
HAL Id: hal-02929811
https://hal.science/hal-02929811v1

Submitted on 3 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

StructGraphics: Flexible Visualization Design through
Data-Agnostic and Reusable Graphical Structures

Theophanis Tsandilas

To cite this version:
Theophanis Tsandilas. StructGraphics: Flexible Visualization Design through Data-Agnostic and
Reusable Graphical Structures. IEEE Transactions on Visualization and Computer Graphics, 2020,
TVCG 2021 (InfoVis 2020), 27 (2), pp.315-325. �10.1109/TVCG.2020.3030476�. �hal-02929811�

https://hal.science/hal-02929811v1
https://hal.archives-ouvertes.fr

StructGraphics: Flexible Visualization Design through
Data-Agnostic and Reusable Graphical Structures

Theophanis Tsandilas

a b c d

Fig. 1. The StructGrapher’s user interface consists of: (a) a library of reusable visualization structures, (b) a visualization sketcher for
drawing basic shapes and grouping them into collections, (c) a property inspector for exposing and structuring graphical properties,
and (d) a spreadsheet for creating mappings between properties and data. The approach enables designers to construct data-agnostic
visualizations and create flexible bindings with data. The bottom visualization design was originally published in the Financial Times [22].
See our gallery at: https://www.lri.fr/˜fanis/StructGraphics

Abstract—Information visualization research has developed powerful systems that enable users to author custom data visualizations
without textual programming. These systems can support graphics-driven practices by bridging lazy data-binding mechanisms with
vector-graphics editing tools. Yet, despite their expressive power, visualization authoring systems often assume that users want to
generate visual representations that they already have in mind rather than explore designs. They also impose a data-to-graphics
workflow, where binding data dimensions to graphical properties is a necessary step for generating visualization layouts. In this paper,
we introduce StructGraphics, an approach for creating data-agnostic and fully reusable visualization designs. StructGraphics enables
designers to construct visualization designs by drawing graphics on a canvas and then structuring their visual properties without relying
on a concrete dataset or data schema. In StructGraphics, tabular data structures are derived directly from the structure of the graphics.
Later, designers can link these structures with real datasets through a spreadsheet user interface. StructGraphics supports the design
and reuse of complex data visualizations by combining graphical property sharing, by-example design specification, and persistent
layout constraints. We demonstrate the power of the approach through a gallery of visualization examples and reflect on its strengths
and limitations in interaction with graphic designers and data visualization experts.

Index Terms—Visualization design, graphical structures, visualization grammars, layout constraints, infographics, flexible data binding.

1 INTRODUCTION

Visualization systems make use of diverse data representations to help
people make sense of data. However, previous research has argued that
traditional visualization systems have focused on data exploration and
analysis tasks, paying less attention to presentation purposes [19]. Past
studies [9, 51] also suggest that traditional tools do not target designers
and thus often fail to meet real design practices; some tools give little
design freedom, while others require users to program. Recent systems
address this limitation by integrating graphic design tools into the
visualization creation process. Some systems focus on how to support
expressive data-driven infographics [18, 53, 56, 59]. Others [33, 40, 49]

• Theophanis Tsandilas is with Université Paris-Saclay, Inria & CNRS,
France. E-mail: theophanis.tsandilas@inria.fr

© 2020 IEEE. This is the author’s version of the article. The final version will
be published in the IEEE Transactions on Visualization and Computer
Graphics.

help visualization authors to produce rich layouts. Each approach has
its own strengths and limitations and presents different solutions on
how to produce expressive visualizations without programming.

Liu et al. [21] argue that “designers use familiar tools to draw, se-
lect and manipulate vector graphics, and apply data encoding only
when it is necessary.” The above systems generally adopt a lazy data-
binding approach to support such practices, where the design of graph-
ics precedes the data-binding step. Even so, these systems are largely
data-driven and still rely on a specific dataset to derive a visualization
structure. For example, Data Illustrator [21] requires its users to as-
sign data dimensions at the very beginning of the authoring process.
Satyanarayan et al. [41] collectively reflect on the assumptions and
capabilities of Lyra [40], Data Illustrator [21], and Charticulator [33].
They conclude that these systems target authoring rather than design
tasks since they assume that users start their task with an “appropriately
formatted dataset” and have a “specific chart design in mind.”

In this paper, we target design tasks. Our goal is to help users explore
visualization layouts without being constrained by data encodings. We

https://www.lri.fr/~fanis/StructGraphics

adopt a data-agnostic approach that produces reusable visualization
structures without programming. The approach combines techniques
of graphical properties sharing [15], by-example specification [27, 31],
and persistent alignment and distribution [13] into a new framework
of nested property structures. We call it StructGraphics (in distinction
with “Infographics”) to emphasize its focus on graphical structures
rather than data. StructGraphics enables designers to draw their vi-
sualization primitives and structure the constraints of their properties
without relying on any specific dataset or data schema. Rather than
being predefined, data structures are generated on the fly, as design-
ers interactively construct their visualizations. Yet, as Liu et al. [21]
report, it is sometimes “beneficial to bring in real data” even during
the shape-drawing phase. StructGraphics does not require real data but
lets designers fully or partially link data to their designs at any moment.
Such data bindings are flexible and not persistent, and allow designers
to test a design with alternative encodings. Our data-binding mecha-
nism is facilitated by a spreadsheet user interface that complements the
manual entry of data [9] with the constraints of a visualization structure.

Overall, StructGraphics follows the inverse workflow than traditional
visualization-design systems. Rather than transforming data dependen-
cies into visualization constraints, it allows users to interactively define
the property and layout constraints of their visualization designs and
then translate these graphical constraints into alternative data structures.
Since visualization designs are data-agnostic, they can be easily reused
and combined with different datasets.

2 RELATED WORK

StructGraphics builds upon a vast volume of research on Information
Visualization, Human-Computer Interaction, and Computer Graphics.

2.1 Visualization Grammars and Toolkits

Wilkinson’s [55] and Wickham’s [54] seminal work on visualization
grammars has led to powerful visualization creation systems such as
ggplot2 [2]. Other systems, such as Polaris [45] and its commercial suc-
cessor Tableau [6], provide expressive interaction tools that help users
interactively visualize their data. A third stream of research has investi-
gated programming toolkits [11, 12] and declarative grammars [42, 44]
that support interactive data visualization. Finally, hybrid approaches
such as VisComposer [24] combine rapid prototyping through interac-
tive controls with visual or textual programming.

A number of authors [21, 33, 50, 56] have pointed out that such
systems impose a bottom-up workflow, where design is driven by data
rather than by graphics, layout, and aesthetics.

2.2 Studies of Design Practices

A number of past studies have investigated how professionals or novices
design visual representations or work with graphics. Bigelow et al. [9]
studied how designers approach data and how data affect their visual-
ization designs. They observed that designers prefer a “flexible design
environment that does not enforce a specific order of operations” and
create visualizations in a “top-down, graphical process.” These obser-
vations are corroborated by Walny et al. [51] who report that designers
who tried to think in terms of “concepts extrinsic to the dataset” ended
up with deeper observations about the data. Méndez et al. [25] experi-
mentally compared a bottom-up approach (Tableau [6]) to a top-down
approach (iVoLVER [26]) with 10 non-expert participants. Their results
show that although a top-down approach is more laborious and slower,
it can help users get a better understanding of the creation process, feel
more in control, and produce more varied designs.

Others have looked on how designers work with graphical structures.
In particular, Maudet et al. [23] point out that the creation of layout
structures is an essential part of the graphics design process but also
observe that many designers struggle when having to go beyond grid-
based layouts. The authors argue that graphical properties must be
described instead through versatile rules or constraints that they call

“graphical substrates.” How to describe the property constraints of a
visualization design is a key challenge that we address in this paper.

2.3 Design-Oriented Visualization Authoring Tools

Several systems aim to bring visualization tools closer to the graphics
design process. Roth et al. [35] are probably the first to describe tools
for binding data to the properties of graphical objects. Years later, Bret
Victor [49] demonstrates an interactive data-driven system for creating
custom data visualizations through a loop-based workflow that resem-
bles programming. Research systems that combine graphics-driven
visualization authoring with programming workflows (either textual or
visual) include iVoLVER [26], Hanpuku [10], and d3-gridding [50].

Meanwhile, the information visualization research has introduced a
range of systems that support expressive visualization design without
programming: Lyra [40], iVisDesigner [32], Data-Driven Guides [18],
InfoNice [53], DataInk [56], Data Illustrator [21], Charticulator [33],
and DataQuilt [59] are representative examples. Satyanarayan et al. [41]
describe these systems as visual builders. Some visual builders [18, 53,
56, 59] focus on how to help designers produce creative infographics.
For example, Data-Driven Guides [18] combines a vector graphics
editor with a flexible data-binding mechanism to produce data-driven
infographics. InfoNice [53] offers similar functionality but targets users
who are not design experts.

