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Abstract

Numerical models are developed to examine fiber suspension flows through axisymmetric geometries, such as
a circular pipe, a center-gated disk and a die exit. The fiber orientation micro-structure is fully described by
using the entire probability distribution function (PDF) in 3D instead of the second and fourth moments of
the PDF, which introduce errors due to the closure approximation when using orientation tensor descriptions.
A Newtonian suspending fluid is considered for the constitutive relationship and simulations are performed
with and without coupling the flow and fiber orientation. Results are compared with numerical simulations
obtained by using the standard evolution equation for the second-order orientation tensor and the IBOF
closure approximation. It is found that the IBOF closure approximation does a relatively good job of
matching the exact orientation results given by the probability distribution function. For the three explored
flows, the difference between the predicted orientation results using the coupled and decoupled approaches is
not significant. There is a noticeable difference in the velocity field solutions, specifically at the die exit where
the coupled approach increases the die swell ratio when the fibers enter the inlet with random orientation
state.

Keywords: Fiber suspension; Polymer composite; Fiber orientation; Numerical modeling; Probability
distribution function; Axisymmetric flow

1. Introduction

In this work, a numerical simulation of fiber suspension flows in axisymmetric geometries is developed.
Rheology of fiber suspensions is significantly influenced by the orientation state of the fibers and a key
point is to choose how to describe this orientation state. In engineering applications, a large range of flow
dimensions are involved from millimeters which is the average gap for short fiber filled melted thermoplastics
in processes such as injection molding to a meter long in steel fiber filled fresh concrete used to construct
buildings. On a smaller scale, fillers are used to cover a broad range of dimensions from the nanometer
scale (i.e., carbon nanotubes) to the millimeter scale (i.e., metallic fibers in reinforced concrete). It should
also be noted that fibers are often added in large quantities. The number of fibers in the field of study is
therefore extremely large and it is not practical to follow the fiber dynamics of each and every fiber. Instead
of examining fibers individually, a representative elementary volume (REV) is introduced to investigate the
behavior for a composite material element that contains a fixed number of fibers. This number is large
enough, typically a few hundred, to be representative.

Since fiber orientation is a key parameter, a fiber statistic descriptor in the REV must be specified. Thus,
the orientation of a fiber population in the REV is described by a probability distribution function (PDF),
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U(x,p, ). It represents the probability of finding at a time ¢ and at the position X a fiber oriented in the solid
angle dp about the orientation p, where p is the unit vector parallel to the fiber axis. In 3D flow, p can take
all the directions on a unit sphere. In 2D planar flow, the PDF is reduced to a circle and dp becomes an
angle. In 2D axisymmetric flows, sometimes elongational flow can occur in the plane perpendicular to the
rz-plane, in which case the PDF must be described on a sphere as for 3D flows. The PDF can realistically
represent the real state of orientation with the fiber population in the RVE. The accuracy depends on the
number of unknowns used to represent the PDF. Thus in 2D plane, if dp is equal to 5 degrees then the
number of unknowns is 72 and if dp is equal to 0.1 degree, the number of unknowns balloons to 3600. In
3D this number can be at least one order of magnitude higher.

Far from the solid wall, in a Newtonian fluid and in a dilute regime, the fiber center of mass is supposed
to translate at the same velocity as that of the surrounding fluid and its orientation evolution is described
by the well-known Jeffery equation [1]. This equation can be introduced in the Fokker-Planck equation
which gives the time rate of change of the PDF. If fibers are introduced in a fluid, its behavior is modified.
Dinh and Armstrong [2] proposed a constitutive equation for a Newtonian fluid containing fibers with an
infinite aspect ratio. Then, they extended it for a population of fibers in a REV using a PDF. Thus, a
comprehensive model is constituted of governing equation(s) to describe the fiber dynamics, derived from
the Fokker-Planck equation, and the constitutive equation that describes the suspension rheology based on
PDF.

In the 80’s when the first computers were used to solve fluid mechanics problems, the use of hundreds of
unknowns for PDF at each node was impractical. Therefore, Advani and Tucker [3] defined the second- and
fourth-order orientation tensors (the second and fourth moments of the PDF), which reduce drastically the
number of unknowns to 5 in 3D, 4 in 2D axisymmetric and 2 in 2D planar flows. Although the fourth-order
orientation tensors could capture the influence on mechanical and rheological behavior, major drawback of
converting the evolution equation for the PDF to orientation tensors requires a closure approximation in the
equation and therefore, the unanswered question is does the use of orientation tensors cause a significant
inaccuracy in the model. However, models for fiber suspensions based on orientation tensors are widely
used since the 80’s and have also found their application in injection and compression molding simulations
(Moldflow, Autodesk, Inc., San Rafael, CA or Moldex3D, CoreTech System Co., Ltd., Taipei, China). Tt
should also be noted that Jeffery’s equation and Dinh and Armstrong model are based on the following
hypothesis: Newtonian fluid, semi-concentrated regime and rigid particles [4].

