

Abstract— An efficient hardware implementation of correlated

Rayleigh fading channel simulator is presented in this paper. It

emulates Doppler effects based on the use of Overlap-Save (OLS)

method. OLS is used for both, the fading variates generator and

the time domain interpolator, leading to a scalable complete

solution. Moreover, additional simplifications were introduced to

reduce even further algorithmic complexity when compared with

the original OLS-based proposal. An efficient hardware

implementation is achieved through maximizing the utilization

rate of allocated hardware resources. When added to its

scalability, this makes the proposal appealing to emulate channels
with multipath effects for MIMO systems. Indeed, the proposed

parallel architecture enables a throughput of 34 Mega Samples per

Second per path at a clock frequency of 275 MHz on Xilinx Virtex-

7 FPGA. The achieved throughput allows the support of the most

demanding LTE configuration with 20 MHz channel bandwidth.

To the best of our knowledge, this is the first ever real-time

hardware implementation of OLS-based channel emulator.

Index Terms— Channel Emulator, Overlap-Save Method, High

throughput, FPGA

I. INTRODUCTION

UCCESFUL deployment of a wireless communication system

calls for a prior evaluation of its performance under

different channel conditions. The use of a channel emulator

provides an appealing alternative to tedious and costly real-time

field-testing. Generation of Gaussian random variates [1] can

be used for emulating a fading channel with Doppler effects.

Emulation techniques are categorized into three main methods:

Sum of Sinusoids (SOS), Gaussian noise filtering and

FFT/IFFT-based. These methods can be extended to support

different fading distributions following the works in [2-5].

Sum of Sinusoids (SOS) method [6] is based upon adding a

large number of sinusoids to emulate the variation of fading. In

real-time scenario having long simulation times, SOS can suffer

from a periodicity issue between output samples. The second

approach requires filtering the Gaussian noise with a Doppler

filter [7-8]. The type of filter, e.g. Finite Impulse Response

(FIR) or Infinite Impulse Response (IIR), greatly affects the

design in terms of hardware complexity and stability.

The FFT/IFFT-based method [9] incorporates frequency

domain filtering to get Rayleigh fading variates. This is

achieved by multiplying Fourier transform of Gaussian

variables with a frequency domain Doppler filter taps.

However, the use of large FFT sizes requires higher hardware

cost [10] whereas the use of smaller FFT/IFFT sizes suffers

from a discontinuity of generated samples.

Muhammad Nauman, Atif Raza Jafri and M. Najam-ul-Islam are with Electrical
Engineering Department of Bahria University Islamabad, Pakistan.

Authors in [10] proposed a new technique for generating

Rayleigh fading variates by incorporating Overlap-Save (OLS)

method. This technique combines a smaller FFT size with OLS

to reduce computational complexity and to overcome the

discontinuity issue. Moreover, the introduction of an OLS-

based interpolator for the support of low Doppler frequencies

reduces further computational complexity while achieving a

high level of scalability. Therefore, the proposal in [10]

achieves a high accuracy close to that of FFT/IFFT and FIR

approaches, yet with significantly reduced complexity enabling

real-time hardware implementations. Although the complexity

of the SOS method remains the lowest, it cannot be used in long

real-time emulations due to the periodicity issue that affects the

accuracy and reliability of emulated channel effects [10].

Main prior solutions for real-time hardware implementations

of different channel emulators can be found in [11-15].

Solutions in [11-14] are SOS-based whereas the solution in [15]

represents a novel Sum-of-Frequency-Modulation (SoFM)

method used in a Multiple-Input Multiple-Output (MIMO)

system. While looking at the OLS-based emulator presented in

[10], implementation complexity is provided only in terms of

complex arithmetic operations. Taking into account the

improved accuracy provided by the OLS-based emulator when

compared to the SOS method and the reduced complexity when

compared to the FFT/IFFT based filtering method, the work

presented in this paper fills the gap of non-existent hardware

implementation of OLS-based emulator. Indeed, several

architectural choices have been explored to set the course for

important choices such as FFT size, number of generated

samples, supported sampling frequency, and interpolation size.

