
 
 

  

Abstract— An efficient hardware implementation of correlated 

Rayleigh fading channel simulator is presented in this paper. It 

emulates Doppler effects based on the use of Overlap-Save (OLS) 

method. OLS is used for both, the fading variates generator and 

the time domain interpolator, leading to a scalable complete 

solution. Moreover, additional simplifications were introduced to 

reduce even further algorithmic complexity when compared with 

the original OLS-based proposal. An efficient hardware 

implementation is achieved through maximizing the utilization 

rate of allocated hardware resources. When added to its 

scalability, this makes the proposal appealing to emulate channels 
with multipath effects for MIMO systems. Indeed, the proposed 

parallel architecture enables a throughput of 34 Mega Samples per 

Second per path at a clock frequency of 275 MHz on Xilinx Virtex-

7 FPGA. The achieved throughput allows the support of the most 

demanding LTE configuration with 20 MHz channel bandwidth. 

To the best of our knowledge, this is the first ever real-time 

hardware implementation of OLS-based channel emulator. 

Index Terms— Channel Emulator, Overlap-Save Method, High 

throughput, FPGA 

I. INTRODUCTION 

UCCESFUL deployment of a wireless communication system 

calls for a prior evaluation of its performance under 

different channel conditions. The use of a channel emulator 

provides an appealing alternative to tedious and costly real-time 

field-testing. Generation of Gaussian random variates [1] can 

be used for emulating a fading channel with Doppler effects. 

Emulation techniques are categorized into three main methods: 

Sum of Sinusoids (SOS), Gaussian noise filtering and 

FFT/IFFT-based. These methods can be extended to support 

different fading distributions following the works in [2-5]. 

Sum of Sinusoids (SOS) method [6] is based upon adding a 

large number of sinusoids to emulate the variation of fading. In 

real-time scenario having long simulation times, SOS can suffer 

from a periodicity issue between output samples. The second 

approach requires filtering the Gaussian noise with a Doppler 

filter [7-8]. The type of filter, e.g. Finite Impulse Response 

(FIR) or Infinite Impulse Response (IIR), greatly affects the 

design in terms of hardware complexity and stability. 

The FFT/IFFT-based method [9] incorporates frequency 

domain filtering to get Rayleigh fading variates. This is 

achieved by multiplying Fourier transform of Gaussian 

variables with a frequency domain Doppler filter taps. 

However, the use of large FFT sizes requires higher hardware 

cost [10] whereas the use of smaller FFT/IFFT sizes suffers 

from a discontinuity of generated samples.  
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Authors in [10] proposed a new technique for generating 

Rayleigh fading variates by incorporating Overlap-Save (OLS) 

method. This technique combines a smaller FFT size with OLS 

to reduce computational complexity and to overcome the 

discontinuity issue. Moreover, the introduction of an OLS-

based interpolator for the support of low Doppler frequencies 

reduces further computational complexity while achieving a 

high level of scalability. Therefore, the proposal in [10] 

achieves a high accuracy close to that of FFT/IFFT and FIR 

approaches, yet with significantly reduced complexity enabling 

real-time hardware implementations. Although the complexity 

of the SOS method remains the lowest, it cannot be used in long 

real-time emulations due to the periodicity issue that affects the 

accuracy and reliability of emulated channel effects [10]. 

Main prior solutions for real-time hardware implementations 

of different channel emulators can be found in [11-15]. 

Solutions in [11-14] are SOS-based whereas the solution in [15] 

represents a novel Sum-of-Frequency-Modulation (SoFM) 

method used in a Multiple-Input Multiple-Output (MIMO) 

system. While looking at the OLS-based emulator presented in 

[10], implementation complexity is provided only in terms of 

complex arithmetic operations. Taking into account the 

improved accuracy provided by the OLS-based emulator when 

compared to the SOS method and the reduced complexity when 

compared to the FFT/IFFT based filtering method, the work 

presented in this paper fills the gap of non-existent hardware 

implementation of OLS-based emulator. Indeed, several 

architectural choices have been explored to set the course for 

important choices such as FFT size, number of generated 

samples, supported sampling frequency, and interpolation size. 

Hence, this work represents the first attempt to provide a 

concrete hardware implementation for an OLS-based channel 

emulator. Moreover, a  key feature of our proposed architecture 

concerns its scalability while keeping a high degree of 

efficiency and utilization rate. In this regard, multiple instances 

can be used to emulate multiple channels or to achieve higher 

throughput or both, adding to the originality of the approach. 

