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A tree-ring perspective on the terrestrial carbon 
cycle

Introduction
Forest growth is one of the key processes that need to be 
assessed at a global scale to understand and quantify the 

Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial 
carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of 
tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among 
research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, 
how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is 
also apparent that considerable unexplored potential exists for tree rings to refine assessments of terres-trial 
carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and 
highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and 
variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between 
observational and computational forest productivity estimates. We encourage the integration of tree-ring data: 
with eddy-covarian measurements to investigate carbon allocation patterns and water-use efficiency; with 
remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest 
inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the 
potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models 
regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about 
growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest 
carbon cycling and place current developments into a long-term perspective.
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short- to long-term impacts of environmental change on 
the terrestrial carbon cycle. The total terrestrial carbon 
sink is currently estimated at 2.5  ±  0.8 P gC (Le Quéré
et  al. 2013), with forests contributing 1.1 ±  0.8 P gC per
year (Pan et al. 2011). The considerable uncertainty and the 
large inter-annual variability associated with the terrestrial 
carbon sink illustrate that this component of the global car-
bon cycle is both highly dynamic and remains poorly quan-
tified (Poulter et al. 2014). Investigating the fate of this sink 
with respect to climate, increasing CO2, nutrient limitation 
and deposition, and land-cover change is highly relevant 
for management and political decision making (Fahey et al. 
2009), as well as for the well-being of society. This has 
accordingly been a major research topic over the past years 
to decades (Bonan 2008). Despite these efforts, our under-
standing of carbon dynamics in forest ecosystems is still 
incomplete at large scales as a consequence of uncertainties 
in carbon allocation patterns (Brüggemann et al. 2011; Lit-
ton et al. 2007), forest management effects (Bellassen et al. 
2011), and a paucity of long-term data (Reichstein et  al. 
2013). These uncertainties are manifested in diverging veg-
etation model predictions (Friedlingstein et al. 2010; Jones 
et al. 2013), or misfits between model results and observed 
trends (Keenan et al. 2012). In addition, uncertainties per-
sist regarding forests’ response to climate variability (Babst 
et  al. 2013) and disturbances (Running 2008), as well as 
long-term effects of nitrogen and CO2 fertilization (Gedalof 
and Berg 2010; Law 2013). Together with human land-use, 
this array of uncertain factors form a very complex set of 
drivers for large-scale forest growth, which is challeng-
ing to resolve and calls for both long-term and large-scale 
observational records.

Tree rings are a direct measure of stem growth, which 
represents the principal above-ground carbon accumu-
lation pool and has significant economic and societal 
value (Fahey et  al. 2009). Because tree growth is sensi-
tive to changes in the physical environment, tree rings 
have often been used to develop intra-annual to centen-
nial records of environmental and anthropogenic drivers 
including climate (e.g., Frank et  al. 2010), disturbances 
(Esper et al. 2007), light and nutrient availability (Drever 
and Lertzman 2001), competition (Weber et al. 2008), or 
management (Brienen and Zuidema 2006). At present, the 
International Tree Ring Data Bank (ITRDB) is the larg-
est database of tree-ring data providing access to a vari-
ety of parameters from more than 3,000 tree-ring sites 
across the globe. Existing measurements include (1) ear-
lywood, latewood, and total ring-width, (2) wood density 
(earlywood, latewood, minimum, and maximum density), 
(3) blue light reflected from the wood surface (Campbell 
et al. 2007), (4) stable isotope ratios (i.e. carbon, oxygen, 
hydrogen, nitrogen) in whole wood, holo-, and alpha-cel-
lulose, (5) wood anatomical features (e.g., number, size 

and formation of cells, cell lumen, and cell walls), and (6) 
the abundance of specific chemical compounds (Berger 
et  al. 2004). These data provide extensive information 
on inter- and intra-annual forest growth dynamics (Babst 
et  al. 2013; Breitenmoser et  al. 2014; Briffa et  al. 2002; 
Wettstein et  al. 2011) and facilitate a variety of research 
opportunities to improve understanding of terrestrial car-
bon cycling.

Here, we review existing literature to identify knowledge 
gaps where information derived from tree rings can provide 
insight in the magnitude and variability of the global for-
est carbon balance and related environmental research. We 
further encourage the integration of dendroecology with 
several other disciplines to overcome limitations associated 
with individual data streams. This may inspire new paths of 
investigation and broaden the ongoing discussion concern-
ing the terrestrial carbon cycle.