Hence, this work represents the first attempt to provide a

concrete hardware implementation for an OLS-based channel

emulator. Moreover, a key feature of our proposed architecture

concerns its scalability while keeping a high degree of

efficiency and utilization rate. In this regard, multiple instances

can be used to emulate multiple channels or to achieve higher

throughput or both, adding to the originality of the approach.

Many trials and architecture exploration iterations were applied

to achieve this goal. This exploration phase involved adjusting

operational frequency of functional blocks, pipelining at sub-

block and system levels, and using promising methods for area

reduction. In particular and differently from the original paper

[10], we chose to implement the interpolation block in time

domain instead of frequency domain through the management

of introduced zeros. This greatly reduces the required memory,

even with respect to the reference proposal in [10].

Jérémy Nadal is with Polytechnique Montréal, Canada; Charbel Abdel Nour,
and Amer Baghdadi are with IMT Atlantique, Lab-STICC, Brest, France.

M. Najam-ul-Islam, Muhammad Nauman, Atif Raza Jafri, Jérémy Nadal, Charbel Abdel Nour, and Amer Baghdadi

Hardware Implementation of Overlap-Save

based Fading Channel Emulator

S

II. SYSTEM MODEL

The OLS-based channel emulator is shown in Fig. 1 [10].
The generator first provides Rayleigh fading variates at an
intermediate sampling frequency dependent on the fading

variation or speed of movement. Then additional variates are
introduced between two generator variates through
interpolation to match the target transmitted signal sampling

frequency as seen in Fig. 1 and in compliance with [10].

Figure 1: Block diagram of OLS-based channel emulator

A. Generator

The OLS generator resorts to fast circular convolution in
frequency domain that can be applied through FFT/IFFT [10].

In each trial, 𝐿 new samples, corresponding to the useful
samples, are introduced along 𝑀−1 samples from the previous

block to provide 𝑥𝑁 where 𝑁 is the FFT size (𝑁= 𝐿 +𝑀−1).
Applying a Doppler filter in frequency domain as proposed in
[13] with OLS causes discontinuities between blocks.

Therefore, a correction procedure is applied as defined in [10]
through shifting filter coefficients and windowing:

ℎ𝑁[𝑘] =

{

 Γ(

3
4
)

Γ(
5
4
)
√𝑓𝑑 , for 𝑘 =

𝑀

2

Γ(
3

4
) √(

𝑓𝑑

π𝑇𝑠|𝜆𝑘|
)

4

𝐽1
4

(2π𝑇𝑠|𝜆𝑘|), for 0 ≤ 𝑘 ≤
𝑁 +𝑀

2

Γ (
3

4
) √(

𝑓𝑑

π𝑇𝑠|𝜆𝑘 − 𝑁|
)

4

𝐽1
4

(2π𝑇𝑠|𝜆𝑘 −𝑁|), otherwise

(1)

where Γ is the Gamma function, 𝐽1
4

 is the Bessel function (first

kind), 𝑀 is the number of non-zero filter coefficients and 𝜆𝑘 =
𝑘 −𝑀/2. Furthermore, the filter ℎ𝑁[𝑘] is centered at 𝑀/2 and
multiplied with a Kaiser Window [16] to remove discontinuities

caused by suppressing filter taps 𝑀≤ 𝑘 ≤𝑁 −1) [10]. The
size of Kaiser Window is equal to the FFT size whereas filter

taps depend on the value of 𝑀 [10].