Orientation tensors have been very helpful in developing models with a linear matrix behavior, without
fiber interactions and without wall effects. On the other hand, the use of tensors in the presence of non-
linearity or discontinuity seems more complex or sometimes impossible. Thus, Férec et al. [5] developed a
model for fiber interactions where their statistics are described by tensors called interaction tensors [6]. Their
use is complicated due to the need to complete the model with new closure approximations [7]. Deriving
macroscopic models which employ orientation tensors for non-Newtonian matrices also poses problems. For
shear-thinning fluids, tensors describing fiber orientation have a complex form as it includes a deformation
mode dependence [8]. In the case of viscoelastic matrices in the limit of low Deborah number, the use
of the sixth-order orientation tensor is required [9, 10]. The use of tensor is efficient and convenient, but
they have three drawbacks. The first one is the loss of physics, the second one is the need to use a closure
approximation and the third is the inability to simply develop models to describe non-Newtonian suspending
fluid behaviors.

A way to circumvent the use of closure approximation is to directly solve the Fokker-Planck equation
in both the spatial and configurational spaces. The implementation of Fokker-Planck equation has already
been implemented with different types of numerical tools. Another engineering application, where the PDF
is useful, is for fluids in which viscoelasticity is important. Indeed, the PDF can represent the statistics of
polymer chain conformations at a given point. For instance, Lozinski and Chauviére [11] investigated the
flow of a viscoelastic fluid past a confined cylinder using PDF for the FENE (Finitely Extensible Nonlinear
Elastic) model. Moosaie and Manhart [12] proposed a direct simulation to solve the problem of Brownian
fiber suspension flows in complex geometries. This procedure yields a direct solution of the Fokker—Planck
equation without closure approximation. For homogeneous flows, Férec et al. [13] used a finite volume
method to investigate the Folgar—Tucker-Lipscomb model for fiber suspension application. Krochak et
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al. [14] and then more recently Johnson et al. [15] developed a numerical simulation of a fiber suspension
flow in a convergent geometry in 2D plane using the PDF. Sattari et al. [16] extended the problem in 3D.
Mezi et al. [17] have introduced a numerical simulation for 2D planar flows for fiber suspension with a
Newtonian and a power-law suspending fluid. They used a finite element method with two 2D meshes. The
2D flow is solved using the first mesh and the second one is the conformational mesh or the orientation
mesh which divides the unit circle in 30 parts to represent the number of orientation unknowns. Ammar et
al. [18, 19] proposed a new solution technique called PGD (Proper Generalized Decomposition) that allows
for the direct solution of the Fokker-Planck equation in conformation spaces of high dimension.

The aim of this paper is to develop a numerical simulation of 2D axisymmetric flows for fiber suspensions
using the PDF in 3D. The flow mesh is given by a 2D axisymmetric domain and the conformational mesh
is done over the surface of a unit sphere. As the PDF is 3D, the number of unknowns is 900 (i.e., 30 x 30)
for the conformational domain. This paper is organized as follows. The next section is dedicated to the
mathematical modeling. Then Section 3 describes the strategy to solve the Fokker-Planck equation on the
unit sphere and the fluid mechanics problem on the flow mesh. Finally, before the concluding remarks, three
geometries have been investigated: a circular pipe, a center-gated disk and the die swell.

2. Mathematical modeling

The problem is governed by the continuity and Cauchy momentum equations in the limit of creeping
flow under the assumptions of an isothermal and incompressible fluid while neglecting body forces

Vi -u=0, (1a)
Vip + moAgu + Vi - 7 = 0. (1b)

In the above equations, p denotes the pressure, ny describes the Newtonian viscosity for the suspending
fluid, u is the velocity vector and T represents the extra stress tensor arising from the fiber hydrodynamic
contribution. The operators Vi and Ax refer to the partial derivative and the Laplacian with respect to
the space coordinates x, respectively. In the following, the cylindrical coordinates denoted by r, 6 and z are
suitable and help to reduce the complexity of the analysis in axisymmetric geometries. Hence, the associated
components for the velocity vector are u, v and w.

Several approaches are used for expressing constitutive equations in fiber suspensions [20, 21, 22, 4, 8].
Fibers are generally considered to be slender leading to ignore the particle thickness and are large enough to
neglect their Brownian motion. It is also assumed that fibers are represented by rigid cylinders, have a mono-
disperse distribution in particle length (L) and diameter (D), and exhibit a spatially uniform concentration
(i.e., there are no concentration gradients). Therefore, a typical extra stress tensor for fiber suspensions can
be expressed as

T=noNyy : f pppPP ¥ dp = N,y : (pppp) . (2)
P

where 9 = Vyu + Vyu' is the strain rate tensor (f represents the transpose operator). N, is a rheological
coupling coefficient and various expressions for N, are available in the literature [23]. N, generally depends
on the particle volume fraction ¢, and the fiber aspect ratio a, = L/D. As a first approach and without loss
of generality, constant values for N, are considered in this work.