Tree rings in a carbon cycle context

Tree rings are able to be clearly defined in most extra-
tropical and even many tropical areas where the progres-
sion of seasons induces distinct annually rhythmic variabil-
ity in wood cell structures (Cuny et al. 2014). The cambial 
cell division, enlargement, and lignification of cell walls 
that result in the final ring characteristics are influenced 
by numerous physiological processes that are modulated 
by environmental conditions both prior to and during the 
growing season (Fritts 1976). Tree rings are thus the final 
product of manifold mechanisms related to the energy, 
water, carbon, and nutrient budgets (Fig. 1). The exact char-
acteristics of the division and maturation of cells may be 
somewhat dependent upon the growth form and physiology 
of individual species, but ultimately require the immediate 
or lagged allocation of carbohydrates (Gessler et al. 2009). 
At the leaf-level, carbon uptake is largely controlled by 
light, moisture, temperature, atmospheric CO2, and nutrient 
availability (Collatz et  al. 1991; Farquhar and von Caem-
merer 1982). Carbon sequestration further depends on the 
available leaf area and thus changes seasonally with leaf 
phenology, particularly for deciduous plants (Chen et  al. 
1999; Richardson et  al. 2009). Natural and anthropogenic 
forest disturbances additionally influence growth through 
the competitive balance for limited resources among trees 
(Veblen et al. 1994). While this complexity makes it chal-
lenging to relate tree-ring data to key carbon cycle func-
tions, it represents an opportunity to assess the combined 
effects of these mechanisms. In the subsequent sections, 
we will explore ways in which tree-ring parameters can be 
combined with other data streams (summarized in Table 1) 
to address pending process-specific but also integrative 
research questions.



Cambial phenology and growing season

The distinct growing and dormant seasons represent one of 
the most fundamental rhythms characteristic of most for-
est ecosystems. The growing season can be defined as the 
period when carbon is actively removed from the atmos-
phere and assimilated during photosynthesis. Growth sea-
sonality in cold and temperate environments is largely 
driven by a combination of the photoperiod and climate 
(Polgar and Primack 2011), whereas tree water status has 
been identified as the primary driver of leaf phenology and 
cambial growth in seasonally dry tropical forests (Borchert 
1999; Trouet et  al. 2012). Comparable studies in tropical 
rainforests are rare (Dié et  al. 2012; Pumijumnong and 
Buajan 2013). Regardless of climatic growth limitations, 
a temporal offset between cambial growth and other pro-
cesses such as leaf formation, photosynthesis, or root and 
shoot elongation may occur. Such offsets are most evident 
during growth onset and cessation (Polgar and Primack 
2011, and references therein).

Cambial activity in broadleaf ring-porous species (e.g., 
oak) generally starts multiple weeks prior to bud break 
(Breda and Granier 1996). The early formation and ligni-
fication of large vessels facilitates water transport when 
the tree reaches a high evapotranspiration demand (i.e. at 
full leaf expansion) but requires a large investment of non-
structural carbohydrate (NSC) reserves assimilated during 
the previous growing season (Dietze et  al. 2014). This is 
expressed in tree-ring data as positive lag-1 autocorrelation 
and/or significant correlations with previous summer to 

autumn climate parameters (Babst et al. 2013). The use of 
NSC for wood formation has also been reported for conif-
erous or diffuse-porous broadleaf species alike, but with 
cambial activity starting synchronous with or subsequent to 
bud break (e.g., in common beech; Cufar et al. 2008). Cam-
bial growth onset typically lags leaf flush in seasonally dry 
tropical forests, where many tree species are brevi-decid-
uous and experience a short period of drought-induced 
deciduousness (Borchert 1999). Cambial activity of these 
brevi-deciduous species starts much later in the wet sea-
son and lasts for only 2–4 months (Trouet et al. 2012). The 
exact determinism (and definition) of growth onset is still 
debated, but seems largely controlled by climate (i.e. when 
temperatures transcend a prescribed threshold; Laube et al. 
2014) and hormones (Uggla et al. 1996).

Growth cessation is equally challenging to define and 
quantify because different mechanisms involved in carbon 
uptake and wood formation are under different environ-
mental controls (Vaganov et al. 2006) and do not terminate 
simultaneously (Fig.  2a). Intra-annual tree-ring studies 
have shown that radial growth typically ceases long before 
the end of the photosynthetically-active period (King et al. 
2013; Moser et al. 2010) and that cell wall-thickening con-
tinues after termination of the cambial activity, thereby 
forming latewood in coniferous species (Fritts 1976). Late-
wood density in high elevation/latitude conifers is highly 
temperature sensitive (Esper et al. 2012), integrating influ-
ences from meteorological conditions over much of the 
growing season by the deposition of assimilates in these 
cell walls. There is also some evidence for late-season 

Fig. 1   Schematic view of key drivers and processes (italics) leading to 
the formation of annual growth rings in woody plants. Numbers refer to 
the sections in this paper, where the respective aspects are discussed in 
detail, as follows: 1 "Cambial phenology and growing season", 2 "For-
est productivity and carbon allocation", 3 "CO2 fertilization and water-
use efficiency",  4 "Forest disturbances",  5 "Model evaluation and 

data assimilation". Regarding the section  “Model evaluation and data 
assimilation”, please note that not all dynamic global vegetation mod-
els include disturbances and management. The displayed stem disc was 
sampled from a Picea abies individual in Romania (north-eastern Car-
pathians, 400 m a.s.l.). FAPAR fraction of absorbed photosynthetically 
active radiation, NSC non-structural carbohydrates
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climatic influences on cell enlargement and wall-thick-
ening processes in earlier segments of the annual rings 
(Franceschini et  al. 2012). The formation of intra-annual 
density fluctuations (local increase in wood density typi-
cally induced by summer drought in Mediterranean envi-
ronments; Campelo et al. 2013) is another example of how 
carbohydrate investment in cell-wall building continues, 
while radial growth dramatically slows or even temporarily 
ceases. These processes consume a significant amount of 
carbon, which may explain the moderate success of some 
studies comparing inter-annual variability in radial growth 
(Granier et  al. 2008) and in maximum latewood density 
(Beck et al. 2013; D’Arrigo et al. 2000) with forest produc-
tivity. Accounting for variations in wood density improves 
the agreement between growth variability and integral 
measurements of forest carbon uptake (Babst et al. 2014b). 
Yet, the amount and dynamics of photoassimilates stored 
in above- and below-ground NSC reserves particularly dur-
ing cambial dormancy remains a challenging research topic 
(Dietze et al. 2014), as different types of sugars show high 
variability throughout the growing and dormant seasons 
depending upon the cambial developmental stage (Simard 
et al. 2013).

