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A NOTE ON SOME MICROLOCAL ESTIMATES USED TO PROVE THE CONVERGENCE OF SPLITTING METHODS RELYING ON PSEUDO-SPECTRAL DISCRETIZATIONS.

JOACKIM BERNIER, FERNANDO CASAS, AND NICOLAS CROUSEILLES Abstract. In [START_REF] Bernier | Splitting Methods for Rotations: Application to Vlasov Equations[END_REF], we used some classical microlocal estimates to prove the convergence of our splitting methods (for example page A671). In this note, through Corollary 2 and Remark 1, we provide a detailed proof of these estimates. All the proofs rely on results presented in [START_REF] Nicola | Global Pseudo-differential Calculus on Euclidean Spaces[END_REF].

We consider the classes of symbols S( x s 1 + ξ s 2 ; ξ , x ), s 1 , s 2 ∈ R. By definition (see Definition 1.1.1 page 19 in [START_REF] Nicola | Global Pseudo-differential Calculus on Euclidean Spaces[END_REF]), it contains the symbols a(x, ξ) such that

∀γ, δ ∈ N, |∂ γ x ∂ δ ξ a(x, ξ)| γ,δ ( x s 1 + ξ s 2 ) x -γ ξ -δ .
We are going to prove the following proposition.

Proposition 1. If s 1 , s 2 ≥ 0 and b ∈ S( x s 1 + ξ s 2 ; ξ , x ) then ∀u ∈ S (R d ), |(u, b w u) L 2 | b,s 1 ,s 2 (u, ( x s 1 + ξ s 2 ) w u) L 2 .
This proposition is useful to get the following corollaries.

Corollary 1. If s ≥ 0 and a ∈ S( x s + ξ s ; ξ , x ) then

∀u ∈ S (R d ), a w u L 2 a,s u X s where u 2 X s := R d x 2s |u(x)| 2 dx + R d ξ 2s |û(ξ)| 2 dξ.
Proof of Corollary 1. Since we have

( x s + ξ s ) 2 ≤ 2( x 2s + ξ 2s ),
applying the Proposition 1.2.9 page 29 and the Theorem 1.2.16 page 31 in [START_REF] Nicola | Global Pseudo-differential Calculus on Euclidean Spaces[END_REF], we get a symbol c ∈ S(( x s + ξ s ) 2 ; ξ , x ) ⊂ S( x 2s + ξ 2s ; ξ , x ), such that c w = (a w ) * a w . Consequently, applying Proposition 1, for u ∈ S (R d ), we have

a w u 2 L 2 = (u, c w u) L 2 ≤ c a,s (u, ( x 2s + ξ 2s ) w u) L 2 = c a,s u 2 X s
where c a,s is a constant depending only on a and s.

J.B. thanks Paul Alphonse for his help and his advices to write this note.

1 Corollary 2. If s ≥ 0 and α, β > 0 are such that α + β ≤ s then ∀u ∈ S (R d ), x α ∇ β u L 2 a,s u X s .
Proof of Corollary 1. Since, by Young, we have

x α ξ β ≤ α α + β x α+β + β α + β ξ α+β ≤ x s + ξ s ,
applying the Theorem 1.2.16 page 31 in [START_REF] Nicola | Global Pseudo-differential Calculus on Euclidean Spaces[END_REF], we get a symbol

a ∈ S( x α ξ β ; ξ , x ) ⊂ S( x s + ξ s ; ξ , x ),
such that a w = x α ∇ β . Consequently, we conclude by applying the Corollary 1.

Remark 1. This corollary could be easily extended to control the terms we had in [START_REF] Bernier | Splitting Methods for Rotations: Application to Vlasov Equations[END_REF]. For exemple, provided that α + β + γ ≤ s, we could also control things like

∇ γ x α ∇ β u L 2 (R d ) or ∂ x 1 γ x 2 α ∂ x 2 β u L 2 (R d ) .
The proof of the Proposition 1 relies on the following technical lemma whose proof is given in the subsection 1.1 of the Appendix.

Lemma 1. If a ∈ S( x s 1 + ξ s 2 ; ξ , x ), there exists r 1 ∈ S( x s 1 -1 + ξ s 2 ; ξ , x ), r 2 ∈ S( x s 1 + ξ s 2 -1 ; ξ , x ) such that A a = a w + r w 1 + r w 2
where A a is the Anti-Wick operator with symbol a (see Definition 1.7.3 page 53 in [START_REF] Nicola | Global Pseudo-differential Calculus on Euclidean Spaces[END_REF]).

Finally, we focus on the proof of the Proposition 1.

Proof of Proposition 1. Let s 1 , s 2 ≥ 0 and b ∈ S( x s 1 + ξ s 2 ; ξ , x ). We aim at proving that

(1) ∀u ∈ S (R d ), |(u, b w u) L 2 | b,s 1 ,s 2 (u, ( x s 1 + ξ s 2 ) w u) L 2 .
Since b ∈ S( x s 1 + ξ s 2 ; ξ , x ), there exists a constant c b > 0 such that

∀x, ξ ∈ R d , a(x, ξ) := c b ( x s 1 + ξ s 2 ) ± b(x, ξ) ≥ 0.
Since it is clear that x s 1 + ξ s 2 ∈ S( x s 1 + ξ s 2 ; ξ , x ), we have a ∈ S( x s 1 + ξ s 2 ; ξ , x ) and so, by applying the Lemma 1, we get r 1 ∈ S( x s 1 -1 + ξ s 2 ; ξ , x ) and r 2 ∈ S( x s 1 + ξ s 2 -1 ; ξ , x ) such that

A a = a w + r w 1 + r w 2 .
Since the symbol a is nonnegative, by applying the Proposition 1.7.6 page 53 in [START_REF] Nicola | Global Pseudo-differential Calculus on Euclidean Spaces[END_REF], we know that A a is a nonnegative operator and so

(2) (u, A a u) L 2 = c b (u, ( x s 1 + ξ s 2 ) w u) L 2 ± (u, b w u) L 2 + (u, r w 1 u) L 2 + (u, r w 2 u) L 2 ≥ 0.
Finally, we have to control (u, r w 1 u) L 2 and (u, r w 2 u) L 2 . By symmetry, we only focus on (u, r w 1 u) L 2 . We proceed by induction.

