

Combining geostatistics and physically-based simulations to characterize contaminated soils

Mathieu Le Coz¹, Léa Pannecoucke², Xavier Freulon², Charlotte Cazala¹, Chantal de Fouquet² ¹Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 92260 Fontenay-aux-Roses, France ²MINES ParisTech, PSL University, Centre de Géosciences, 77300 Fontainebleau, France

Context

How to **characterize contamination in soils or groundwater** when dealing with a polluted site needing remediation and with **a small amount of available observations**?

Geostatistical estimation (kriging)

- + Observations honored
- Physical information not taken into account
- Performances limited if few data available

Direct flow-and-transport simulations

- + Physically-based model
- Uncertainties in modeling parameters
- Observations not honored

Outline

Development of a method using physical information given by physically-based simulations into a geostatistical framework:

1. The Kriging with Numerical Variograms (KNV) method

- 2. A synthetic reference test case
- 3. Comparison of KNV to classical krigings

Limitation of classical geostatistical approaches

EGU Fall Meeting 2020 Sharing Geoscience Online - 06/05/2020

The KNV principle

Outline

Development of a method using physical information given by physically-based simulations into a geostatistical framework:

- 1. The Kriging with Numerical Variograms (KNV) method
 - 2. A synthetic reference test case
 - 3. Comparison of KNV to classical krigings

Small amount of observations

Flow-and-transport simulations

Kriging with Numerical Variograms

Outline

Development of a method using physical information given by physically-based simulations into a geostatistical framework:

- 1. The Kriging with Numerical Variograms (KNV) method
 - 2. A synthetic reference test case
 - 3. Comparison of KNV to classical krigings

Classical methods

- Ordinary kriging (OK), which is widely used but known to perform poorly when the number of data is too small or when the phenomenon under study is complex;

- Kriging with external drift (KED), which enables the incorporation of auxiliary variables to take non-stationarity into account.

Results (1)

Reference tritium plume

Results (2)

Results (3)

The characterization of the tritium plume within the unsaturated zone is not accurate, **due to the uncertainties related to hydraulic parameters**, even if the initial boundary conditions of the flow-and-transport model are fixed.

KNV improves the estimates of the tritium plume in the unsaturated zone compared to OK and KED: estimation errors and standard deviation errors are reduced.

KNV is even more interesting **when the number of observations of pollutant is reduced**. It also works when the boreholes are located around the zone of high values of activities.

For more information:

Pannecoucke, L., Le Coz, M., Freulon, X., de Fouquet, C. 2019. Combining geostatistics and simulations of flow and transport to characterize contamination within the unsaturated zone. Science of The Total Environment 699.