B. Interpolator

The interpolator is introduced to reduce the computational
complexity of the complete channel emulator while keeping the

required scalability in terms of supported Doppler and signal
frequencies for practical scenarios. Its use is particularly critical
for the cases where the ratio between the sampling frequency

and the Doppler frequency is very large. The interpolator first

inserts 𝑁𝐼−1 zero samples between any two generator
Rayleigh fading variates to provide 𝐿 samples. 𝑁𝐼 is defined by

dividing the sampling frequency 𝑓𝑠 by the intermediate
sampling frequency. To simplify the interpolator design

applying FFT/IFFT, 𝑁𝐼 is chosen to be a power of two.
Moreover, the choice of the intermediate sampling frequency is
constrained by the acceptable level of out-of-band power

leakage [10]. Zero packed variates are concatenated with 𝑀−
1 zero packed previous variates and frequency domain filtering

is then applied to get 𝐿 new final samples. To follow the
transmitted signal, the interpolator filter applies a sinc function

that is sampled and truncated to a FIR filter [10]:

𝑔𝑁[𝑘] =

{

 sin(𝜋𝑓𝑠 (𝑛 −

𝑀
2
))

𝜋𝑓𝑠 (𝑛 −
𝑀
2
)

, if 0 ≤ 𝑘 <
𝑁 +𝑀

2

sin(𝜋𝑓𝑠 (𝑛 −
𝑀
2
− 𝑁))

𝜋𝑓𝑠 (𝑛 −
𝑀
2 − 𝑁

)
,if
𝑁 + 𝑀

2
≤ 𝑘 < 𝑁

(2)

Interpolation filter is also multiplied with a Kaiser Window
to avoid discontinuities.

C. Multipath Channel and MIMO System

Multipath-MIMO system requires emulation of individual
paths of the channels between each transmit and receive

antenna. Considering Extended Vehicular A (EVA) and
Extended Typical Urban (ETU) channel models of LTE [17],
nine statistically independent channel paths are specified with

different power-delay profiles in a Single Input Single Output
(SISO) configuration. Therefore, 4×9 = 36 paths are required to
mimic channel behavior of a 2×2 MIMO system. In order to

support the largest bandwidth of 20 MHz, the minimum
required throughput should be 30.7 MSPS per channel path. In

this regard, we consider a short safe margin and target a slightly
larger throughput of 34 MSPS. In addition, to support multiple
communications services, the hardware of the emulator should

be scalable to support a wide scope of possibilities ranging from
single path SISO to multipath MIMO systems while
maintaining efficient hardware utilization.

III. TIMING REQUIREMENTS AND ARCHITECTURAL CHOICES

In order to propose an efficient hardware architecture there is
a need to assess the timing requirements of each building block.
Appropriate hardware implementation techniques such as

process level and register level pipelining to improve timing
requirements, are applied.

A. Timing Requirements

Timing requirements related to each functional block depend

upon the corresponding parameters such as value of 𝐿,𝑀 and

𝑁. In our case 𝑁 =8192 whereas 𝐿 can take the value of 4, 8,
16, 32 and 64 to simulate a Doppler frequency 𝑓𝑑 ranging from
11 to 344 Hz. Hence, the Generator block of Fig. 1 performs 8K

point FFT/IFFT operations and generates 4, 8, 16, 32 or 64
samples. These outputs of the generator block are up-sampled
through zero padding by the interpolator block (Fig. 1) to

generate 4K outputs. The other 4K data samples are taken from
the previous trial to make a block of 8K data samples. 8K

FFT/IFFT operations are then performed and finally 4K new
samples are generated. To achieve a throughput of 34 MSpS,
the system given in Fig. 1 is applied 34M/4096 i.e. 8301

times/sec. This provides a timing requirement of 120 µsec to
complete the processing in all functional blocks of Fig. 1.

B. Architectural Choices

1) Generator Block
In the generator block, the frequency domain Doppler filter

coefficients are considered as input (coefficients are generated
before the emulation process) due to their slow varying nature.

They are computed depending on the speed of mobile device.
This avoids the application of the Doppler filter sequence
generator and the following FFT in the generator block of

Fig. 1. To complete the generator, architectures for Gaussian
variate source, 8K-point FFT, complex multiplication and 8K-
point IFFT are still required while meeting the requirements of

the output sample rate.
2) Interpolator Block

Interpolation process involves up-sampling (zero insertion)
followed by filtering. In the original OLS method [10]
presented in Fig. 1, frequency domain filtering is used.