Many trials and architecture exploration iterations were applied 

to achieve this goal. This exploration phase involved adjusting 

operational frequency of functional blocks, pipelining at sub-

block and system levels, and using promising methods for area 

reduction. In particular and differently from the original paper 

[10], we chose to implement the interpolation block in time 

domain instead of frequency domain through the management 

of introduced zeros. This greatly reduces the required memory, 

even with respect to the reference proposal in [10].  
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II. SYSTEM MODEL 

The OLS-based channel emulator is shown in Fig. 1 [10]. 
The generator first provides Rayleigh fading variates at an 
intermediate sampling frequency dependent on the fading 

variation or speed of movement. Then additional variates are 
introduced between two generator variates through 
interpolation to match the target transmitted signal sampling 

frequency as seen in Fig. 1 and in compliance with [10]. 

 
Figure 1: Block diagram of OLS-based channel emulator 

A. Generator 

The OLS generator resorts to fast circular convolution in 
frequency domain that can be applied through FFT/IFFT [10]. 

In each trial, 𝐿 new samples, corresponding to the useful 
samples, are introduced along 𝑀−1 samples from the previous 

block to provide 𝑥𝑁 where 𝑁 is the FFT size (𝑁= 𝐿 +𝑀−1). 
Applying a Doppler filter in frequency domain as proposed in 
[13] with OLS causes discontinuities between blocks. 

Therefore, a  correction procedure is applied as defined in [10] 
through shifting filter coefficients and windowing: 
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where Γ is the Gamma function, 𝐽1
4

 is the Bessel function (first 

kind), 𝑀 is the number of non-zero filter coefficients and 𝜆𝑘 =
𝑘 −𝑀/2. Furthermore, the filter ℎ𝑁[𝑘] is centered at 𝑀/2 and 
multiplied with a Kaiser Window [16] to remove discontinuities 

caused by suppressing filter taps 𝑀≤ 𝑘 ≤𝑁 −1) [10]. The 
size of Kaiser Window is equal to the FFT size whereas filter 

taps depend on the value of 𝑀 [10]. 

B. Interpolator 

The interpolator is introduced to reduce the computational 
complexity of the complete channel emulator while keeping the 

required scalability in terms of supported Doppler and signal 
frequencies for practical scenarios. Its use is particularly critical 
for the cases where the ratio between the sampling frequency 

and the Doppler frequency is very large. The interpolator first 

inserts 𝑁𝐼−1 zero samples between any two generator 
Rayleigh fading variates to provide 𝐿 samples. 𝑁𝐼 is defined by 

dividing the sampling frequency 𝑓𝑠 by the intermediate 
sampling frequency. To simplify the interpolator design 

applying FFT/IFFT, 𝑁𝐼 is chosen to be a power of two. 
Moreover, the choice of the intermediate sampling frequency is 
constrained by the acceptable level of out-of-band power 

leakage [10]. Zero packed variates are concatenated with 𝑀−
1 zero packed previous variates and frequency domain filtering 

is then applied to get 𝐿 new final samples. To follow the 
transmitted signal, the interpolator filter applies a  sinc function 

that is sampled and truncated to a FIR filter [10]: 
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Interpolation filter is also multiplied with a Kaiser Window 
to avoid discontinuities. 

C. Multipath Channel and MIMO System 

Multipath-MIMO system requires emulation of individual 
paths of the channels between each transmit and receive 

antenna. Considering Extended Vehicular A (EVA) and 
Extended Typical Urban (ETU) channel models of LTE [17], 
nine statistically independent channel paths are specified with 

different power-delay profiles in a Single Input Single Output 
(SISO) configuration. Therefore, 4×9 = 36 paths are required to 
mimic channel behavior of a  2×2 MIMO system. In order to 

support the largest bandwidth of 20 MHz, the minimum 
required throughput should be 30.7 MSPS per channel path. In 

this regard, we consider a short safe margin and target a slightly 
larger throughput of 34 MSPS. In addition, to support multiple 
communications services, the hardware of the emulator should 

be scalable to support a wide scope of possibilities ranging from 
single path SISO to multipath MIMO systems while 
maintaining efficient hardware utilization. 

III. TIMING REQUIREMENTS AND ARCHITECTURAL CHOICES 

In order to propose an efficient hardware architecture there is 
a  need to assess the timing requirements of each building block. 
Appropriate hardware implementation techniques such as 

process level and register level pipelining to improve timing 
requirements, are applied.  