Disentangling wood formation from canopy phenology is 
a prerequisite to refine remotely-sensed [e.g., light detection 
and ranging (LIDAR), vegetation indices, phenology cam-
eras] estimates of forest productivity, as changes in photo-
synthetic activity do not necessarily reflect changes in cam-
bial growth (Fig. 2a). Intra-annual tree-ring studies involving 
repeated sampling and wood-anatomical analysis of micro-
cores (known as “punching”; Fig. 2b) are a labor-intensive 
but promising way to assess the exact timing of these species 
and biome-specific processes, as well as their impacts on car-
bon accumulation and use. For instance, Rossi et al. (2014) 
found an exponential increase in cell production in response 
to an earlier growth onset in Canadian boreal forests. This 
is particularly relevant in view of the expected prolongation 
of the growing season under a warming climate (Richardson 
et  al. 2013). Comparable studies in different climate zones 
and biomes are needed to accurately test the impacts of ris-
ing temperatures on forest productivity.

Forest productivity and carbon allocation

Forests worldwide currently mitigate approximately 30 % 
of all CO2 emissions from fossil fuel burning and land-use 

Fig. 2   Timing of cambial and 
leaf phenology. The top panel 
illustrates the relative timing of 
photosynthetic activity (green) 
and wood formation (brown) 
throughout the growing season. 
The bottom panel demonstrates 
on the example of a Picea 
abies individual (Rhone Valley, 
Central Alps, 800 m a.s.l.), how 
intra-annual tree-ring stud-
ies can inform on timing of 
wood formation. Thin sections 
(20 µm; courtesy of Patrick 
Fonti) were stained to color lig-
nified cells in red, non-lignified 
cells in dark blue and cambial 
cells in light blue. The position 
of the cambial zone (CZ) and 
the width of the evolving tree 
ring (yellow arrows) are indi-
cated (color figure online)



changes (Canadell and Raupach 2008; Friedlingstein et al. 
2010), thereby dampening the magnitude of global warm-
ing. This carbon sink, however, varies considerably in 
space, time, and magnitude requiring extensive and long-
term observational records to assess its dynamics. Forest 
net primary productivity (NPP) is primarily composed of an 
above- and a belowground component, the latter of which 
is particularly difficult to measure accurately. Attempts to 
do so are very time and labor intensive (Clark et al. 2001), 
and have thus only been performed in very local studies. 
Aboveground productivity can more readily be quantified 
via repeated measurements on permanent plots and remote 
sensing techniques to determine its contribution to NPP 
(Clark et al. 2001; Litton et al. 2007). The majority of NPP 
in forest ecosystems is attributed to tree growth and consec-
utive inventories of tree biometrics (e.g., changes in diam-
eter, height, and canopy status over a 5- to 10-year period) 
are commonly used to estimate growth and productivity in 
countries that have established a systematic inventory. Such 
monitoring initiatives can be complemented with point and 
band dendrometers to assess the (intra-)annual variation 
in tree growth in intensive monitoring plots over multiple 
years (Etzold et al. 2013; Moore et al. 2006). Yet, growth 
assessments over more than a few decades are rare (but see 
Zingg 1996), and also the contributions from temporary 
changes in water status to changes in tree size can be sig-
nificant (King et al. 2013; Stephenson et al. 2014).

Tree-ring data contribute to resolving temporal limita-
tions of forest inventories and add a long-term perspec-
tive on tree growth prior to the initiation of monitoring 
activities. Radial growth at breast height has been shown 
to be representative for the entire stem (Bouriaud et  al. 
2005), but the strength of inferred climate limitations may 
decrease toward the crown (van der Maaten-Theunissen 
and Bouriaud 2012) as carbohydrate allocation to proximal 
sinks appears favored during stress conditions (Woodruff 
and Meinzer 2011). In combination with appropriate allo-
metric equations (e.g., Zianis et al. 2005), it is possible to 
reconstruct tree volume and annual aboveground biomass 
increment from radial tree growth. Carbon accumulation at 
the tree-level can be inferred from tree biomass if the wood 
carbon content is precisely known or reasonably approxi-
mated to be 50 % of the wood mass (Joosten et al. 2004). 
In addition, combining tree-ring-based biomass quantifi-
cation and wood density data with eddy-covariance (EC) 
measurements provides information about the partitioning 
of gross primary productivity (GPP) into soil and tree car-
bon allocation (i.e. volume increment, cell-wall thickening, 
storage; Babst et al. 2014b). This approach, however, does 
not account for the depletion and replenishment of NSC 
reserves that may partly decouple tree growth from net 
ecosystem productivity. Current theory suggests that car-
bon allocation to NSC may be active (i.e. at the expense of 

growth) or passive (if redundant photoassimilates are avail-
able), depending on environmental constraints (Dietze et al. 
2014). Empirical quantification of storage mechanisms or 
dynamics in mature trees (e.g., isotopic tracer experiments; 
Kuptz et al. 2011) or for entire forest stands is rare.