However, time domain filtering can be also considered due to
the presence of a large number of zeros in the up-sampled input
data to the filter. This zero insertion provides the opportunity to

reduce the hardware cost in FIR filter architecture as proposed
in [18].

3) Fixed-Point Representation
 In order to sca le the data path, the floating point golden

reference software model was converted to fixed-point model.

Word lengths for all the inputs and outputs are chosen carefully
in order to use available resources efficiently while respecting
required accuracy. Table 1 illustrates our chosen word lengths.

Complex values have two components to represent both real
and imaginary parts.

Table 1: Word lengths of the proposed fixed-point representation

Parameter
Complex

/Real
No. of Bits

Gaussian Variates 𝑥𝑁[𝑘] Complex 16

Doppler Filter Coefficients ℎ𝑁[𝑘] Complex 16

FFT Inputs Complex 16

Interpolator Filter Coefficients 𝑔𝑁[𝑘] Real 25

Final Outputs Complex 16

IV. HARDWARE ARCHITECTURE OF CHANNEL EMULATOR

This section starts by detailing the hardware architecture of

individual computational blocks followed by the overall
architecture of the channel emulator along with the task
mapping on each block.

A. Gaussian Variate Source

For complex Gaussian variate generation, two instances of a

Gaussian generator are required. We have used the open source
core for Gaussian noise generation (GNG) presented in [19]. It

represents a resource-efficient high-throughput implementation
while having a long period of 2176.

B. FFT/IFFT

Computing 8K FFT/IFFT requires the major part of the DSP
operations carried out in the generator block of Fig. 1. Two

approaches are possible: the use of dedicated hardware for each
FFT/IFFT block or the re-use of a single FFT/IFFT core to
perform all FFT/IFFT blocks needed in the generator block.

Considering targeted throughput, we have adopted the second
option. This option can simplify achieving the required
scalability for emulating multipath channels and MIMO. This

also helps to opt for the specialized limited FPGA resources
such as DSP blocks and to be able to use them efficiently.

Our FFT/IFFT block is capable of pipelining in frame
loading, computing and frame output. One input bit selects FFT
or IFFT operation. Each frame-loading and frame-output

process takes 8192 Clock Cycles (CC) whereas computations
take 8332 CC. This results in 24,716 CC to process one 8K FFT
or IFFT. This block can reach 278 MHz on Virtex-7 FPGA.

C. FIR Filter for Interpolator

In order to achieve the required throughput for worst case

scenario i.e. 𝐿 =64 (the case with minimum zero padding), 16
real multipliers are placed to multiply 8 complex inputs with 8
real filtering coefficients in parallel. The coefficients are stored
in memory (25 bits for each) whereas 64 registers, storing

complex inputs, are used to act as shift registers of the FIR filter.
Each input and output of the interpolator are quantized over 16
bits. The architecture of the filter is flexible with regards to

specific well-chosen values of 𝐿 defining required resources
through the control path. To generate a set of 4096 channel

coefficients, the whole process takes 32778 CC and the highest
achievable frequency is 295.8 MHz on Virtex-7 FPGA.

D. Channel Emulator: Complete Architecture

The operating frequency of the FFT/IFFT core being lower than

the one of the FIR filter, it is adopted as operating frequency of
our channel emulator. It allows 33,379 CC in 120 µs which is
the time required to generate one set of 4096 channel

coefficients. Since the FFT/IFFT processing in the generator
takes 24716 CC and since the FIR filtering in the interpolator is
taking 32778 CC, process level pipelining is proposed between

these two blocks through a memory able to store 𝐿 variates
created by the generator block.