• Case s 1 > 1. By the induction assumption, we know that (u, r w 1 u) L 2 b,s 1 ,s 2 (u, ( x s 1 -1 + ξ s 2 ) w u) L 2 , and so since x s 1 -1 ≤ x s 1 we have

(u, r w 1 u) L 2 b,s 1 ,s 2 (u, ( x s 1 + ξ s 2 ) w u) L 2 . • Case s 1 ≤ 1. Applying Theorem 1.2.16 page 31 in [NR10], we get a symbol f ∈ S( ξ -s 2 x s 1 -1 + 1; ξ , x ) ⊂ S(1; 1, 1) such that f w = ∇ -s 2 /2 r w 1 ∇ -s 2 /2
. Consequently, applying the Calderón-Vaillancourt theorem (Theorem 1.7.14 page 58 in [START_REF] Nicola | Global Pseudo-differential Calculus on Euclidean Spaces[END_REF]), this operator is bounded in L 2 and so

∀u ∈ S (R d ), (r w 1 ∇ -s 2 /2 u, ∇ -s 2 /2 u) L 2 r w 1 ,s 2 u 2 L 2 . As a consequence, the change of function u ← ∇ -s 2 /2 u provides the estimate ∀u ∈ S (R d ), (r w 1 u, u) L 2 r 1 ,s 2 (u, ∇ s 2 u) L 2 r 1 ,s 2 (u, ( x s 1 + ξ s 2 ) w u) L 2 .
In any case, we have

(r w 1 u, u) L 2 + (r w 2 u, u) L 2 b,s 1 ,s 2 (u, ( x s 1 + ξ s 2 ) w u) L 2 .
Plugging this estimate in (2) provides naturally the estimate (1) we aimed at proving. 1. Appendix 1.1. Proof of Lemma 1. We aim at proving that if a ∈ S( x s 1 + ξ s 2 ; ξ , x ) then there exists r 1 ∈ S( x s 1 -1 + ξ s 2 ; ξ , x ), r 2 ∈ S( x s 1 + ξ s 2 -1 ; ξ , x ) such that A a = a w + r w 1 + r w 2 . Applying the Proposition 1.7.9 page 55, we know that Naturally, the Taylor expansion at the order 1 of a in (x, ξ) is

a(y, η) = a(x, ξ) + 1 0 ∂ x a(x + t(y -x), ξ + t(η -ξ))dt(y -x) + 1 0 ∂ ξ a(x + t(y -x), ξ + t(η -ξ))dt(η -ξ).
Plugging this expansion in (3) and realizing the change of coordinate (y, η) ← (yx, ηξ), we are naturally led to set

r 1 (x, ξ) = 2 d R d 1 0 ∂ x a(x + ty, ξ + tη) y e -|y| 2 -|η| 2 dt dy (2π) d/2 dη (2π) d/2 and r 2 (x, ξ) = 2 d R d 1 0 ∂ ξ a(x + ty, ξ + tη) η e -|y| 2 -|η| 2 dt dy (2π) d/2 dη (2π) d/2
. By symmetry, we just check that r 1 ∈ S( x s 1 -1 + ξ s 2 ; ξ , x ). By definition, we just have to prove that (4)

|∂ α x ∂ β ξ r 1 (x, ξ)| α,β ( x s 1 -1 + ξ s 2 ) x -α ξ -β .
Since, by assumption, we know that x ∂ β ξ a(x + ty, ξ + tη)| α,β,s 1 ,s 2 ( x s 1 y s 1 + ξ s 2 η s 2 ) x -α-1 ξ -β y α+1 η β α,β,s 1 ,s 2 ( x s 1 + ξ s 2 ) x -α-1 ξ -β y α+1+s 1 η β+s 2 .

|∂ γ x ∂ δ ξ a(x, ξ)| γ,δ ( x s 1 + ξ s 2 ) x -γ ξ -δ ,
(5)

Finally, observing that

( x s 1 + ξ s 2 ) x -1 ≤ x s 1 -1 + ξ s 2 ,
plugging (5) in the definition of r 1 yields to (4), i.e. r 1 ∈ S( x s 1 -1 + ξ s 2 ; ξ , x ).

A

  a = b w where (3) b(x, ξ) := 2 d R d a(y, η)e -|x-y| 2 -|ξ-η| 2 dy (2π) d/2 dη (2π) d/2 . Consequently, we just have to decompose b in the good classes.

  + ty, ξ + tη)| α,β ( x + ty s 1 + ξ + tη s 2 ) x + ty -α-1 ξ + tη -β .Recalling the Peetre's inequality (0.1.2) page 19 :x + y s s x s y |s| , ∀x, y ∈ R d , s ∈ R, we get

	we deduce that
	|∂ α+1 x ξ a(x |∂ α+1 ∂ β