A series of challenges need to be considered when infer-
ring above-ground forest biomass increment from radial 
tree growth. First, common dendrochronological sampling 
designs are often inappropriate for forest productivity 
estimation, because they rarely reflect the stand structure 
and density accurately, often lack the necessary biomet-
ric and metadata to upscale tree biomass estimates to the 
site level, and are thus prone to result in biased quantifica-
tion of growth trends and carbon accumulation (Nehrbass-
Ahles et al. 2014). The systematic application of appropri-
ate schemes like the fixed-plot (Babst et  al. 2014a; Davis 
et al. 2009) or random sampling designs at large scales are 
encouraged to obtain reliable and consistent estimates of 
above-ground biomass increment and carbon allocation. 
Second, larger networks are often biased toward areas with 
strong climatic limitations, facilitating the traditional use of 
radial growth as a palaeoclimate proxy (Jones et al. 2009). 
Intensified data collection in temperate regions is thus 
expected to yield more representative estimates of large-
scale forest productivity. Tropical regions are also under-
represented, mainly due to the lower proportion of species 
where ring formation has been demonstrated to be annual. 
Third, allometric models used to infer above-ground tree 
biomass from tree dimensions have intrinsic uncertainties 
that need to be accounted for (Nickless et  al. 2011). This 
issue is not specific to tree-ring studies but equally con-
cerns other biometric approaches based on repeated diame-
ter measurements. Published equations are usually species-
specific and almost never developed under the exact same 
site conditions where they are later applied. Finding appro-
priate biomass functions for specific sites can thus be chal-
lenging, but new local parameterization methods making 
use of the Bayesian approach seem to open perspectives in 
this respect (Zell et al. 2014). Fourth, tree-ring data reflect 
the forest structure in the sampling year, whereas tempo-
ral changes in forest demography and composition cannot 
reliably be reconstructed. Uncertainties associated with tree 
mortality, disturbances, or management increase considera-
bly back in time and are characterized as the “fading record 
problem”. Hence, the site history needs to be considered 
in stand-level biomass reconstructions and can further be 
supported by the collection of relict material (Daniels et al. 
1997), by responses of surviving trees to formerly present 
individuals (e.g., growth releases; Rubino and McCarthyz 
2004), or by medium-term trends in modeled NPP (Fig. 3). 
And fifth, upscaling plot level data to larger areas is chal-
lenging, especially under variable forest structure and com-
position. A combination of tree-ring and remotely sensed 



data appears promising to evaluate the extent to which 
limited-scale records of forest growth reflect landscape 
or regional vegetation performance. Recently developed 
remote sensing technologies include airborne or terrestrial 
LIDAR for high-resolution forest survey (Andersen et  al. 
2005; Magney et  al. 2014) and the use of hyperspectral 
estimates of physiological parameters for improved mod-
eling of aboveground productivity (Houborg et  al. 2013; 
Smith et al. 2002).

All the above-mentioned approaches have their own 
advantages, but we find that no single method is able to 
draw an accurate picture of terrestrial carbon accumulation 
in woody biomass. The combination of these methods (e.g., 
as illustrated in Fig.  3) should be aimed at in any study 
related to forest growth. Some notable examples are Berner 
et al. (2011), Beck et al. (2013), Poulter et al. (2013), and 
Bunn et  al. (2013), who compared canopy reflectance as 
expressed by the normalized difference vegetation index 
(NDVI) and cambial productivity (radial growth and maxi-
mum latewood density), or Girardin et al. (2014) who com-
bined inventory, tree-ring, and satellite data to relate recent 
forest growth to aboveground biomass increment over the 
past centuries.

CO2 fertilization and water‑use efficiency

One of the major uncertainties that will co-determine the 
fate of the terrestrial carbon cycle in the Anthropocene is 
the magnitude or even existence of enhanced plant growth 
at higher CO2 concentrations. Trees regulate the gas 
exchange at the leaf-level via their stomata in response 
to environmental conditions and the atmospheric CO2 
concentration (ca). This physiological adaptation serves 
to optimize the ratio between carbon assimilation and 