Since FFT and IFFT processes are performed successively in
the generator block, three process level pipelining within our

proposed FFT/IFFT block can be optimally utilized if two
frames for separate multipath channels are processed in parallel.
The frame level processing is shown in Fig. 2. At the start,

Frame 1 of complex Gaussian variates of Path 1 (green color)
is loaded. After 8192 CC, Frame 1 of path 1 is sent to FFT
processing whereas in the meanwhile Frame 1 of Gaussian

variates of Path 2 is loaded (orange color). After the processing
of Frame 1 of Path 1, the three pipeline lanes are filled and

32778 CC are required to produce successively two sets of 𝐿
variates for two paths of a Rayleigh fading channel. The

interpolation of data for the first path starts once variates of the
second path are ready as indicated by the gray colored wait
block in Fig. 2. This design choice allows the use of one set of

coefficients for both interpolators and hence reduces the size of
the corresponding memory storing these coefficients. The
variates are given to two interpolator blocks for final outputs

generation in parallel while taking 32918 CC to process a block.

Figure 2: Process execution sequence in the generator and interpolator blocks

Control
Circuit for
FFT/IFFT

Memory
Select

Temporary
Memory

64x60

Interpolator

Interpolator

GNG

GNG

FFT
Core
8192

GNG
Memory
Dual Port
8192x32

Interpolator
Real

Coefficients
Memories

GNG

GNG

1

0

1

0

Complex
Multiplier

GNG
Memory
Dual Port
8192x32

Doppler Coefficients

1

0

Output/
IFFT

Binary
Counter

1

0

Figure 3: Hardware architecture of channel emulator

Since both processes, the generation and the interpolation,
require a number of CC less than the allowed 33,379 CC, a
throughput of 34 MSpS per path for two paths can be achieved
with our proposed pipelining and task scheduling on used

resources. The complete architecture of channel emulator is
shown in Fig. 3 where two GNG memories hold Gaussian

variates for two paths generated through four instances of GNG
IP core. A single FFT/IFFT block is used along with
multiplexers/de-multiplexers and control circuitry to perform

both FFT and IFFT operations following the schedule
illustrated in Fig. 2. One Doppler coefficients memory and one
complex multiplier are used to multiply the output samples of

the FFT by these coefficients. A 64-word (for highest value

of 𝐿 = 64) temporary memory holds the result of the generator
of the first path to start interpolation of both paths in parallel.
As explained earlier, this single memory can be re-used for two

interpolators. Finally, two instances of the interpolator, detailed
in Section III. C, are placed to generate final outputs.

V. IMPLEMENTATION & PERFORMANCE COMPARISON

A. Implementation Results

A Virtex-7 XC7VX550T FPGA from Xilinx was selected as
implementation platform. Table 2 illustrates the post place and

route results of our architecture. Fewer resources are required
in the interpolator block compared to the generator block
especially in terms of memory: almost 5 times less 18Kbits

BRAM and 27 times less 36Kbits BRAM. This fully justifies
our proposal of implementing the interpolation in time domain.

Table 2: Post Place & Route results of the proposed channel emulator

Process Slices BRAM
(18K)

BRAM
(36K)

DSP
Slices

Max. Freq.
(MHz)

Generator 2,402 52 27 37 278.164

Interpolator 2,352 10 1 32 295.770

2 × 2 MIMO 85,572 1,116 504 1,242 278.164

Moreover, thanks to improved hardware efficiency through
pipelining at process and hardware architecture levels, two

streams of channel coefficients, each achieving a throughput of
34 MSpS, were provided. The resulting architecture is
inherently scalable in support of multiple paths and throughput

levels. As a path scalability example, consider a 2×2 MIMO
system where each of the 4 channels have 9 paths. 18 instances
of the proposed architecture can be easily instantiated to

emulate the corresponding channel. The post Place & Route
results are shown in Table 2.

For the throughput level scalability, the outputs of multiple
architecture instances can be collected in a buffer and can be
sent at a rate of one coefficient per clock cycle. Hence, the

output can be raised beyond 278 MSpS per path. Finally, in
order to validate the accuracy of output results, a comparison in
terms of achieved Power Spectral Density (PSD) was

performed as shown in Fig. 4. The PSD drawn from the floating
point OLS C-model was taken as reference. It is clear that the

PSD results of fixed-point model and actual FPGA
implementation closely match the reference C-model.