A. Timing Requirements 

Timing requirements related to each functional block depend 

upon the corresponding parameters such as value of 𝐿,𝑀 and 

𝑁. In our case 𝑁 =8192 whereas 𝐿 can take the value of 4, 8, 
16, 32 and 64 to simulate a Doppler frequency 𝑓𝑑 ranging from 
11 to 344 Hz. Hence, the Generator block of Fig. 1 performs 8K 



 
 

point FFT/IFFT operations and generates 4, 8, 16, 32 or 64 
samples. These outputs of the generator block are up-sampled 
through zero padding by the interpolator block (Fig. 1) to 

generate 4K outputs. The other 4K data samples are taken from 
the previous trial to make a block of 8K data samples. 8K 

FFT/IFFT operations are then performed and finally 4K new 
samples are generated. To achieve a throughput of 34 MSpS, 
the system given in Fig. 1 is applied 34M/4096 i.e. 8301 

times/sec. This provides a  timing requirement of 120 µsec to 
complete the processing in all functional blocks of Fig. 1. 

B. Architectural Choices 

1) Generator Block 
In the generator block, the frequency domain Doppler filter 

coefficients are considered as input (coefficients are generated 
before the emulation process) due to their slow varying nature. 

They are computed depending on the speed of mobile device. 
This avoids the application of the Doppler filter sequence 
generator and the following FFT in the generator block of 

Fig. 1. To complete the generator, architectures for Gaussian 
variate source, 8K-point FFT, complex multiplication and 8K-
point IFFT are still required while meeting the requirements of 

the output sample rate. 
2) Interpolator Block 

Interpolation process involves up-sampling (zero insertion) 
followed by filtering. In the original OLS method [10] 
presented in Fig. 1, frequency domain filtering is used. 

However, time domain filtering can be also considered due to 
the presence of a large number of zeros in the up-sampled input 
data to the filter. This zero insertion provides the opportunity to 

reduce the hardware cost in FIR filter architecture as proposed 
in [18]. 

3) Fixed-Point Representation 
 In order to sca le the data path, the floating point golden 

reference software model was converted to fixed-point model. 

Word lengths for all the inputs and outputs are chosen carefully 
in order to use available resources efficiently while respecting 
required accuracy. Table 1 illustrates our chosen word lengths. 

Complex values have two components to represent both real 
and imaginary parts. 

Table 1: Word lengths of the proposed fixed-point representation 

Parameter 
Complex 

/Real 
No. of Bits 

Gaussian Variates 𝑥𝑁[𝑘] Complex 16 

Doppler Filter Coefficients ℎ𝑁[𝑘] Complex 16 

FFT Inputs Complex 16 

Interpolator Filter Coefficients  𝑔𝑁[𝑘] Real 25 

Final Outputs Complex 16 

IV. HARDWARE ARCHITECTURE OF CHANNEL EMULATOR 

This section starts by detailing the hardware architecture of 

individual computational blocks followed by the overall 
architecture of the channel emulator along with the task 
mapping on each block.  

A. Gaussian Variate Source 

For complex Gaussian variate generation, two instances of a 

Gaussian generator are required. We have used the open source 
core for Gaussian noise generation (GNG) presented in [19]. It 

represents a resource-efficient high-throughput implementation 
while having a long period of 2176.  

B. FFT/IFFT 

Computing 8K FFT/IFFT requires the major part of the DSP 
operations carried out in the generator block of Fig. 1. Two 

approaches are possible: the use of dedicated hardware for each 
FFT/IFFT block or the re-use of a  single FFT/IFFT core to 
perform all FFT/IFFT blocks needed in the generator block. 

Considering targeted throughput, we have adopted the second 
option. This option can simplify achieving the required 
scalability for emulating multipath channels and MIMO. This 

also helps to opt for the specialized limited FPGA resources 
such as DSP blocks and to be able to use them efficiently. 

Our FFT/IFFT block is capable of pipelining in frame 
loading, computing and frame output. One input bit selects FFT 
or IFFT operation. Each frame-loading and frame-output 

process takes 8192 Clock Cycles (CC) whereas computations 
take 8332 CC. This results in 24,716 CC to process one 8K FFT 
or IFFT. This block can reach 278 MHz on Virtex-7 FPGA. 