A second group of visual builders [21, 33, 40] focus on how to au-
thor visualizations with complex (e.g., layered or nested) visualization
layouts. In particular, Data Illustrator [21] provides tools for grouping
graphical primitives, defining nested collections of similar objects, ap-
plying graphical layouts, and establishing lazy data bindings that act as
constraints. Charticulator [33], instead, uses a constraint-based layout
specification framework that can infer complex visualization layouts
from partial user-driven specifications.

Despite their power, these systems still require users to bind data
to graphics at the very first steps of the design process. Satyanarayan
et al. [41] acknowledge that these systems address the “the narrower
activity of visualization authoring, where the author already has a
desired visualization in mind, and has a dataset in the appropriate
format.” StructGraphics’ approach is fully graphics-driven. Its goal
is to encourage users to explore designs by directly interacting with a
visualization’s graphics, before dealing with concrete data.

2.4 Sketch-Based Data Visualizations

Other systems focus on how to support visualization analysis and pre-
sentation tasks through expressive free-from sketches. For example,
Sketchstory [20] allows analysts to communicate results through infor-
mal sketch-based representations. SketchSliders [47] support mobile
data exploration through interactive sketch-based controllers. Data-
toon [17] allows users to produce “data comics” by sketching infor-
mal data presentations based on directed node-link diagrams. Finally,
DataInk [56] supports expressive shape primitives and free-form layout
patterns but does not handle nested layouts. How to support sketch-
based visualizations is beyond the scope of our work.

2.5 Visualization by Example

Gold [27] was probably the first system to support visualization creation
by demonstration. Gold used various heuristics to interpret example
graphics but supported a limited number of charts and required a well-
formatted dataset. Visualization research has also looked at how to infer
visual transformations from user-driven interactive demonstrations [37,
38]. The approach supports visualization transformation tasks, rather
than visualization authoring tasks, and is largely data-driven. Wang et
al. [52] have recently introduced a visualization-by-example technique
that infers a visualization grammar from a partial visual sketch and
a dataset. Unfortunately, the technique requires the pre-specification
of inference rules for each visualization type (e.g., scatter plot, bar
chart, and line chart) and further assumes that the input dataset is well
formatted and labeled in accordance to the visualization example.

In StructGraphics, an example defines the bindings of graphical
objects at one level each time, and from those, the system also infers the
structure of data. Other approaches use Convolutional Neural Networks
to extract the data [16] or the grammar [30] from a visualization image,
but their success depends on the size and quality of a training dataset.

(a) create a group (b) replicate (multiply) the group (c) vary the copies & create a collection (d) make it an area chart & refine it (e) initiate a dataset

drag

Fig. 2. Representative scenario: (a) group primitive shapes; (b) create multiple copies of the group; (c) vary their properties to produce an example
for a new collection; (d) customize the collection; and (e) drag its variable properties from the inspector to the spreadsheet to create a data table.

2.6 Graphical Layouts and Property Constraints
HCI and Computer Graphics research has studied techniques that infer
layouts constraints or aid their construction. Ryall et al. [36] describe
a number of techniques that constrain the layout of graphs, including
alignment, equal spacing (i.e., distribution), ordering, and grouping.
StickyLines [13] take this approach further by making alignment and
distribution constraints tweakable and persistent. Other approaches try
to automatically infer layout constraints [57] or specify layout designs
by example [31]. Also, Hoarau and Conversy [15] present a drawing
tool that enables users to interactively create dependencies between
graphical properties and inspect multiple instances of a property at the
same time. StructGraphics borrows ideas from all this line of work and
applies them to nested visualization designs.

Finally, some intelligent systems adaptively optimize a layout de-
sign [28, 46] or provide suggestions [29] to help users produce better
layouts. StructGraphics does not target layout optimization. Its group-
ing tools rely on simple rules for inferring the intended structure of
visual properties with coherent layout constraints.

3 DESIGN PRINCIPLES

StructGraphics targets design-driven scenarios, where a data visualiza-
tion is defined progressively as the user designs and interacts with its
graphics. Bigelow et al. [9] report that designers “try to understand
the overall appearance of a visualization before plotting real data on
axes” and “tend to think of influencing existing graphics that they have
already created.” Thus, our goal is to help designers explore the graph-
ical structure of a visualization before committing to specific bindings
with data. Moreover, we want to encourage users to reuse their previous
designs. Overall, StructGraphics is based on four design principles.
DP1: Detach the graphical structure from the data. Despite their
flexible designs, visual builders like Lyra [40], Data Illustrator [21],
and Charticulator [33] require users to bind data early in the authoring
process. As a result, visualization structures are largely determined by
the data. In StructGraphics, the graphical structure of a visualization is
constructed in an interactive way and independently from the dataset.
The approach relies on a property sharing mechanism that allows users
to define how the graphical properties of a visualization (e.g, the x and y
positions of a scatterplot’s points) are shared or vary across dimensions.
DP2: Enable constrained but flexible layout designs. Grids, stacks,
and packs are representative layout constraints in visualization author-
ing systems [41]. StructGraphics’ layout constraints are based, instead,
on principles of persistent alignment and distribution [13]. This ap-
proach allows for more malleable layouts, e.g., a grid with rows that
are freely translated across the x direction.
DP3: Encourage reusability at all levels of a graphical structure.
Other systems support reusable visualization templates that can be
exported as Vega specifications [40] or Microsoft Power BI custom
visual files [33]. Such templates can be reused with different datasets
but constrain the design process. For example, Charticulator [33]
templates are hard-coded to the original dataset schema and “any new
data must be structured in an identical format” [41]. In StructGraphics,
visualizations are expressed as hierarchies of data-agnostic graphical
structures, and every node in the hierarchy can be easily added to a
library and later reused with simple drag-and-drop actions.
DP4: Support late binding with flexible data schemas. Transform-
ing a dataset into a convenient format requires the user to perform a
series of data-formatting operations, such as filtering, transformation,
restructuring, and aggregation. Not only are these steps laborious, but
they also require careful preplanning. Unfortunately, when exploring

design alternatives, designers may not have a clear idea about which
data format is the most appropriate for their task. StructGraphics delays
all data formatting decisions to the very end of the process, when the
visualization structure has already been constructed. In StructGraphics,
the data schema is defined by the structure of the graphics, rather than
the opposite. We facilitate the conversion of graphical structures to
data with a spreadsheet user interface. The spreadsheet serves as a
playground for exploring alternative data encodings.

4 STRUCTGRAPHICS

We explain our approach with variations of the two visualization ex-
amples in Fig. 1. The top visualization is a custom infographic that
presents the performance of a team of children across different dimen-
sions. Fig. 2 summarizes the main steps that a user can follow to create
it. The bottom visualization reproduces a Sankey diagram published in
the Financial Times [22]. It depicts the change in council control after
the UK local elections in 2018.

4.1 Overview
The StructGraphics user interface is composed of three fully synchro-
nized components (see Fig. 1):
Visualization Sketcher. The design of a visualization starts by draw-
ing basic shapes with a vector graphics editor, the visualization sketcher.
The sketcher provides tools for repeating shapes, varying their geome-
tries, and grouping them together into groups of elementary shapes and
collections (see Fig. 2). Through repetition, variation, and grouping,
designers can create rich hierarchies of visualization collections.

The sketcher relies on techniques of persistent alignment and distri-
bution [13] for laying out visual objects (DP2). This approach encour-
ages exploration through trial and error. We further use by-example
design specification [31] to automate the extraction of layout constraints
and further infer how graphical properties are shared or vary. For in-
stance, the example in Fig. 2a indicates that the x-coordinate is shared
among all three shapes to be grouped. In this case, StructGraphics will
create a binding to make their x-alignement persistent. Based on this
mechanism, StructGrapher constructs structures of graphical properties
that define a visualization design without data (DP1). At any moment,
users can select a group or collection in their visualization structure
and add it to a library (see Fig. 1a) for future reuse (DP3).
Property Inspector. The inspector exposes the graphical properties of
a visualization and organizes them under a tree hierarchy. Inspired by
the property sheet of Hoarau and Conversy [15], the inspector displays
the full range of property values of a group of visualization objects
and reveals their sharing constraints. We further extend this approach
to nested graphical structures. Specifically, we distinguish between
shared and variable properties at all levels of a visualization hierarchy.
For example, the fill color of both the hull and the sail of the boats in
the collection of Fig. 2d is shared, whereas the x and y coordinates and
the rotation of the boats are variable. Variable graphical properties are
automatically organized into wide and narrow tabular forms that serve
as data templates (DP4).