evaporative water loss [water-use efficiency (WUE)] and 
represents a primary link between plant functioning and 
anthropogenic perturbations of the carbon cycle (Franks 
et  al. 2013). The rising ca over the industrial period has 
continuously increased the amount of carbon available for 
plant photosynthesis (Drake et  al. 1997). This has led to 
a widely debated CO2 fertilization hypothesis, suggesting 
that an increase in ca should exert a positive effect on NPP 
(Ainsworth and Long 2005). Numerous studies have found 
a positive relationship between ca and WUE (e.g., Battipa-
glia et al. 2013; Medlyn et al. 1999), but a related fertiliz-
ing effect on tree growth remains highly uncertain. Some 
studies reported increased growth rates that were hypoth-
esized to be at least partly attributable to CO2 fertilization 
(Huang et al. 2007; Koutavas 2013; McMahon et al. 2010), 
whereas other investigations found no such effects (Lev-
esque et al. 2014; Gedalof and Berg 2010; Peñuelas et al. 
2011). The absence of a measurable fertilization effect on 
growth from tree-ring records could be explained, e.g., by 
secondary limitations that prevent increased C assimilation 
from being fully realized (Andreu-Hayles et al. 2011). Fur-
thermore, possible methodological constraints may hinder 
the clear detection of CO2 fertilization effects in tree rings 
(Girardin et  al. 2011). For instance, the differentiation of 
CO2-enhanced growth from tree age/size trends in tree-ring 
width measurements (Frank et al. 2009), classically applied 
sampling procedures that focus on a selection of dominant 
individuals (Nehrbass-Ahles et  al. 2014), and significant 
variation in tree-ring data driven by climatic fluctuations 
may obscure the growth response to CO2. It has also been 
reported that trees may only benefit from higher ca in their 
early growth phase (Hättenschwiler et al. 1997) or if other 
resources are not limiting (Norby et al. 2010). In addition, 
a 13C tracer experiment in mature temperate trees revealed 

Fig. 3   Example for multiple estimates of forest productivity at the 
flux-tower site in Braschaat (Belgium). a The inter-annual to decadal 
variability in woody NPP from tree-rings (wNPPTR, Pinus sylvestris, 
source: Babst et al. 2014a), NPP estimates from the ORCHIDEE-FM 
dynamic global vegetation model (NPPVM, see Babst et al. 2013, sup-
plementary material for description), and NPP estimates from eddy-

covariance data (NPPEC, 50 % of annual GPP as obtained from the 
European Fluxes database, www.europe-fluxdata.eu) is presented. b 
Magnitude of the three data streams over the 1999–2009 period. The 
following significance codes are used for linear regression models: 
***p < 0.001, **p < 0.01, *p ≤ 0.05, ns p > 0.05

http://www.europe-fluxdata.eu


that strongly elevated ca led to a higher carbon transfer 
belowground, whereas photosynthetic capacity and stem 
growth remained largely unaffected (Körner et  al. 2005). 
The latter finding, while somewhat species-specific, indi-
cates that more carbon is passing through but not remaining 
in trees under higher ca.

Tree-ring stable isotope measurements (informing car-
bon uptake at the leaf level) are a well-established tool that 
can be used to improve our understanding of CO2-fertili-
zation effects and disentangle ecophysiological processes 
related to plant water and carbon cycling (Gessler et  al. 
2009). According to the theory of Farquhar et  al. (1982), 
the ratio between the intercellular CO2 concentration (ci) 
and ca is a proxy for kinetic isotope effects and drives the 
13CO2 discrimination at the leaf-level. The resulting δ13C
of photosynthate (with some downstream compound spe-
cific fractionation; see below) is imprinted in wood cellu-
lose and thus allows inferring physiological connections 
to stomatal conductance, WUE, and climatic constraints 
(Gessler et  al. 2009). The quality of these links appears 
to be stable across scales, as most (but not all; Battipaglia 
et al. 2013) empirical evidence suggests that plants undergo 
physiological adaptation to changes in ca to keep the rela-
tive gradient for CO2 diffusion into the leaf (1 − ci/ca) close
to constant (Franks et  al. 2013). Leaf-level effects can, 
however, be obscured by post-carboxylation fractionation 
that may occur between CO2 assimilation and allocation 
of carbohydrates to tree-ring cellulose (Brüggemann et al. 
2011; Gessler et  al. 2014). As a consequence, δ13C may 
change (1) as photosynthate is moved to and from starch 
storage pools, (2) prior to and during transport from a leaf 
to cambial tissue, or (3) during respiration of some frac-
tion of the photosynthate prior to cellulose synthesis (Helle 
and Schleser 2004; Gessler et al. 2014). Numerous studies, 
however, have found a strong relationship between tree-
ring δ13C and climate variables (e.g., Masson-Delmotte 
et al. 2005), suggesting work is also required to differenti-
ate environmental imprints from CO2 effects.

Separating the impacts of carbon assimilation (demand 
for CO2) and stomatal conductance (supply of CO2) based 
on tree-ring δ13C variation alone is challenging. The “dual 
isotope” concept proposed by Scheidegger et  al. (2000) 
facilitates the interpretation of δ13C variation by measuring 
δ18O from the same material. Oxygen isotope variation is 
viewed as a measure of evaporative flux as it depends on 
stomatal conductance, but less directly on photosynthetic 
rates. This dual approach has successfully been used to 
interpret δ13C variation in tree rings (Brooks and Mitchell 
2011), but caution must be exercised regarding a number 
of model assumptions (Roden and Siegwolf 2012). δ18O 
variation in tree-ring cellulose is a function of source water 
δ18O, atmospheric humidity (or VPD), atmospheric vapor 
δ18O, kinetic and equilibrium fractionation associated 

with water flux into the leaf, biochemical fractionation 
during sucrose synthesis, and the proportion of O that is 
exchanged with stem water at the site of cellulose synthesis 
(Roden et al. 2000; Treydte et al. 2014).