C. FIR Filter for Interpolator 

In order to achieve the required throughput for worst case 

scenario i.e. 𝐿 =64 (the case with minimum zero padding), 16 
real multipliers are placed to multiply 8 complex inputs with 8 
real filtering coefficients in parallel. The coefficients are stored 
in memory (25 bits for each) whereas 64 registers, storing 

complex inputs, are used to act as shift registers of the FIR filter. 
Each input and output of the interpolator are quantized over 16 
bits. The architecture of the filter is flexible with regards to 

specific well-chosen values of 𝐿 defining required resources 
through the control path. To generate a set of 4096 channel 

coefficients, the whole process takes 32778 CC and the highest 
achievable frequency is 295.8 MHz on Virtex-7 FPGA.  

D. Channel Emulator: Complete Architecture  

The operating frequency of the FFT/IFFT core being lower than 

the one of the FIR filter, it is adopted as operating frequency of 
our channel emulator. It allows 33,379 CC in 120 µs which is 
the time required to generate one set of 4096 channel 

coefficients. Since the FFT/IFFT processing in the generator 
takes 24716 CC and since the FIR filtering in the interpolator is 
taking 32778 CC, process level pipelining is proposed between 

these two blocks through a memory able to store  𝐿 variates 
created by the generator block. 

Since FFT and IFFT processes are performed successively in 
the generator block, three process level pipelining within our 

proposed FFT/IFFT block can be optimally utilized if two 
frames for separate multipath channels are processed in parallel. 
The frame level processing is shown in Fig. 2. At the start, 

Frame 1 of complex Gaussian variates of Path 1 (green color) 
is loaded. After 8192 CC, Frame 1 of path 1 is sent to FFT 
processing whereas in the meanwhile Frame 1 of Gaussian 

variates of Path 2 is loaded (orange color). After the processing 
of Frame 1 of Path 1, the three pipeline lanes are filled and 

32778 CC are required to produce successively two sets of 𝐿 
variates for two paths of a Rayleigh fading channel. The 

interpolation of data for the first path starts once variates of the 
second path are ready as indicated by the gray colored wait 
block in Fig. 2. This design choice allows the use of one set of 

coefficients for both interpolators and hence reduces the size of 
the corresponding memory storing these coefficients. The 
variates are given to two interpolator blocks for final outputs 

generation in parallel while taking 32918 CC to process a block.  



 
 

 
Figure 2: Process execution sequence in the generator and interpolator blocks 
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Figure 3: Hardware architecture of channel emulator 

Since both processes, the generation and the interpolation, 
require a number of CC less than the allowed 33,379 CC, a 
throughput of 34 MSpS per path for two paths can be achieved 
with our proposed pipelining and task scheduling on used 

resources. The complete architecture of channel emulator is 
shown in Fig. 3 where two GNG memories hold Gaussian 

variates for two paths generated through four instances of GNG 
IP core. A single FFT/IFFT block is used along with 
multiplexers/de-multiplexers and control circuitry to perform 

both FFT and IFFT operations following the schedule 
illustrated in Fig. 2. One Doppler coefficients memory and one 
complex multiplier are used to multiply the output samples of 

the FFT by these coefficients. A 64-word (for highest value 

of 𝐿 = 64) temporary memory holds the result of the generator 
of the first path to start interpolation of both paths in parallel. 
As explained earlier, this single memory can be re-used for two 

interpolators. Finally, two instances of the interpolator, detailed 
in Section III. C, are placed to generate final outputs.  

V. IMPLEMENTATION & PERFORMANCE COMPARISON 

A. Implementation Results 

A Virtex-7 XC7VX550T FPGA from Xilinx was selected as 
implementation platform. Table 2 illustrates the post place and 

route results of our architecture. Fewer resources are required 
in the interpolator block compared to the generator block 
especially in terms of memory: almost 5 times less 18Kbits 

BRAM and 27 times less 36Kbits BRAM. This fully justifies 
our proposal of implementing the interpolation in time domain. 

Table 2: Post Place & Route results of the proposed channel emulator 

Process Slices BRAM 
(18K) 

BRAM 
(36K) 

DSP 
Slices 

Max. Freq. 
(MHz) 

Generator 2,402 52 27 37 278.164 

Interpolator 2,352 10 1 32 295.770 

2 × 2 MIMO 85,572 1,116 504 1,242 278.164 

Moreover, thanks to improved hardware efficiency through 
pipelining at process and hardware architecture levels, two 

streams of channel coefficients, each achieving a throughput of 
34 MSpS, were provided. The resulting architecture is 
inherently scalable in support of multiple paths and throughput 

levels. As a path scalability example, consider a  2×2 MIMO 
system where each of the 4 channels have 9 paths. 18 instances 
of the proposed architecture can be easily instantiated to 

emulate the corresponding channel. The post Place & Route 
results are shown in Table 2.  