The inspector allows users to interactively restructure properties
to correct their designs, or explore different variations of constraints.
As opposed to other visualization authoring tools [21, 32, 33, 40], the
StructGraphics inspector is not directly associated with a dataset and is
not directly used for data-binding purposes (DP1).
Spreadsheet. Users can create mappings between graphical properties
(either individual or grouped) and data at any moment, or at the very
end of the process, when they need to populate real data values and

m text
Marks

Groups
g g+ m+

Collections
c c+ g+ m+

«+»: 1 or more «|» : or hi
er

ar
ch

y
le

ve
l

identi�er

Fig. 3. StructGraphic visualization elements: marks, groups, and collec-
tions. Left: Their grammar. Right: An example of a visualization tree. We
highlight a group that contains a rectangle, a triangle, and a text field.

generate axes, labels, and legends (DP4). All data manipulations take
place in a spreadsheet. Spreadsheets are extremely popular and have a
key role in the workflow of many design experts [9]. According to Dix
et al. [14], spreadsheets “are often the best tools to use.”

In the StructGraphics user interface, designers can create custom data
templates (DP4) by dragging individual properties or tabular property
structures from the inspector to a spreadsheet (see Fig 2e). Users can
type a name in the spreadsheet to define a data variable and then apply a
numerical transformation, or map it to a set of categorical values. They
can also manually edit individual values or import them from external
spreadsheet applications, such as Microsoft Excel.

Property constraints created in the sketcher and the inspector are
translated into value dependencies in the spreadsheet. The spreadsheet
user interface also allows designers to choose which variables to visu-
alize as axes, labels, or legends. Rather than imposing a unique data
schema, designers can explore alternative scale transformations and
reuse a visualization design with different pieces of data (DP3).

4.2 Visualization Structure
A StructGraphics visualization is a tree structure, whose leaf nodes
are graphical primitives, called marks: lines, rectangles, ellipses, and
text fields. As in Data Illustrator [21], marks can be grouped together
to form collections and groups. Collections and groups can be nested
under higher-level collections and groups. Fig. 3 (left) describes the
grammar of StructGraphics visualizations. Fig. 3 (right) shows the
visualization tree of our infographic in Fig. 1, where we highlight the
group of the last “boat.” As all nodes in the tree, the group has a unique
identifier (1.4) but is further associated with a letter (“A”) that specifies
its hierarchy level. As we see later, this notation helps distinguish
among the graphical properties of nodes at different hierarchy levels.

Groups and collections have a similar structure but distinct roles.
Groups enable designers to create complex graphics and have a fixed
graphical structure. Top-level groups serve as the glyphs [33, 41] of a
visualization design. They expose the properties of individual shapes,
which can vary independently from each other. For example, the fill
color and height of the sail in Fig. 3 vary independently of the fill color
and height of the hull. In contrast, collections group together a variable
(rather than fixed) number of children nodes, where all children have
the same graphical structure. The top collection of our example (“B.
Area Chart 1”) contains four groups, where they all depict a sailboat.

We represent groups and collections (or for nested col-
lections) as Cartesian coordinate systems (see Fig. 1), whose axes
dynamically adapt to the size and position of their children nodes. We
refer to these representations as skeletons. Skeletons serve as interac-
tion handles, as reference lines for the coordinates of children nodes,
and as scaffolds for creating the axes of the final visualization. Users
can press on the button to hide them and show them back.

4.3 Properties Framework
At the core of the StructGraphics approach is a framework for structur-
ing the graphical properties of a visualization tree.

4.3.1 Basic Graphical Properties
A mark is described by the following graphical properties: its type
(e.g., line, rectangle, ellipse, triangle, or text field), its x and y position
with respect to the origin of its parent group or collection, its width and

a b c d

Fig. 4. Layout properties of a group. (a) The three marks in the group are
equally spaced along the y axis. (b) The stickiness properties change to
“Yes”, so the marks are glued to the group’s skeleton. (c) When changing
the height of the rectangular mark, the other marks move upwards to
respect the spacing distribution constraints. (d) The user manipulates
the red handle to increase their in-between space.

height, its rotation angle, its fill color, and its stroke thickness and color.
Text fields have additional text-specific properties. Marks have also
properties that define their origin location: left, right, or center for the
x axis, and bottom, top, and center for the y axis. We display them as
vectors (arrows) (see Fig. 4) that depict the mark’s orientation, where
upwards and rightwards are positive directions. All properties have a
name, a data type, and a value.

Groups and collections have their own graphical properties. These
properties define the relative position and rotation angle of the group
or collection, or alternatively, the layout of its children nodes. Other
more specialized collection properties allow designers to customize
connected visualizations, such as line or spline charts, area charts, and
flow diagrams (see Fig. 1). Group and collection properties have a
prefix (e.g., A.x and B.rotation) that reflects their hierarchy level.

4.3.2 Layout Properties

Layout constraints are defined through the properties of groups and
collections. Those include distribution and stickiness properties that
constrain the relative positioning of their children (see Fig. 4). As Ciolfi
Felice et al. [13], we support two types of distribution constraints: (i)
equal spacing and (ii) equal distances. Such constraints are persistent –
they are preserved as users translate or resize a node within a group or
collection. Stickiness properties apply further constraints by gluing the
children nodes of a group or collection on the x or y axis of its skeleton.

Combined with StructGraphics’ property sharing mechanism (see
below), these properties let users define grids, stacks, packs, or free
layouts at any hierarchy level and later modify them as needed (DP2).

4.3.3 Property Structures and Property Sharing

StructGraphics distinguishes between the “self properties” of a node
(mark, collection, or group) and the properties of its children. Collec-
tions and top-level groups gather the properties of all nodes in their
subtree and organize them into property structures. Property struc-
tures take the form of nested property lists, which are then merged into
larger tabular structures. For instance, consider the bottom visualization
(Sankey diagram) in Fig. 1. The visualization is a B-level collection
that contains two A-level collections with four children (rectangular
marks) each. Fig. 5a shows the children properties of the first sub-
collection divided into two sections: (i) a section of shared properties,
i.e., common properties among all children nodes; and (ii) a section of
variable properties whose values vary across marks.

Property sharing is at the core of our approach. All visual relation-
ships in a StructGraphics visualization are defined through property
sharing. Sharing puts hard constraints on a group of property values.
For example, since the width property is shared (Fig. 5a), changing the
width of a rectangle in the collection will cause the width of the other
rectangles to change as well. Likewise, since the x property is shared,
all the rectangles within each collection are vertically aligned. Thus,

a b

c

d

e

f

g

drag to
share

drag to make
variable

Fig. 5. Property structures of the visualizations in Fig. 1, as represented in the StructGraphics inspector. Left: (a) The children properties of the first
A-level collection divided into two groups: shared and variable. (b) Part of the children properties of the B-level collection. (c) A tabular structure that
summarizes all variable properties. (d) Structure of connections between nodes. Right: (e) Structure of the children properties of an A-level group.
The user can choose which properties to make public. (f) Those properties are highlighted and appear in the “Public (Visible to Collections)” section.
(g) The structure of children properties in the B-level collection. Observe that only public group properties are shown.

property sharing can serve as an alignment mechanism that further
constrains a visualization layout (DP2).

Fig. 5b presents part of the children properties of the B-level collec-
tion. Observe that the fill property is shared at this level, and the same
four colors are common in both A-level collections. In contrast, the y
and height properties are variable at both levels, thus they can freely
change. Users can modify a property structure by dragging the label
of a property from the section of variable properties to the section of
shared properties, and vice-versa.

The tabular structure in Fig. 5c shows all properties that are variable
at least at one level of the visualization hierarchy, where each variable
property is represented by a separate column. Two additional columns
in the table represent the identifiers of the A-level collections (A.id)
and the identifiers of the marks (id). Such tabular structures serve as
templates for generating data tables in the spreadsheet (see Sec. 4.5),
where each column can be mapped to a data variable.

4.3.4 Property Grouping and Scoping

As we discussed earlier, groups can expose the properties of individual
marks. For example, the designer of our infographic in Fig. 1 wants to
vary the sail height but keep the height of the hull and the flag constant.
StructGraphics supports this design through a fine-grained interface for
structuring properties within groups. Fig. 5e shows how the inspector
displays the property structure of a group. Notice that some properties
(e.g., reference-y and thickness) are bound across all marks and have
a common value (and name). Other properties (e.g., fill) are split into
distinct properties and are named by the mark to which they refer (e.g.,
fill1, fill2, and fill3). Finally, some properties (e.g., reference-x) are
only partially split for a subset of the marks in the group.

Unfortunately, the number of individual properties in a group can
become large and cause the tabular structures of parent collections to
explode in size. We address this problem with property scoping. Specif-
ically, the inspector lets users pick which properties to make public, i.e.,
visible to parent collections, by hovering over a property of interest and
pressing a key (see Fig. 5e-f). As Fig. 5g shows, the property structure
of a parent collection includes the public only properties of its children.
Users can change the visibility of group properties at any moment, and
the property structure of parent collections are constantly updated.

4.3.5 Connections and Directional Links

Collections provide additional properties to describe connections
among their children. Connections that StructGraphics supports in-
clude poly lines, areas, and Bézier curves. The ordering of connections
follows the natural ordering of the children in a collection. Connections
can be created among the siblings of any type of node, including marks,
groups, and sub-collections.

replicate vary its copy create B-level
collection

draw links extend

Fig. 6. Creating nested collections: Sankey diagram of Fig. 1.