The above framework is useful in deriving comparable 
estimates of both WUE and wood increment and in com-
paring their inter-annual to decadal variability. Yet, there 
is evidence that the relationship between WUE and cellu-
lose δ13C may be more detectable during periods and/or in 
regions with relatively frequent and pronounced droughts 
(Sarris et  al. 2013). At the same time, drought condi-
tions lead to stomatal closure, increased NSC utilization 
(McDowell et al. 2011), and a reduction in carbon uptake 
and growth, at least partly explaining the absence of a 
growth increase in response to higher WUE in some earlier 
studies. Thorough testing of these mechanisms will require 
large networks of tree-ring stable isotope records that can 
provide new insight into observed global NPP trends over 
recent decades (Zhao and Running 2010). Our under-
standing of how shifts in WUE translate into productivity 
changes may further be enhanced by combining carbon and 
oxygen isotope measurements from wood cellulose with 
EC quantifications of the carbon, water, and energy budgets 
across ecosystems (Belmecheri et al. 2014).

Forest disturbances

Natural and anthropogenic forest disturbances and com-
binations thereof are the primary avenues through which 
forest ecosystems may be converted from carbon sinks 
into sources (Veblen et  al. 1994), thereby releasing large 
amounts of carbon into the atmosphere over short time 
periods. Disturbances resulting from human activities 
include land-use changes such as deforestation and forest 
harvesting (Masek et al. 2011), as well as land management 
practices. The major natural disturbances acting on land-
scape scales are wildfires (Page et  al. 2002), insect defo-
liation (Hicke et  al. 2012), and short-term weather events 
such as wind and snow storms (Chambers et al. 2007). The 
carbon cycle responses to forest disturbances are complex 
and can show non-linear, threshold-like behavior (Bres-
hears and Allen 2002). These responses also involve dif-
ferent time scales, from a carbon source immediately after 
disturbance to a legacy sink in case of forest regrowth 
for decades after disturbance. Assessment of disturbance 
impacts is further complicated by interactions among dif-
ferent types of disturbances (McCullough et al. 1998) and 
their feedbacks with ongoing and projected climate change 
(Flannigan et al. 2009; Scholze et al. 2006; Yue et al. 2013). 
Advanced understanding and quantification of specific dis-
turbance regimes across a range of spatiotemporal scales 
will serve to improve reconstructions and projections of 
carbon cycling (Kasischke et al. 2013).



Land management records (Masek et  al. 2011) or 
remotely sensed data of the affected area (Frolking et  al. 
2009) have been used to derive spatially extensive estimates 
for disturbance history. These datasets combined roughly 
cover the past century (Kasischke et al. 2013) and can be 
used to quantify disturbance type, frequency (Zeng et  al. 
2009), seasonal timing (Turetsky et al. 2011), event length 
(Hogg et al. 2005), spatial extent (Kasischke et al. 2002), 
intensity (Proulx and Greene 2001), and severity (Turetsky 
et  al. 2011). Disturbance history inferred from tree rings 
complements land management and satellite records and 
importantly provides a historical (pre-satellite era or even 
pre-twentieth century) context for recent disturbance events 
(Pederson et al. 2014). This is particularly relevant for nat-
ural forest disturbances (i.e. wildfire, insect outbreaks, and 
storms) for which only limited observational data are avail-
able at the landscape scale and whose characteristics have 
changed over time (i.e. pre- vs. post-human settlement) and 
are expected to continue to change with projected climate 
trends.

The majority of tree ring-based fire history studies use 
heat-caused lesions in the boles of surviving trees to date 
historical low intensity surface fires (Swetnam and Bai-
san 1996). Tree-ring cross-dating can also be used to date 
synchronized recruitment events that result from severe 
crown fires in closed-canopy forests (e.g., Brown and Wu 
2005). These techniques are useful for stand level (Taylor 
and Skinner 1998) to regional scale (Trouet et  al. 2010) 
assessments, and have advanced our understanding of fire 
regimes regarding frequency, extent, and seasonality. The 
long (typically 200+ years) fire histories allow characteri-
zation of fire climatology on inter-annual to multidecadal 
time-scales (e.g., Swetnam 1993) and assessment of the 
modulating role of temperature and atmospheric circulation 
patterns on summer drought (Trouet et  al. 2010), spring 
snowpack duration, and fire season length (Westerling et al. 
2006), which regulate fire occurrence and severity. These 
historical interannual to centennial fire regime dynamics 
include fire return intervals and fire–climate–vegetation 
interactions, facets that can be integrated with predictive 
models to refine projections of ecosystem change under 
future warming (Kelly et al. 2013).