For the throughput level scalability, the outputs of multiple 
architecture instances can be collected in a buffer and can be 
sent at a  rate of one coefficient per clock cycle. Hence, the 

output can be raised beyond 278 MSpS per path. Finally, in 
order to validate the accuracy of output results, a comparison in 
terms of achieved Power Spectral Density (PSD) was 

performed as shown in Fig. 4. The PSD drawn from the floating 
point OLS C-model was taken as reference. It is clear that the 

PSD results of fixed-point model and actual FPGA 
implementation closely match the reference C-model.   

 
Figure 4: Normalized PSD comparison of output samples taken from 

floating point reference model, fixed-point model and FPGA for 𝑓𝑑  = 
17.22 Hz and 𝑓𝑠 = 30.72 MHz  



 
 

Table 3: Comparison with state-of-the-art in terms of features, scalability and hardware implementation 

Ref. FPGA Application Domain Scalability Slices/LUTs DSP48 BRAMs  MSpS Throughput/Area 
(Samples/Slice) Throughput Path 

[11] Virtex-2 SISO No Yes 8814/- - - 210 23825 

[12] Virtex-4 SISO No Yes 1164 /-     - - 0.585 502 

[13] Virtex-4 SISO No No 725/922     3 1 no info. N/A 

[14] Virtex-4 SISO No Yes 731/1220 -    - 0.1 136 

[15] Kintex-7 MIMO N/A N/A 381/1524 16 17 0.0625 164 

Our Solution Virtex-7 SISO/MIMO Yes Yes 4754/13029 69 28 68 14303 

B. Comparison with state-of-the-art 

 Keeping in mind the limited relevant published work, 
comparison with state-of-the-art is challenging from a hardware 

implementation perspective. In this regard, data taken from 
cited work [11-15] is tabulated in Table 2. This table contains 
information regarding key aspects of a solution such as domain 

of application, scalability towards increasing throughput and/or 
emulating more paths/channels, FPGA and its resource 

consumption, throughput and throughput/area ratio. As far as 
application domain is concerned, our solution can be used for 
SISO and MIMO systems in contrast to previous works that are 

limited to only one particular system. Scalability is another 
figure of merit since instantiating multiple copies of the 
proposed architecture can be simply used to improve 

throughput and/or to emulate multiple paths. This is difficult to 
achieve with previous methods such as SOS while still 

providing accurate simulations. The highest throughput is 
achieved by the solution in [11]. Achieved at a  rate of one 
sample per clock cycle, this throughput cannot be increased 

further through scalability without re-thinking the architecture. 
However, our solution can provide a throughput more than 278 
MSpS using multiple blocks of the proposed architecture. 

Hardware utilization is another key outcome of our work. It 
can be observed that since the works in [11-14] are SOS based, 

no or very few BRAM or DSP Blocks are used due to their 
simplified architecture. Our solution requires additional 
hardware in terms BRAM and DSP due to the entirely different 

nature of involved computations. Nonetheless, this provides the 
price to pay in hardware resources by the use of the OLS 
method to overcome the drawbacks in terms of accuracy 

associated with SOS method.  
Due to the different nature of the computations, any fair 

comparison of the throughput/area ratios across the methods 
should be considered jointly with the achieved level of 
accuracy. In the work presented in [15], the throughput is far 

less when compared to our solution and hence providing much 
lower throughput over area ratio. 

VI. CONCLUSION 

We have proposed the first real-time FPGA implementation 
of an OLS-based channel emulator. It achieves a throughput of 

34 MSpS per path for the 20MHz channel of the LTE standard. 
It presents several advantages: support of SISO and MIMO, 
scalability in terms of throughput and multiple paths, improved 

hardware efficiency through pipelining and sample distribution 
accuracy. The proposed time-domain interpolation largely 
reduces the hardware complexity thanks to the devised 

simplifications made possible through zero padding. 
Comparison with existing prior art was done including the 

features of the emulator. This comparison clearly identifies the 

cost in terms of hardware resources to overcome the spectral 
property issues related to the SOS method through adopting the 
OLS method. Hence, a  new accuracy/hardware complexity 

tradeoff becomes a possible choice for channel emulation.  
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