Furthermore, StructGraphics allows for directional links between
any two nodes within a collection. For example, the flow connections
in the Sankey diagram of Fig. 1 are weighted directional links between
the marks of the two nested collections. As shown in Fig. 5d, links
are represented as rows in a tabular structure. Each row includes the
identifier of the link’s source and destination, and a weight. For this type
of visualization, the weight expresses the height of a flow connection in
pixels. As with other property structures, the designer can later use the
table of links as a template to generate the data that define the flows.

4.4 Constructing Visualization Designs

The StructGraphics user interface provides a set of tools that enable
designers to draw shapes, create groups and collections, reuse them,
structure their properties, map them to data variables, and decorate
visualizations with axes, labels, and legends.

4.4.1 Drawing, Replicating, Grouping, and Linking

As in traditional vector-graphics editors, users can draw shapes on the
canvas and then resize them with interactive handles. The effect of all
object manipulations is communicated to users with an “elastic band.”
The band shows the trace of an ongoing manipulation to help users
trace their edits and easily cancel them, e.g., by pressing ESC. Our
implementation resembles the Dwell-and-Spring technique [8] and
serves as the base for all tools in the sketcher (see Fig. 6) by coupling
direct manipulation with crossing-based selection [7].

A replication (multiply) tool accelerates the creation of multiple
similar objects. The tool substitutes the “repeat action” of Data Illustra-
tor [21] but does not require the user to associate the action with a data
dimension (see Fig. 2b). Users can replicate individual marks, groups,
collections, and full visualization trees. As shown in Fig. 6, they can
also extend the internal nodes of a collection to achieve a target design.
In such cases, the tool ensures that the collection’s layout and property
sharing constraints are respected. StructGraphics provides additional
tools for grouping canvas objects (marks, groups, or collections) into
groups or collections . Users can also draw direct links
between marks (see Fig. 6), where connected marks must belong to the
same visualization tree, i.e., appear under the same top-level collection.

As users create collections, groups, and connections, property struc-
tures are automatically updated in a way that no conflicts arise. For
example, StructGraphics ensures that the height property in the Sankey
diagram of Fig. 1 is not shared across rectangles. Likewise, the height of
connected rectangles is constantly updated (e.g., the height of a source
mark increases) to remain consistent with incoming and outgoing flows.

4.4.2 By-Example Design Specification
Creating the right property structure can be tedious, since the designer
must specify which properties are shared or variable at each level of the
visualization tree. StructGraphics’ grouping tools relax this problem by
trying to “guess” the designer’s target structure based on the property
values of the grouped objects, which serve as examples. To this end,
we calculate statistics for alternative layout configuration and pick the
most probable configuration. Overall, StructGraphics’ by-example
specification approach supports a design workflow with four main steps
(see Fig. 2 and Fig. 6): (i) draw a shape, (ii) replicate it, (iii) vary the
properties of one or more replicas, and (iv) then group.

In order to decide whether a property is shared or variable, we
analyze its variance (in pixels) across all grouped objects. If it is
below a threshold value, the property is considered as shared. Likewise,
we infer reference points, alignment, and distribution constraints by
looking at all possible configurations of distance and spacing between
grouped nodes. We then try to identify the most common patterns.
When more than one possible configurations arise, e.g., equal distances
between centers but also equal spacing, we choose a configuration based
on a list of priority rules. We prioritize center-based alignments and
distance-based distributions on the x-axis and bottom-based alignments
and spacing-based distributions on the y-axis.

4.4.3 Design Reuse
Since visualization designs are independent of raw data and data
schemas, they can be easily reused (DP3). StructGraphics supports
reuse through a library of visualizations (see Fig. 1a), which can contain
individual marks, groups, or collections. The library stores the full
visualization tree of a node, including its property structures. Users
simply need to right-click on the node and then choose from a menu to
add it to the library. Later, they can drag its thumbnail from the library
into the canvas to create a copy and work on a different variation.

Visualization nodes, trees, and full libraries are exported and saved
as JavaScript Object Notation (JSON) specification files. They can
be easily imported into the user’s workspace and shared. Our gallery
presents several examples of StructGraphics JSON specification files.
In addition to the visualization structure, our JSON syntax can describe
a full StructGraphics workspace, including the tabular structures in the
spreadsheet and their transformations (see next section). Thus, it could
be further used to capture the full history of a design process.

4.5 Binding Visualization Designs with Data
A “clear trend” observed by Bigelow et al. [9] was that “manual
encoding is not only tolerated, but even embraced by designers [...].”
However, the authors also report that “manual encoding consumes
significant time and effort [...].” StructGraphics supports a manual
data-encoding workflow but automates it by making use of the sharing
relationships in a visualization property structure.

4.5.1 From Graphical Properties to Data Variables
StructGraphics does not assume that a dataset pre-exists (DP1). Instead,
it helps users to create it from scratch from their design (DP4). Property
structures in the inspector (see Fig. 5), including individual property
values, property lists, and property tables, are the basis for creating a
data template. At any moment, the user can drag a property structure
from the inspector into the spreadsheet. In the spreadsheet, properties
are transformed into variables and appear in columns (see Fig. 7).

Initially, variables are named after properties, but users can designate
names that represent real data dimensions, such as Time or Country.
Users can then type text and numbers. Variables are bidirectionally
bound to the original properties and are also subject to their structural
constraints. As a result, changing a variable value by editing a cell

Fig. 7. Transforming variables. Left: Applying a functional transformation
to a variable that is bound to the height property. Right: Applying a
symbolic transformation to the fill property and replacing its category
values. Modifying the yellow value will cause all yellow cells to update.

in the spreadsheet will cause other cells to change, as long as they all
correspond to the same property sharing. Such constraints automate
the manual entry of data and prevent data-entry errors.

Alternatively, users can import data from external spreadsheet appli-
cations, such as Microsoft Excel, through copy and paste. StructGraph-
ics thus takes advantage of the functionality of familiar applications for
data formatting. Notice that a table in the spreadsheet can take a wide
or a long form, depending on whether it is created from properties in
the “Children Properties” section (Fig. 5b) or the “Tabular Structure”
section (Fig. 5c) of the inspector. Therefore, a tuple in the spreadsheet
does not necessarily represent a single glyph (see analysis by Satya-
narayan et al. [41]). It can also represent a lower-level collection. In
this case, the properties of its children will appear as separate columns.

A StructGraphics spreadsheet is fully synchronized with the sketcher
and the inspector. Changes in a visualization can be initiated at any
of these three interfaces and are immediately propagated to the two
others. When the user activates the “replicate” tool to add new children
to a collection, the data representations of the collection are updated
with new rows or columns. However, users cannot currently add new
children to a collection from the spreadsheet.

4.5.2 Data Transformations
Traditional visualization systems use scales [54] to map data dimen-
sions to visual properties. StructGraphics follows the inverse approach,
where users optionally transform properties to real units. To this end,
the spreadsheet interface supports two transformation types (see Fig. 7):
Functional. They are expressed as mathematical functions and apply to
numerical values. The spreadsheet provides a formula field for editing
their syntax. To establish bidirectional mappings between original
and transformed values, the system calls a solver to derive the inverse
function. If, for example, the user types a function Seats= height/2−5,
the solver will also derive the inverse function: height = Seats∗2+10.
StructGraphics will then use this formula to map the values entered in
the spreadsheet to height property values.
Symbolic. They define 1-by-1 mappings between individual property
values and alphanumerics that represent discrete categories. Struct-
Graphics initially assigns default names as categories. Then, users can
edit their values. All instances of a category are linked together since
they are bound to a shared property (see Fig. 7-Right). Changing an
instance will automatically cause all other instances to change as well.

Transformations apply to the variables in the spreadsheet, not to
the original properties. Therefore, users can create multiple variables
from a single property at different areas of the spreadsheet, where each
variable can take a different function.

4.5.3 Axes, Labels, and Legends
Variables in a spreadsheet are also the basis for generating axes, labels,
and legends. The user can right-click on a variable to activate a menu
and choose to associate it with an axis or a legend, where only variables
with symbolic transformations can generate legends. Likewise, the user
can opt to decorate visualization nodes with a variable’s values, e.g., to
show the political parties (“Conservative”, “Labour,” etc.) on the flows
of the Sankey diagram in Fig. 1. Collection skeletons serve as scaffolds
for constructing axes. If the user activates an axis of a collection, the
axis inherits the geometry and alignment constraints of its skeleton.