Figure 4: Normalized PSD comparison of output samples taken from

floating point reference model, fixed-point model and FPGA for 𝑓𝑑 =
17.22 Hz and 𝑓𝑠 = 30.72 MHz

Table 3: Comparison with state-of-the-art in terms of features, scalability and hardware implementation

Ref. FPGA Application Domain Scalability Slices/LUTs DSP48 BRAMs MSpS Throughput/Area
(Samples/Slice) Throughput Path

[11] Virtex-2 SISO No Yes 8814/- - - 210 23825

[12] Virtex-4 SISO No Yes 1164 /- - - 0.585 502

[13] Virtex-4 SISO No No 725/922 3 1 no info. N/A

[14] Virtex-4 SISO No Yes 731/1220 - - 0.1 136

[15] Kintex-7 MIMO N/A N/A 381/1524 16 17 0.0625 164

Our Solution Virtex-7 SISO/MIMO Yes Yes 4754/13029 69 28 68 14303

B. Comparison with state-of-the-art

 Keeping in mind the limited relevant published work,
comparison with state-of-the-art is challenging from a hardware

implementation perspective. In this regard, data taken from
cited work [11-15] is tabulated in Table 2. This table contains
information regarding key aspects of a solution such as domain

of application, scalability towards increasing throughput and/or
emulating more paths/channels, FPGA and its resource

consumption, throughput and throughput/area ratio. As far as
application domain is concerned, our solution can be used for
SISO and MIMO systems in contrast to previous works that are

limited to only one particular system. Scalability is another
figure of merit since instantiating multiple copies of the
proposed architecture can be simply used to improve

throughput and/or to emulate multiple paths. This is difficult to
achieve with previous methods such as SOS while still

providing accurate simulations. The highest throughput is
achieved by the solution in [11]. Achieved at a rate of one
sample per clock cycle, this throughput cannot be increased

further through scalability without re-thinking the architecture.
However, our solution can provide a throughput more than 278
MSpS using multiple blocks of the proposed architecture.

Hardware utilization is another key outcome of our work. It
can be observed that since the works in [11-14] are SOS based,

no or very few BRAM or DSP Blocks are used due to their
simplified architecture. Our solution requires additional
hardware in terms BRAM and DSP due to the entirely different

nature of involved computations. Nonetheless, this provides the
price to pay in hardware resources by the use of the OLS
method to overcome the drawbacks in terms of accuracy

associated with SOS method.
Due to the different nature of the computations, any fair

comparison of the throughput/area ratios across the methods
should be considered jointly with the achieved level of
accuracy. In the work presented in [15], the throughput is far

less when compared to our solution and hence providing much
lower throughput over area ratio.

VI. CONCLUSION

We have proposed the first real-time FPGA implementation
of an OLS-based channel emulator. It achieves a throughput of

34 MSpS per path for the 20MHz channel of the LTE standard.
It presents several advantages: support of SISO and MIMO,
scalability in terms of throughput and multiple paths, improved

hardware efficiency through pipelining and sample distribution
accuracy. The proposed time-domain interpolation largely
reduces the hardware complexity thanks to the devised

simplifications made possible through zero padding.
Comparison with existing prior art was done including the

features of the emulator. This comparison clearly identifies the

cost in terms of hardware resources to overcome the spectral
property issues related to the SOS method through adopting the
OLS method. Hence, a new accuracy/hardware complexity

tradeoff becomes a possible choice for channel emulation.

VII. REFERENCES

[1] J. S. Malik and A. Hemani, "Gaussian random number generation: a survey

on hardware architectures," ACM Computing Surveys, vol. 49, no. 3, pp.
53:1-53:37, Oct. 2016.