In a similar way, tree-ring-based reconstructions of 
insect outbreak occurrences can help elucidate their 
impact on forest ecosystem dynamics. Forest insect defo-
liation events often result in decreased tree biomass incre-
ment and in wood anatomical changes, and can thus be 
analyzed using dendrochronological methods (Schwe-
ingruber et  al. 1979). By compiling tree- and site-level 
defoliation data, forest insect population dynamics can 
be studied across spatial and temporal scales (Babst et al. 
2010; Speer et al. 2001). Particularly relevant to the study 
of carbon cycle dynamics are (1) the oscillatory behavior 

of many forest insect populations and how it is influenced 
by climate change (Bale et  al. 2002) and (2) the interac-
tion between insect outbreaks and other disturbances (e.g., 
wildfire). Insect population cycles are the result of trophic 
interactions or maternal effects (Berryman 1996), and tree-
ring studies have demonstrated the century-long regularity 
of these cycles for various insect species (e.g., Boulanger 
and Arseneault 2004; Esper et  al. 2007). In the case of 
the European larch budmoth, evidence suggests that the 
absence of peak outbreak events in recent decades may 
be attributable to anthropogenic warming (Johnson et  al. 
2010).

A third forest disturbance agent that can be studied 
using dendrochronological methods is forest blowdown 
caused by windstorms. Such events can be detected in 
tree-ring series by identifying growth suppressions result-
ing from traumatic canopy loss and growth releases in sur-
viving trees that benefit from canopy opening (Hadley and 
Knapp 2011). Windthrow-related tree growth anomalies 
compiled at the site and regional level provide evidence 
for the timing, frequency, and intensity of wind storms 
and their role on regional forest ecology (Seidl and Blen-
now 2012). Windstorms modulate forest structure and 
demography (Harcombe et al. 2004), and have the potential 
to convert forests from carbon sinks to sources, and then 
sinks again during recovery (Lindroth et al. 2009). Global 
climate model projections suggest an increase in extreme 
wind events and disturbances under future climate sce-
narios (Blennow and Olofsson 2008). This affects other 
disturbance agents and can further exacerbate future dis-
turbance regimes. Windstorms interact with wildfire dis-
turbance through the creation of large fuel loads (Weisberg 
and Swanson 2003) and with insect colonization success 
through reduced tree growth and vigor related to root and 
crown damage (Komonen et  al. 2011). Such disturbance 
interactions, as well as decadal- to centennial-scale for-
est disturbance dynamics, form an important limitation in 
our understanding of the future role of disturbances in the 
regional to global forest carbon balance. Tree-ring records 
from surviving trees can provide a long-term perspective 
on disturbance dynamics, but provide limited direct infor-
mation on large-scale mortality and changes in stand den-
sity (except death dates and recruitment timing; Pederson 
et al. 2014).

Model evaluation and data assimilation

Dynamic vegetation models are an essential instrument 
used to investigate the magnitude and spatiotemporal 
dynamics of the global terrestrial carbon cycle, upscale 
in situ observations of ecosystem productivity, and infer 
and project relevant ecosystem processes (Sitch et  al. 
2008). Despite the improvements achieved by comparing 



multi-model ensembles (Friedlingstein et  al. 2006), per-
sistent challenges continue to hamper reducing the uncer-
tainty in predictions of the forest carbon sink and its 
response to changes in environmental forcing. Uncertain-
ties may derive from fluctuations in land cover and use 
(Kaplan et  al. 2012), from climatic input data (Poulter 
et al. 2011), or from model parameters and structure that 
do not fully capture the spatiotemporal variability in eco-
system processes (Keenan et  al. 2012). The latter prob-
lem is expressed, e.g., through discrepancies between 
the observed and simulated climate responses of forests 
(Babst et  al. 2013; Piao et  al. 2013), the limited consid-
eration of carry-over effects from the previous growing 
season typically found in observational growth records 
(Wettstein et al. 2011), or an unrealistic timing of growth 
onset and cessation (Kucharik et  al. 2006; Richardson 
et al. 2013).

Constraining vegetation model simulations with in situ 
observations is a promising method to reduce the above 
caveats if the uncertainty in both model and observational 
data is accurately considered (Keenan et al. 2011). Eddy-
covariance quantification of ecosystem carbon uptake 
and release have been employed most frequently for this 
purpose (Beer et  al. 2010), but may not be sufficient to 
constrain medium- to long-term trends in forest carbon 
accumulation. This is due to (1) the influence of pro-
cesses and disturbances which are not considered in the 
models (Keenan et al. 2012), (2) the generally short time 
series offered by EC measurements and the focus of the 
EC method on informing fast processes, (3) the unequal 
abundance of flux towers among different forest types, 
and (4) the inability to derive carbon allocation patterns 
from CO2 fluxes measured above the canopy. Tree-ring 
parameters have rarely been assimilated into carbon-
cycle models, but constraining a process model using 
biometric estimates of growth led to reductions in param-
eter uncertainty and improved statistical confidence in 
model predictions (Richardson et  al. 2010). Using tree-
ring records to extend estimates of growth over longer 
periods in model-data fusion exercises should thus be 
encouraged.