2.1.4

2.1.3

2.1.2

2.1.1

2.2.4

2.2.3

2.2.2

2.2.1

2.1.4

2.1.3

2.1.2

2.1.1

2.2.4

2.2.3

2.2.2

2.2.1

2.1.4

2.1.3

2.1.2

2.1.1

2.2.4

2.2.3

2.2.2

2.2.1

B-level sharing A-level sharing A- & B-level sharing
2.1.4

2.1.3

2.1.2

2.1.1

2.2.4

2.2.3

2.2.2

2.2.1

No sharing

Fig. 8. Alternative binding patterns for the fill property of a B-level
collection. We take as example the bottom visualization of Fig. 1.

4.6 Implementation Details
The StructGraphics system [4] is a JavaFX [3] application. The spread-
sheet UI is an extension of the SpreadsheetView class of ControlsFX [1].
The spreadsheet’s formula solver uses the Symja algebra library [5].

A major implementation challenge was how to create a reactive
and fully synchronized UI that continuously respects all constraints
of property structures. We use the property design pattern of JavaFX
but extend its bi-directional binding mechanism to a group (multi-
directional) binding mechanism that ensures that each property in a
sharing relationship is only updated once. StructGraphics applies group
property bindings at different levels of a visualization hierarchy that
determine how properties are shared within each group or collection.
Fig. 8 shows alternative bindings of the fill property for the bottom
visualization of Fig. 1. The approach generalizes to larger numbers of
hierarchy levels, where for each level, we add a new binding dimension.

StructGraphics ensures that all sharing bindings of the same level are
synchronized. For example, if the A-level sharing breaks at the first sub-
collection of our example (“A. Collection 2.1”), then the sharing will
also break at the second sub-collection (“A. Collection 2.2”). As a result,
users can change a property structure at any level of a visualization tree,
knowing that the system will automatically apply the change to all other
nodes of the same level. Finally, StructGraphics ensures that different
bindings (as well as layout constraints) do not conflict with each other.
For example, suppose the marks in Fig. 8 are equally spaced along the y
axis through a spacing distribution constraint, while the height property
is variable. Sharing their y property at the B-level would introduce
positioning conflicts, and any change in the height of a rectangle would
result in unpredictable behavior. StructGraphics automatically breaks
the distribution constraint in this case to avoid the conflict.

5 EVALUATION

Ren et al. [34] discuss several approaches for evaluating visualization
authoring systems, including informative, reproduction, comparative,
free-form user studies, and image or video galleries. More recently,
Satyanarayan et al. [41] introduce critical reflections as an informal
method for comparing systems and assessing how each system meets
its authors’ assumptions. We use a mix of these methods.

5.1 Gallery
We demonstrate the expressive power of StructGraphics with a gallery
of visualizations. It includes high-resolution images, videos that illus-
trate their creation process, as well as StructGraphics JSON files that
specify the structure of each visualization and their full workspace. It
is available at: https://www.lri.fr/˜fanis/StructGraphics.

5.2 User Feedback
We held individual sessions with seven participants to collect user feed-
back. The first two participants (P1, P2) participated in a laboratory
environment in proximity with the investigator. However, due to the
COVID-19 outbreak, we interrupted the study and adapted its protocol
to remote sessions. We used the TeamViewer software [7], which al-
lowed participants to view and take control of the investigator’s remote
workspace. Participants used a home setup that varied across sessions.
Our materials and data are available at: https://osf.io/dgbae/.
Participants: The participants were volunteers (four women) with
diverse backgrounds. P1, P5, and P7 (denoted below as •) had 10-25
years of professional experience in graphic design and had practiced

visualization design and infographics. P1 had also experience in infor-
mation visualization research (Ph.D. level). P3 and P6 were faculty
members with more than 12 years of experience in information visual-
ization research. P2 was a Ph.D. student with expertise in visualization
grammars, while P4 was postdoctoral researcher in interaction design.
Method: Sessions lasted 70 to 85 minutes. The participants filled out
a pre-study background questionnaire. The investigator introduced the
StructGraphics user interface and provided a step-by-step tutorial (45
to 50 minutes) that explained its main features. During the tutorial, the
participants carried out small tasks to test their understanding. After
the tutorial, they were asked to complete a chart reproduction task,
which involved building a nested visualization structure, applying data
transformations, editing specific data values, and displaying axes and
legends. After the end of the session, each participant was asked to
complete a post-study questionnaire. The questionnaire evaluated the
usability of the system with respect to learning, creation difficulty, and
overall experience on a 5-point scale. The participants were also asked
to report on their own approach to visualization creation (data-driven
vs. graphics-driven) and reflect on uses and limitations of the system.

Results: The mean rating for learning difficulty was 2.43 2
3 (1 =

very easy, 5 = very difficult): the tool “is pretty easy to use and learn”
(P7), “is straightforward to use once you understand the underlying
mechanism” (P4). P3 found that it “is extremely flexible and rich,
but requires some getting used to.” P6 liked that “there were only a
few tools/concepts in total” but added that “one difficulty compared to
freeform drawing with Illustrator is that you have to think of constraints
right from the start.” A challenge that participants faced was under-
standing how to change the sharing of properties at the correct hierarchy
level. P7 remarked that at higher collection levels, “shared/variable
settings are a bit complex to understand” and wondered whether their
presentation in the inspector could become simpler.

The mean rating for creation difficulty was 1.71 (1 = very
easy, 5 = very difficult). P5 and P7 (expert designers) were enthusiastic.
P5 explained that “it’s very pleasing to be able to easily create graphics
with this tool, as it takes me much longer with my usual software.” P7
found that it is “both intuitive and logic” and “allows to start visually
and then to insert the real values – really easier than struggling with
the settings panels and tabs of a pre-existing graph in Excel.”

Concerning the participants’ overall experience, the mean rating
was 2.0 2

31 (1 = very enjoyable, 5 = very frustrating). P6 liked
“that you can drag graphical properties to the spreadsheet, and edit
them.” According to this participant, this feature could be useful for
other graphic design tasks “beyond linking visualizations to data.” P3
reported that “this is a fun tool to experiment with. The logic behind the
tool is intuitive and it can allow the creation of interesting visualizations
with simple drag and drop operations.” In contrast, P4 found that the
grouping “is not 100% intuitive.” She would prefer to manipulate

“individual objects first, and then allow building groups later on.”
Reflecting on their own approach, few only participants could iden-

tify it as purely data-driven (P2) or purely graphics-driven (P5). P1, P3,
P6, and P7 explained that their approach depends on the type or the
phase of the task. According to P3, data-exploration tasks are always
data-driven, and the tool is not well adapted. However, “when building
a vis for communication I often start with the message I want to com-
municate in mind and think of the visuals first [...] the tool makes this
process of adapting subtle properties very easy to do, helps customize
all aspects of the visual and gives absolute control on what the vis will
look at the end” (P3). P6 expressed the opinion that whether the task
is data-driven (“graphic meant to communicate a message or insights
about a particular dataset”) or not (“designing a visualization meant
to work with many datasets”), “visualization is always graphics-driven.”
The participant continued that “you can definitely design a visualization
without a dataset” but “you eventually always have to test it and refine
it by plugging data” (P6). In the same line, P7 argued that “data first”
or “graphics first” are both true, since some graphic representations
match specific datasets, while others do not. But the designer empha-
sized that “it is important to have an idea of what things could look
like, even if data is not yet complete (or arrived)” (P7).

https://www.lri.fr/~fanis/StructGraphics
https://osf.io/dgbae/

Fig. 9. Recreating the Wall Street Journal’s A Field Guide to Red and
Blue America visualization [58] with StructGraphics.

5.3 Critical Reflections
Satyanarayan et al. [41] present their collective critical reflections. Here,
although we report on the author’s own reflections, we use the analysis
of Satyanarayan et al. [41] as reference. We reflect on StructGraphics’
capabilities, assumptions, and limitations by referring to results of our
user study. We also compare StructGraphics to existing visualization
authoring systems and discuss future extensions.

5.3.1 Comparative Scenario
We start with a scenario that reproduces A Field Guide to Red and
Blue America, a nested visualization published in The Wall Street
Journal [58]. Satyanarayan et al. [41] use the same scenario to compare
Lyra [40], Data Illustrator [21], and Charticulator [33]. The original
visualization contains a bar chart for each of the 51 states of USA that
depicts the balance between votes for Democrats and Republicans from
1980 to 2012. Fig. 9 shows the full visualization on StructGraphics’
sketcher, while part of the dataset is shown on the spreadsheet. A video
demonstration of the creation process and the JSON specification of
the visualization are included in our gallery.

As a first step, we bring a bar chart design from our library or build it
from scratch. To do so, we draw a rectangle and replicate it along
the x direction. Then, we vary the height of the rectangles and use
the tool to create a collection. In the inspector, we make their fill
property variable, apply a red and blue color, and refine their alignement
constraints within the collection: A.sticky-x = Yes and A.sticky-y = Yes.
As a second step, we create 50 copies of the bar chart and then create
a B-level collection. We do so by replicating the bar chart: first along
the y axis (×5) and then along the x axis (×10). In the inspector, we
ensure that height and fill are variable at all levels. We then explore
alternative layouts by freely moving the bar charts on the cavas.

