 € S((x)*' + (£)*2;(€), (x)), we have a € S((z)*' +
(€)°2;(€), (x)) and so, by applying the Lemma [ we get 1 € S({z)* 7" + (£)**;(€), (z))
and o € S({z)* + (£)%271; (€), (x)) such that

Ay =a” +r) +ry.

Since the symbol a is nonnegative, by applying the Proposition 1.7.6 page 53 in [NR10],
we know that A, is a nonnegative operator and so

(2)  (u,Aqu)r2 = cpu, ((x) 4+ (€)%) u)r2 £ (u, b u)r2 + (u, r’u) 2 + (u, r$u)r2 > 0.

Finally, we have to control (u,r{u)r2 and (u,r§u)r2. By symmetry, we only focus on
(u7 ri”u)Lz .
We proceed by induction.



e (Case s1 > 1. By the induction assumption, we know that

(u, 1) 2 Shsa,so (u, ()77 +(€)°2) ) g2,

51 we have

and so since (z)%1~! < (z)
(u, T U) L2 Sbys,so (U5 ()7 4 (€)%)"u) 2.

e (Case s1 < 1. Applying Theorem 1.2.16 page 31 in [NRI0O], we get a symbol f €

S((&)72 () 7 + 1;(€), (x)) € S(1;1,1) such that

U=V TR ()T

Consequently, applying the Calderon-Vaillancourt theorem (Theorem 1.7.14 page 58 in

[NRI0]), this operator is bounded in L? and so
Vu e S (RY), (rf (V)72 2u, (V)72 2u) 2 Sops [lulf72-

As a consequence, the change of function u + (V>_52/ 2y provides the estimate
Vu € S(RY), (r{u, )z Sryyss (s (V)20) 12 Srsp (0 ((2)7 4 (6)%2) " 0) 2.
In any case, we have
(ri'u, u) 2 + (13w, u)r2 Spsy,se (u, ((2)7 +(6)7) ) 2.
Plugging this estimate in (2]) provides naturally the estimate (I]) we aimed at proving.
O

1. APPENDIX

1.1. Proof of Lemma [II We aim at proving that if a € S((z)** + (£)°2; (), (z)) then
there exists 71 € S({z)*17 + (£)%2; (€), (x)), m2 € S({z)*' + (£)*271; (£), (x)) such that

Ay =a" +r) +ry.
Applying the Proposition 1.7.9 page 55, we know that
A, =0"

where
. od —|z—y[2—|¢—n|? dy d?’]
(3) b(x,&) =2 /ued a(y,n)e (2m)d/2 (2m)d/2”

Consequently, we just have to decompose b in the good classes.
Naturally, the Taylor expansion at the order 1 of a in (x,§) is

1
a(y,m) = alz,€) + /O Bpala + t(y — ), € +t(y — £))dt(y — )

1
+ [ cale -+ tty — ), + 1l - 9)de(y  €)
0

Plugging this expansion in (B]) and realizing the change of coordinate (y,n) < (y—x,n—
€), we are naturally led to set

1
ri(z,§) = Qd/ / Oza(x +ty,E+1tn)y e lvlP=Inl* gy dy dn
R Jo

(27T)d/2 (271-)d/2
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and 1
_od —fyle—tni?g, 4y dn
ro(x,§) =2 /[Rd/o Oca(z +ty,§+1tn) ne dt (2)472 (27 )df2

By symmetry, we just check that 71 € S((x)*171 + (£)%2;(¢), (z)).

By definition, we just have to prove that
(4) 0507712, )] Sas (@)~ + (€)2) (@) (&)

Since, by assumption, we know that

|070¢a(@, )] Sys (@)™ + (€)%) (@) ~7(€) 7,
we deduce that
09107 a( + ty, € + )] Sas (@ + ty)™ + (€ + )™ (@ + ty) =€+ tn) 7.
Recalling the Peetre’s inequality (0.1.2) page 19 :
(@ +y)° Ss (@)° W), Yo,y €RY s €R,

we get
) 051 0 alw + ty, €+ )] Sapense (@) )"+ (€)% (0)*2) (@)= P y)*H ()"
Sasrss ((2)°+(€)) (@) o7 HE) T (y)ottHsr(miree.

Finally, observing that
(@)™ +(€)*2){a) ™ < (&)™ 7+ (€)™,
plugging (B)) in the definition of ry yields to (), i.e. 71 € S({z)*171 + (£)%2; (£), (x)).
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