Tree-ring archives are now reaching reasonable global 
coverage (St. George and Ault 2014; Breitenmoser et  al. 
2014) and offer valuable opportunities to inform vegeta-
tion models about annually resolved and long-term forest 
growth variability and to some extent disturbances. Large-
scale growth reductions after disturbances and subsequent 
recovery need to be considered when past changes in the 
forest carbon sink are assessed (Bellassen et  al. 2011). 
Hence, potential exists for the use of tree rings to bench-
mark forest productivity simulations, either through direct 
comparison of simulated NPP increment with radial growth 
trends (Malmström et al. 1997) or through comparison of 

observed versus simulated sensitivities of forests to envi-
ronmental drivers (Babst et  al. 2013). Another interest-
ing path is the possibility to incorporate a process-based 
model [Vaganov-Shashkin-Lite (VS-lite); Tolwinski-Ward 
et al. (2011)] to simulate radial tree growth within a fully 
fledged climate model. The VS-lite model requires only 
climatic and geographic input data, and this forward mod-
eling approach has been shown to simulate tree-ring chro-
nologies across the globe reasonably well (Breitenmoser 
et  al. 2014). Efforts in modeling radial stem growth from 
vegetation models will faciliate comparisons between real 
and simulated tree-ring data (Li et al. 2014). This is crucial, 
as it will eliminate the need to transform tree-ring data into 
derived variables such as NPP—a process that introduces 
new uncertainties—for comparison with or assimilation 
into modeling frameworks.

Perspectives

We recognize that no individual discipline or method is 
capable of conclusively resolving forest carbon cycling at 
large spatial scales and high temporal resolution. Instead, 
recent efforts have highlighted the benefits of combin-
ing multiple data streams to constrain the spatiotemporal 
dynamics of forest growth and productivity. Continued 
efforts to synthesize data products and thereby accumu-
late the strengths of individual approaches are desirable to 
improve empirical estimates, model structures, and calibra-
tions and projections of ecosystem functions in a warm-
ing world. In this respect, tree rings provide valuable input 
on multiple temporal scales (Fig.  4), as they continue to 
be measured worldwide, from arctic environments, where 
growth is largely happening below ground (Buchwal et al. 
2013), to the tropics, where a research focus remains on 
identifying species and regions where annual rings are 
formed (Trouet et al. 2012).

Based on our literature review, the following appli-
cations of tree-ring archives appear most promising for 
improving our understanding of terrestrial carbon cycling:

1.	T ree-ring quantification of the annual biomass incre-
ment can (1) contribute to refining forest carbon budg-
ets, (2) be combined with EC measurements to inform 
carbon allocation patterns, (3) be used in combination 
with airborne estimates of forest growth and struc-
ture, or (4) improve the temporal resolution of peri-
odical forest inventories. Thereby, consistent sampling 
schemes are required to produce comparable results 
across various climate zones and forest types (Babst 
et al. 2014a; Nehrbass-Ahles et al. 2014).

2.	E stimates of WUE based on tree-ring stable isotopes
provide information on the response of forest carbon 



uptake to environmental constraints, such as drought. 
Such data are promising in order to refine the simu-
lated response of NPP to climatic limitations in cur-
rent-generation earth system models, which are known 
to be overly drought sensitive compared to tree-ring 
observations (Babst et  al. 2013). They also provide 
long-term records of the WUE and its recent fluctua-
tions in response to the combined effects of CO2 and 
climate forcing.

3.	T he repeated sampling and wood anatomical analysis
of micro-cores allows for cambial phenology and wood 
formation to be disentangled from leaf phenology 
observed during monitoring programs or using digital 
image analysis (Richardson et al. 2013). This may pro-
vide new insights into carbon allocation dynamics at 
and between growth onset and cessation, which is par-
ticularly relevant for the depletion and replenishment 
of non-structural carbohydrate reserves (Dietze et  al. 
2014). In this context, wood density or wood anatomi-
cal measurements can provide additional information 
on the fate of assimilates after the termination of radial 
growth and before the end of the photosynthetically 
active period.

4.	T he magnitude and seasonality of forests’ response to
environmental drivers largely determines the produc-
tivity changes if a growth limitation shift occurs. These 
can be short-term events such as climate extremes or 
disturbances, which are difficult to predict (Seneviratne 
2012), or longer-term changes in the base climate. Tree 
rings are an instrument to assess (non-)climatic forest 
growth limitations and can be used, e.g., to benchmark 
the climate sensitivity of large-scale NPP estimates 
(Babst et al. 2013).

5.	T ree rings provide an opportunity to place current
environmental changes into a centennial to millennial 

context. Besides reconstructing climate fluctuations 
(Büntgen et al. 2011; Trouet et al. 2009) or the temper-
ature sensitivity of the atmospheric CO2 concentration 
(Frank et  al. 2010), the long-term perspective offered 
by tree-ring archives allows the observation of trends 
in the occurrence of extreme events (Battipaglia et al. 
2010). Extreme events can have disproportionally large 
effects on ecosystems and society, and, as they are rare 
by definition, require analyses that transcend the time-
scales captured by instrumental records.

Communication among research communities needs 
to be further stimulated as a step towards fully harnessing 
the scientific potential highlighted herein. Carbon-cycle 
research transcends traditional applications of tree-ring 
proxies and is only slowly entering the scope of dendro-
chronology. In turn, the value of tree rings in a carbon con-
text has yet to be fully recognized. Bridging existing gaps 
is thus inevitable for successful implementation of novel 
paths of investigation. Furthermore, multidisciplinary col-
laborations are considerably facilitated by publicly avail-
able data from growing international platforms such as 
FLUXNET or the ITRDB. Contributions to these and other 
archives can thus only be encouraged as they continuously 
extend the scales of possible studies and are crucial for 
maintaining an active dialogue between researchers and 
with funding agencies.
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