We now decide to bind our visualization with the original dataset,
which contains the following columns: State, GridX and GridY coor-
dinates, Year, Inclination (“Dem.” or “Rep.”), and PV I, a relative vote
measure that is negative for Democrats and positive for Republicans.
We open it with Microsoft Excel and sort it first by Year and then
by State. In the inspector, we navigate to the tabular structure of the
top collection, drag the columns A.id, A.x, A.y, height, and f ill, and
drop them into the spreadsheet. We rename A.id to “State,” turn its
transformation to symbolic, and bring the State column from Excel
via copy and paste. Similarly, we make the f ill variable symbolic and
copy the Inclination column. For the other variables (A.x, A.y, height),
we keep a functional transformation and choose a convenient function
(e.g., GridY = A.y/100, GridX = A.x/120, PV I = 0.7∗height) to map
pixels to data units. When we copy their values from Excel, all bar
charts take the correct height values and positions. To display the names
of the states, we right-click on the “State” column and choose “Show
on glyphs” from the menu. Later, we decide to drag the “Hawaii” chart
further left to highlight the relative geographic location of this state.

Finally, we add a larger bar chart to explain the coloring scheme
and dimensions of each bar chart (see Fig. 9). We copy the “West
Virginia” bar chart, make its bars wider and vary their heights. We drag
its x, y, and f ill properties to the spreadsheet, where we add labels and
transformations (as above) and populate axis labels and a legend.

5.3.2 Critical Reflections on System Components
We first reflect on the components of StructGraphics visualizations.
Marks and Glyphs. Like Data Illustrator [21], StructGraphics requires
its users to activate a tool from the toolbar to draw a mark. This ap-
proach facilitates the use of key shortcuts, which are extensively used by
design experts [48]. Currently, StructGraphics only supports predefined
shapes (like Lyra and Charticulator), lacking Data Illustrator’s capabili-
ties of drawing arbitrary paths. As in Data Illustrator, StructGraphics
groups are drawn directly on the canvas. In contrast to groups or glyphs
in Data Illustrator and Charticulator, groups in StructGraphics can be
infinitely nested. A strength of our design is that groups and collections
share the same representation, behavior, and creation process.

Unlike Data Illustrator and Lyra, StructGraphics does not treat
curves, areas, and connections as marks – it represents them as separate
properties within collections. This design is closer to Charticulator,
which also expresses connections as separate objects, but StructGraph-
ics further lets users create connections among sub-collections (not
only among glyphs).
Data Editing and Data Binding. The spreadsheet is an integral com-
ponent of the StructGraphics user interface. It enables users to shape
their dataset based on the visual structure of the visualization design,
apply data transformations to create mappings between pixels and data
units, edit individual or multiple values (e.g., by copy-paste), and com-
municate with external spreadsheet applications. This is a fundamental
difference between StructGraphics and current visualization authoring
tools [41], which do not deal with data entry and data formatting.

The data-binding philosophy of StructGraphics is also distinct. In
previous systems [21, 33, 40], data-binding precedes and fully specifies
the creation of all instances of a certain type of glyphs. In contrast,
StructGraphics requires that all glyph instances are explicitly created
by the user. For example, in our scenario, we created all 51 bar charts
(one for each state) directly on the canvas (see Fig. 10). Unfortunately,
the creation process becomes cumbersome as the number of glyphs
increases. Thus, StructGraphics may not be suitable if the goal is to
visualize large datasets with hundreds or thousands of data points.

Furthermore, even after property structures have been bound to data,
StructGraphics still allows users to freely manipulate the graphical
properties of their visualizations on the sketcher or the inspector. Bind-
ings between data and graphical properties are fully bi-directional,
allowing users to explore visual layouts without being constrained by
specific data values. Users can further bind the same property structure
with different pieces of data and transformations to explore alternative
solutions. On the downside, this freedom raises ethical considera-
tions, since users may be tempted to alter or fake their data in order to
achieve a compelling visual result. Our study questionnaire asked our
participants’ opinion on this issue. Overall, participants did not view
it as a problem: “fake graphs based on fake data is a really different
problem” (P7), “if people want to create fake data, they can already
do it without those tools” (P6). P3 expressed the same opinion but also
added: “I believe it is easy to make mistakes [...] if you have thousands
of data points, this is hard to double-check.” Adding common scales of
measurement and data summarization mechanisms could potentially
improve data entry and prevent errors in the spreadsheet interface.
Scales, Axes, and Legends. In StructGraphics, scales, axes, and leg-
ends are generated at will by interacting with the data variables at the
spreadsheet interface. However, the sketcher does not currently allow
users to edit them and further customize them. Referring to this lack of
support, P4 complained that “it is a little bit frustrating that you cannot
manipulate everything on the interface.” This is a clear limitation in
comparison with the capabilities of existing tools [41].
Layout. Lyra and Charticulator use anchors to reference and relatively
position visual objets. In StructGraphics, anchors are replaced by
x and y reference positions at the level of marks, and skeletons at
the level of groups and collections. Skeletons are constantly visible
such that designers can directly manipulate the position of groups
and collections (P6: “I like that collections are reified. The fact that
groups are invisible is definitely an issue with Illustrator”). Like
Charticulator, StructGraphics can express layout constraints at the level

1. Draw Rectangle

2. Replicate it

4. Replicate it (x51), and
make a B-level collection

5. GridX -> A.x
 GridY -> A.y

3. Create
 a Collection

Fig. 10. Main steps for creating the layout of the visualization in Fig. 9.

of graphics. Both systems support alignment and spacing constraints
but through different mechanisms. Charticulator’s constraints are based
on the alignment and margin properties of marks and a mechanism
of persistent snapping. StructGraphics’ constraints are based on the
stickiness and distribution properties of groups and collections and
their sharing structures. Note that StructGraphics’ sharing mechanism
allows for linking together other properties of a glyph. For example,
we can create a group of three rectangles to represent an error bar,
where the fill, width, and height of the top and bottom rectangles are
shared and thus commonly change. This mechanism relieves users
from having to bind the properties of each individual object in a group
to a data variable and facilitates reuse.

Charticulator makes use of a constraint solver that could potentially
support more complex layout constraints. Nevertheless, further com-
plexity comes with a cost, since users may not anticipate the solver’s
logic. A major requirement for StructGraphics’ design was that object
manipulations must be incremental across the full interface, where all
layout constraints are constantly evaluated and propagated as the user
directly manipulates objects. Such behavior requires simple rules with
predictable outcomes.

StructGraphics uses the same layout mechanisms for groups and
collections, while users can define the full layout without a dataset (see
Fig. 10: Steps 1-4). In contrast, Lyra, Data Illustrator, and Charticulator
require the visualization author to bind a layout structure to the variables
of a dataset. As we discuss below, this key difference derives from our
different assumptions about the user task. Finally, StructGraphics lacks
Charticulator’s support for polar and curve coordinates. In order to
support alternative coordinate systems and nested 2D representations
(e.g., as tree maps in Lyra), we need to extend StructGraphics with
additional by-example-specification tools and layout mechanisms.

5.3.3 Critical Reflections on our Assumptions
We also reflect on how StructGraphics’ design meets our assumptions.
The Task: Designing, not Authoring. A fundamental assumption of
the developers of Lyra, Data Illustrator, and Charticulator “is that peo-
ple want to author a chart, not to design one” [41]. For StructGraphics,
we reverse this assumption. We assume that users want to design a
chart, not to author one. Our participants’ feedback confirms this as-
sumption. Several participants expressed the opinion that the tool is not
well adapted to purely data-driven tasks, in particular data exploration
(P3) or visualization generation from existing datasets (P1, P2, P4). In
contrast, they all found it valuable for design-oriented tasks (P1, P2,
P6, P7), for education purposes (P4), for generating “simulation data”
(P4), or for data communication purposes (P3, P5).

In summary, visualization authoring is a data-driven activity, whereas
design tasks are often driven by graphics. StructGraphics lets designers
focus on their graphics, where any reference to data is only implicit.
The distinction between “explicit” and “implicit” data is fundamental
for design tasks. Data can be incomplete or ill defined in the designer’s
mind and progressively emerge as a visual structure takes shape.
The Designer: Literacy & Skill Transfer. Since we target design
practitioners, we assumed that StructGraphics users have experience
with vector-graphics editing applications and spreadsheets, are familiar
with visualization tools and grammars but may not know how to code.
As we discussed earlier, the participants felt that the tool was overall not
difficult to learn but were sometimes perplexed about how to locate and
manage the property structures in the inspector. A possible direction for
improving the editing experience of property structures is to reify their
sharing relationships through constraint holders that users can directly
interact with on the sketcher. P6 also remarked that the way transforma-

tions are expressed in the formula editor (e.g., deaths = height ∗10) is
different from how “visualization practitioners are used to think” (e.g.,
height = deaths/10). Since the StructGraphics workflow may require
users to think in either direction, a better approach might be to allow
them to switch between those two representations.