[2] Ma, Y., and Zhang, D.: ‘A method for simulating complex Nakagami-m
fading time series with non-uniform phase and prescribed autocorrelation

characteristics’, IEEE Trans. Veh. Technol., 2010, 59, (1), pp. 29–35.
[3] L. Martino, D. Luengo, "Extremely efficient acceptance-rejection method

for simulating uncorrelated Nakagami fading channels", Communications
in Statistics - Simulation and Computation, Volume 48, Number 6, Pages:

1798-1814, 2019.
[4] Cao, L., and Beaulieu, N.C.: ‘Simple efficient methods for generating

independent and bivariate Nakagami-m fading envelope samples’, IEEE
Trans. Veh. Technol., 2007, 56, (4), pp. 1573 – 1579

[5] Zhu, Q.M., Dang, X.Y., Xu, D.Z., and Chen, X.M.: ‘Highly efficient
rejection method for generating Nakagami-m sequences’, Electron. Lett.,

2011, 47, (19), pp. 1100–1101
[6] M. Patzold, C.-X. Wang and B. O. Hogstad, "Two new sum-of-sinusoids-

based methods for the efficient generation of multiple uncorrelated
rayleigh fading waveforms," IEEE Trans. Wireless Commun , vol. 8, no.

6, pp. 3122-3131, Jun. 2009.
[7] C. Iskander, "A matlab-based object-oriented approach to multipath fading

channel simulation," Feb. 2018. [Online].
[8] C. Komninakis and J. F. Kirshman, "Fast Rayleigh fading simulation with

an IIR filter," RF Design, pp. 24-34, Jul. 2004.
[9] D. Young and N. Beaulieu, “The generation of correlated Rayleigh random

variates by inverse discrete Fourier transform”, vol. 48, no. 7, pp. 1114-
1127, Jul. 2000.

[10] J. Yang, C. A. Nour and C. Langlais, "Correlated fading channel simulator
based on the overlap-save method," IEEE Trans. Wireless Commun , vol.

12, no. 6, pp. 3060 - 3071, Jun. 2013.
[11] A. Ali Mohammad and B. F. Cockburn, "Modeling and hardware

implementation aspects of fading channel simulators," in IEEE Tran. Veh.
Technol., vol. 57, no. 4, pp. 2055-2069, Jul. 2008.

[12] A. Alimohammad and S. F. Fard, "FPGA Implementation of isotropic and
nonisotropic fading channels," IEEE Trans. Circuits Syst., II, Exp. Briefs,

vol. 60, no. 11, pp. 796 - 800, 26 Sep. 2013.
[13] P. Huang, "A novel structure for Rayleigh channel generation with

consideration of the implementation in FPGA," IEEE Trans. Circuits Syst.,
II, Exp. Briefs, vol. 63, no. 2, pp. 216-220, Feb. 2016.

[14] P. Huang, Y. Du and Y. Li, "Stability analysis and hardware resource
optimization in channel emulator design," IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 63, no. 7, pp. 1089 - 1100, 27 Jun. 2016.
[15] Q. Zhu et. al "A novel 3D nonstationary wireless MIMO channel simulator

and hardware emulator," IEEE Trans. Commun., vol. 66, no. 9, pp. 3865 -
3878, 09 Apr. 2018.

[16] A. V. Oppenheim, R. W. Schafer and J. R. Buck, "Discrete-Time Signal
Processing" in , Prentice-Hall, 1999.

[17] ETSI, "ETSI TS 136 101 V10.3.0," June 2011. [Online].
[18] A. R. Jafri et. al "Hardware complexity reduction in universal filtered

multicarrier transmitter implementation," IEEE Access, vol. 5, pp. 13401-

13408, 2017.
[19] G. Liu, Gaussian noise generator core specification, OpenCores, Jan. 2015.

	I. INTRODUCTION
	I.
	I.
	I.
	I.
	II. System Model
	A. Generator
	B. Interpolator
	C. Multipath Channel and MIMO System

	III. Timing Requirements and Architectural Choices
	A. Timing Requirements
	B. Architectural Choices
	1) Generator Block
	2) Interpolator Block
	3) Fixed-Point Representation

	IV. Hardware Architecture of Channel Emulator
	A. Gaussian Variate Source
	B. FFT/IFFT
	C. FIR Filter for Interpolator
	D. Channel Emulator: Complete Architecture

	V. Implementation & Performance Comparison
	A. Implementation Results
	B. Comparison with state-of-the-art

	VI. Conclusion
	VII. References
	Word Bookmarks
	PointTmp