The Data: Formatted during Design. Unlike Satyanarayan et al. [41],
we do not assume that data are appropriately formatted prior to the task.
In StructGraphics, the data schema is defined as the user constructs a
visualization structure, based on the property sharing of its components.
Users may also decide to not deal with specific data values at all, or
even split their data into different areas of the spreadsheet. However,
there are situations (like in our scenario) where users will need to bring
real data. StructGraphics provides data-transformation capabilities
but mostly relies on external spreadsheet applications for loading and
transforming existing datasets. For the dataset of our example, we used
the formula editor of Microsoft Excel to derive the Inclination column:
IF(PV I > 0, “Rep.”, “Dem.”). We then copied the column and pasted it
to the StructGraphics spreadsheet to associate it with the fill property of
the bars. However, the functional relationship between PVI (mapped to
height) and Inclination (mapped to fill) is not expressed at the level of
the property structures. Thus, if the user turns the height of a bar from
positive to negative , its fill color will not automatically change
to blue. More generally, StructGraphics cannot express functional
dependencies between properties, which would require more expressive
visual languages, such as iVoLVER [26] or Linkify [23]. We defer the
study of this problem to future work.

Export, Reuse, & Interoperability. Reuse is a fondamental activity
of all design practices. A strength of StructGraphics is the fact that
graphical structures of any nesting level are fully reusable and indepen-
dent of datasets or data schemas. Designers can further build their own
libraries of visualization structures and share them as lightweight JSON
files. P1 commented that StructGraphics would be more valuable as
an intermediate design tool, which requires better interoperability with
other visualization software. A future direction is to develop wrappers
to/from popular formats, such as Vega [43] (as in Lyra [40]), Power BI
custom visuals (as in Charticulator [33]), or ggplot2 [2] code snippets.

Finally, during their task, some participants expressed the need to
apply structural changes to their collections, such as directly adding
shapes to existing groups in the canvas. In order to construct a visu-
alization with StructGraphics, the designer has to start from its basic
shapes and progressively move to higher-level groups and collections.
Unfortunately, the reverse workflow is not currently supported. For
example, suppose a designer reuses the structure of the Sankey dia-
gram in Fig. 1 but wants to replace the rectangular shapes by more
complex glyphs, such as the sailboats of the top visualization in the
same figure. Extending StructGraphics to support such top-down vi-
sualization constructions would allow designers to experiment with
richer design-remixing workflows. Other interesting extensions in this
direction include adding partitioning tools (as in Data Illustrator [21])
and supporting embedded merge and split operations [39].

6 SUMMARY AND CONCLUSION

We presented StructGraphics, a new graphics-driven approach for data
visualization design. StructGraphics enable designers to produce data-
agnostic visualizations that they can then reuse with different datasets.
We introduced a framework for constructing property structures that
determine how graphical properties are grouped and shared among the
nodes of a visualization hierarchy. We showed that property structures
act both as graphical constraints and as templates for data.

Creating a visualization design tool that is appropriate for all users
and design needs may be impossible or even not desirable [9]. The
StructGraphics approach provides a flexible design workflow but is still
limited in the range of design solutions it supports. We second Liu et
al. [21] who throughout their design iterations observe that constructing
a “coherent set of concepts and tools that behave consistently” can be

“a great challenge.” How to extend the StructGraphics approach to deal
with more expressive visualizations and alternative design workflows
is an exiting challenge for future research.

REFERENCES

[1] ControlsFX. https://github.com/controlsfx/controlsfx.
[2] ggplot2. https://github.com/tidyverse/ggplot2.
[3] JavaFX. https://openjfx.io/.
[4] StructGraphics code repository. https://gitlab.inria.fr/

structgraphics/code.
[5] Symja - java computer algebra library. https://bitbucket.org/
axelclk/symja_android_library/wiki/Home.

[6] Tableau. https://www.tableau.com.
[7] J. Accot and S. Zhai. More than dotting the i’s — foundations for crossing-

based interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’02, pp. 73–80. ACM, New York, NY,
USA, 2002. doi: 10.1145/503376.503390

[8] C. Appert, O. Chapuis, and E. Pietriga. Dwell-and-spring: Undo for
direct manipulation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pp. 1957–1966. ACM, New York,
NY, USA, 2012. doi: 10.1145/2207676.2208339

[9] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Reflections on how
designers design with data. In Proceedings of the 2014 International
Working Conference on Advanced Visual Interfaces, AVI ’14, pp. 17–24.
ACM, New York, NY, USA, 2014. doi: 10.1145/2598153.2598175

[10] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Iterating between tools
to create and edit visualizations. IEEE Transactions on Visualization and
Computer Graphics, 23(1):481–490, Jan. 2017. doi: 10.1109/TVCG.2016
.2598609

[11] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE transactions on visualization and computer graphics, 15:1121–8, 11
2009. doi: 10.1109/TVCG.2009.174

[12] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
Dec. 2011. doi: 10.1109/TVCG.2011.185

[13] M. Ciolfi Felice, N. Maudet, W. E. Mackay, and M. Beaudouin-Lafon.
Beyond snapping: Persistent, tweakable alignment and distribution with
StickyLines. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, UIST ’16, pp. 133–144. ACM, New
York, NY, USA, 2016. doi: 10.1145/2984511.2984577

[14] A. Dix, R. Cowgill, C. Bashford, S. McVeigh, and R. Ridgewell. Spread-
sheets as user interfaces. In Proceedings of the International Working
Conference on Advanced Visual Interfaces, AVI ’16, pp. 192–195. ACM,
New York, NY, USA, 2016. doi: 10.1145/2909132.2909271

[15] R. Hoarau and S. Conversy. Augmenting the scope of interactions with
implicit and explicit graphical structures. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12, pp. 1937–
1946. ACM, New York, NY, USA, 2012. doi: 10.1145/2207676.2208337

[16] D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo.
ChartSense: Interactive data extraction from chart images. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems,
CHI ’17, p. 6706–6717. Association for Computing Machinery, New York,
NY, USA, 2017. doi: 10.1145/3025453.3025957

[17] N. W. Kim, N. Henry Riche, B. Bach, G. A. Xu, M. Brehmer, K. Hinckley,
M. Pahud, H. Xia, M. McGuffin, and H. Pfister. DataToon: Drawing
dynamic network comics with pen + touch interaction. In CHI 2019, pp.
1–12. ACM, May 2019.

[18] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,
and H. Pfister. Data-Driven Guides: Supporting expressive design for
information graphics. IEEE Transactions on Visualization and Computer
Graphics, PP(99):1–1, Jan 2017 2017.

[19] R. Kosara. Presentation-oriented visualization techniques. IEEE Computer
Graphics and Applications, 36(1):80–85, Jan 2016. doi: 10.1109/MCG.
2016.2

[20] B. Lee, R. Habib Kazi, and G. Smith. SketchStory: Telling more en-
gaging stories with data through freeform sketching. IEEE transactions
on visualization and computer graphics, 19:2416–25, 12 2013. doi: 10.
1109/TVCG.2013.191

[21] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Augmenting vector design tools
with lazy data binding for expressive visualization authoring. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI ’18, pp. 123:1–123:13. ACM, New York, NY, USA, 2018.
doi: 10.1145/3173574.3173697

[22] H. Mance, J. Pickard, and L. Hughes. Labour fails to make big
gains in england local elections. https://www.ft.com/content/

5f2a3dcc-4f5b-11e8-a7a9-37318e776bab, 2018.
[23] N. Maudet, G. Jalal, P. Tchernavskij, M. Beaudouin-Lafon, and W. E.

Mackay. Beyond grids: Interactive graphical substrates to structure digital
layout. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI ’17, pp. 5053–5064. ACM, New York, NY,
USA, 2017. doi: 10.1145/3025453.3025718

[24] H. Mei, W. Chen, Y. Ma, H. Guan, and W. Hu. VisComposer: A visual
programmable composition environment for information visualization.
Visual Informatics, 2(1):71 – 81, 2018. Proceedings of PacificVAST 2018.
doi: 10.1016/j.visinf.2018.04.008

[25] G. G. Méndez, U. Hinrichs, and M. A. Nacenta. Bottom-up vs. top-down:
Trade-offs in efficiency, understanding, freedom and creativity with infovis
tools. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI ’17, p. 841–852. Association for Computing
Machinery, New York, NY, USA, 2017. doi: 10.1145/3025453.3025942

[26] G. G. Méndez, M. A. Nacenta, and S. Vandenheste. IVoLVER: Interactive
visual language for visualization extraction and reconstruction. In Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, p. 4073–4085. Association for Computing Machinery,
New York, NY, USA, 2016. doi: 10.1145/2858036.2858435

[27] B. A. Myers, J. Goldstein, and M. A. Goldberg. Creating charts by
demonstration. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’94, p. 106–111. Association for
Computing Machinery, New York, NY, USA, 1994. doi: 10.1145/191666.
191715

[28] A. Oulasvirta, N. Ramesh Dayama, M. Shiripour, M. John, and A. Kar-
renbauer. Combinatorial optimization of graphical user interface designs.
Proceedings of the IEEE, 108(3):434–464, 2020.

[29] P. O’Donovan, A. Agarwala, and A. Hertzmann. DesignScape: Design
with interactive layout suggestions. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, CHI ’15, p.
1221–1224. Association for Computing Machinery, New York, NY, USA,
2015. doi: 10.1145/2702123.2702149

[30] J. Poco and J. Heer. Reverse-engineering visualizations: Recovering visual
encodings from chart images. Computer Graphics Forum, 36(3):353–363,
2017. doi: 10.1111/cgf.13193

[31] B. Reinert, T. Ritschel, and H.-P. Seidel. Interactive by-example design
of artistic packing layouts. ACM Trans. Graph., 32(6):218:1–218:7, Nov.
2013. doi: 10.1145/2508363.2508409

[32] D. Ren, T. Höllerer, and X. Yuan. iVisDesigner: Expressive interactive
design of information visualizations. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2092–2101, 2014. doi: 10.1109/TVCG.
2014.2346291

[33] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive construction of
bespoke chart layouts. IEEE Transactions on Visualization and Computer
Graphics, 25(1):789–799, Jan. 2019. doi: 10.1109/TVCG.2018.2865158

[34] D. Ren, B. Lee, M. Brehmer, and N. Henry Riche. Reflecting on the evalu-
ation of visualization authoring systems. In BELIV Workshop at IEEE VIS:
Evaluation and Beyond - Methodological Approaches for Visualization.
IEEE, October 2018.

[35] S. F. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein. Interactive graphic
design using automatic presentation knowledge. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’94,
pp. 112–117. ACM, New York, NY, USA, 1994. doi: 10.1145/191666.
191719

[36] K. Ryall, J. Marks, and S. Shieber. An interactive constraint-based system
for drawing graphs. In Proceedings of the 10th Annual ACM Symposium
on User Interface Software and Technology, UIST ’97, pp. 97–104. ACM,
New York, NY, USA, 1997. doi: 10.1145/263407.263521

[37] B. Saket and A. Endert. Demonstrational interaction for data visualization.
IEEE Computer Graphics and Applications, 39(3):67–72, May 2019. doi:
10.1109/MCG.2019.2903711

[38] B. Saket, H. Y. Kim, E. T. Brown, and A. Endert. Visualization by
demonstration: An interaction paradigm for visual data exploration. IEEE
Transactions on Visualization and Computer Graphics, 23:331–340, 2017.

[39] A. Sarvghad, B. Saket, A. Endert, and N. Weibel. Embedded merge split:
Visual adjustment of data grouping. IEEE Transactions on Visualization
and Computer Graphics, 25(1):800–809, Jan 2019. doi: 10.1109/TVCG.
2018.2865075

[40] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum, 33(3):351–360, 2014. doi: 10.
1111/cgf.12391

[41] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. L. Thompson,

https://github.com/controlsfx/controlsfx
https://github.com/tidyverse/ggplot2
https://openjfx.io/
https://gitlab.inria.fr/structgraphics/code
https://gitlab.inria.fr/structgraphics/code
https://bitbucket.org/axelclk/symja_android_library/wiki/Home
https://bitbucket.org/axelclk/symja_android_library/wiki/Home
https://www.tableau.com
https://www.ft.com/content/5f2a3dcc-4f5b-11e8-a7a9-37318e776bab
https://www.ft.com/content/5f2a3dcc-4f5b-11e8-a7a9-37318e776bab

M. Brehmer, and Z. Liu. Critical reflections on visualization authoring
systems. IEEE Transactions on Visualization and Computer Graphics,
26:461–471, 2019.

[42] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017.

[43] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, 2016.

[44] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative interaction
design for data visualization. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology, UIST ’14, p.
669–678. Association for Computing Machinery, New York, NY, USA,
2014. doi: 10.1145/2642918.2647360

[45] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis and
visualization of multi-dimensional relational databases. In Proceedings of
the IEEE Symposium on Information Visualization 2000, InfoVis ’00, pp.
5–. IEEE Computer Society, Washington, DC, USA, 2000.

[46] K. Todi, D. Weir, and A. Oulasvirta. Sketchplore: Sketch and explore
with a layout optimiser. In Proceedings of the 2016 ACM Conference
on Designing Interactive Systems, DIS ’16, p. 543–555. Association for
Computing Machinery, New York, NY, USA, 2016. doi: 10.1145/2901790
.2901817

[47] T. Tsandilas, A. Bezerianos, and T. Jacob. SketchSliders: Sketching Wid-
gets for Visual Exploration on Wall Displays. In Proceedings of the ACM
Conference on Human Factors in Computing Systems, pp. 3255–3264.
ACM, Seoul, South Korea, Apr. 2015. doi: 10.1145/2702123.2702129

[48] T. Tsandilas, M. Grammatikou, and S. Huot. BricoSketch: Mixing paper
and computer drawing tools in professional illustration. In Proceedings of
the 2015 International Conference on Interactive Tabletops & Surfaces,
ITS 2015, Funchal, Portugal, November 15-18, 2015, pp. 127–136. ACM,
2015. doi: 10.1145/2817721.2817729

[49] B. Victor. Drawing dynamic visualizations. http://worrydream.com/
DrawingDynamicVisualizationsTalkAddendum, 2013.

[50] R. Vuillemot and J. Boy. Structuring Visualization Mock-ups at a Graph-
ical Level by Dividing the Display Space. IEEE Transactions on Visu-
alization and Computer Graphics, 24(1):424 – 434, Oct. 2017. doi: 10.
1109/TVCG.2017.2743998

[51] J. Walny, S. Huron, and S. Carpendale. An exploratory study of data
sketching for visual representation. Computer Graphics Forum, 34(3):231–
240, 2015. doi: 10.1111/cgf.12635

[52] C. Wang, Y. Feng, R. Bodik, A. Cheung, and I. Dillig. Visualization
by example. Proc. ACM Program. Lang., 4(POPL), Dec. 2019. doi: 10.
1145/3371117

[53] Y. Wang, H. Zhang, H. Huang, X. Chen, Q. Yin, Z. Hou, D. Zhang,
Q. Luo, and H. Qu. InfoNice: Easy creation of information graphics. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI ’18. Association for Computing Machinery, New York, NY,
USA, 2018. doi: 10.1145/3173574.3173909

[54] H. Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3–28, 2010. doi: 10.1198/jcgs.2009.07098

[55] L. Wilkinson. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag, Berlin, Heidelberg, 2005.

[56] H. Xia, N. Henry Riche, F. Chevalier, B. De Araujo, and D. Wigdor.
DataInk: Direct and creative data-oriented drawing. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems, CHI
’18, pp. 223:1–223:13. ACM, New York, NY, USA, 2018. doi: 10.1145/
3173574.3173797

[57] P. Xu, H. Fu, T. Igarashi, and C.-L. Tai. Global beautification of layouts
with interactive ambiguity resolution. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and Technology, UIST ’14,
pp. 243–252. ACM, New York, NY, USA, 2014. doi: 10.1145/2642918.
2647398

[58] R. Yeip, S. A. Thompson, and W. Welch. A field guide to red
and blue america. http://graphics.wsj.com/elections/2016/

field-guide-red-blue-america, 2016.
[59] J. E. Zhang, N. Sultanum, A. Bezerianos, and F. Chevalier. DataQuilt:

Extracting visual elements from images to craft pictorial visualizations. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, CHI ’20. ACM, 2020. doi: 10.1145/3313831.3376172

http://worrydream.com/DrawingDynamicVisualizationsTalkAddendum
http://worrydream.com/DrawingDynamicVisualizationsTalkAddendum
http://graphics.wsj.com/elections/2016/field-guide-red-blue-america
http://graphics.wsj.com/elections/2016/field-guide-red-blue-america

	Introduction
	Related Work
	Visualization Grammars and Toolkits
	Studies of Design Practices
	Design-Oriented Visualization Authoring Tools
	Sketch-Based Data Visualizations
	Visualization by Example
	Graphical Layouts and Property Constraints

	Design Principles
	StructGraphics
	Overview
	Visualization Structure
	Properties Framework
	Basic Graphical Properties
	Layout Properties
	Property Structures and Property Sharing
	Property Grouping and Scoping
	Connections and Directional Links

	Constructing Visualization Designs
	Drawing, Replicating, Grouping, and Linking
	By-Example Design Specification
	Design Reuse

	Binding Visualization Designs with Data
	From Graphical Properties to Data Variables
	Data Transformations
	Axes, Labels, and Legends

	Implementation Details

	Evaluation
	Gallery
	User Feedback
	Critical Reflections
	Comparative Scenario
	Critical Reflections on System Components
	Critical Reflections on our Assumptions

	Summary and Conclusion