The orientation of a single fiber is usually given by a unit vector p aligned along its principal axis (see
top-right view object in Fig. 1) and therefore the fourth-order tensor (pppp) describes a fiber orientation
statistics in a representative elementary volume [3]. This tensor quantity is connected to the PDF by
assuming that all particles in the averaging volume rely upon a population with the same PDF. Hence, for
a medium containing a large number of fibers, the time rate of change for the PDF can be written as [17]

Y= =Vy (Fe) = Vp - (pY). (3)
3
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In the above equation of continuity for ¢, the over-dot symbol refers to the partial time derivative and
V,, corresponds to the differential operator on the surface of a unit sphere [24]. The fiber dynamics p is given
by the Jeffery equation [1] (in the limit of slender particles) and includes the fiber interactions introduced
by Folgar and Tucker [25]. Similar to the Folgar-Tucker idea, the center of the particle ¥, is prescribed to
translate with the local fluid velocity plus a random perturbation due the particle interactions,—D - Vi log iy,
where D is a tensor characterizing diffusion through the perpendicular and parallel directions of the fiber
axis. Since a homogenous system is assumed, there are no concentration gradient and therefore Vylogy = 0.
With these assumptions in mind and including the incompressibility condition, Eq. 3 can be recast as

y+u-Vyy ==V, [(x-p—«k:ppp)¥] + CilylApy, (4)

where k = Vyu' is the transpose of the velocity gradient and the operation analogous to Ap is V-V, G
represents the interaction coefficient and |y| denotes the magnitude of the effective deformation rate (i.e.,
the second invariant of the strain rate tensor) [25]. Some expressions can be found in the literature [23] and
again, without loss of generality, C; is selected to be a constant in this work.

For homogeneous flows, numerical solutions of Eq. 4, based on the finite volume method discretization,
have been checked for stability and convergence over a wide range of values of the interaction coefficient
C; and tested against data available in the literature [13]. This previous work has been extended to solve
the full Eq. 4 in 2D planar flows [17], where accuracies in the calculations have been verified. Here, we aim
to use the Fokker-Planck, Eq. 5, to predict the flow of fiber suspensions in axisymmetric geometries. The
challenge lies in describing the fiber orientation distribution in 3D instead of 2D.

The above governing equations differ from the ones classically used in the literature. Indeed, standard
theories for fiber suspensions describe the micro-structure dynamics by a second-order tensor field (instead
of using the PDF) such as

(PP) +u - Vy(pp) = k- (pp) + (pp) - k' — 2« : (pppp) + 2C/171 (6 — 3 (pp)), (5)

where a;, = (pp) and a4 = (pppp) are in fact the well known orientation tensors [3]. Eq. 5 requires a
closure approximation and although various closure approximations have been proposed, their accuracies
are difficult to quantify and yield to some questionable results [26, 27, 28].
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3. Numerical strategy
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Figure 1: Scheme representing the flow modeling for a fiber suspension using the PDF.

Eq. 4 is a transient convection—diffusion problem with a spatial coordinate dependence (see bottom-left
view object in Fig. 1). The solution in the configurational space is performed by using a finite volume
method, which has the particularity to use consistent expressions to evaluate convective and diffusive fluxes.
The configurational domain is represented on a surface of the unit sphere, which is the field of all possible
fiber orientations (see top-left view object in Fig. 1). Hence, this surface is discretized with incremental
areas AA = sin A9 A¢, where A0 and sinf A¢ are the dimensions of an element on the spherical surface (see
bottom-right view object in Fig. 1). At this stage, it is appropriate to establish a system of notation, where
P is a general nodal point and its neighbors on the surface of the unit sphere are the west, east, north and
south identified by W, E, N and §, respectively. Eq. 4 is then integrated over the control volume to yield to
the following discretized equation at its nodal point P

AAp yp + AMp u - Vhp — AAp Cum Ax¥p + app — awpw — ape — anyy — ass = 0, (6)

where AAp = sinfp A9 A¢. Férec et al. [13] have provided the expressions for the coefficients ag, aw, ay,
as and ap. The third term in Eq. 6 is introduced to stabilize the numerical scheme by adding an artificial
isotropic diffusion term proportional to c¢u,,. The system of governing equations is solved using the finite
element method. Theses equations are implemented in Comsol Multiphysics by taking advantage of the
similarity with the coefficient form PDE, presented in the software. Hence, the coefficients in Eq. 6 are
identified with the ones for the convection—diffusion problem. Note that the absorption coefficients are
introduced with respect to the connectivity table (terms involving the coefficients ay, ag, ay, as and ap)
from the mesh in the configurational domain. The weak-form formulation is used to add the fiber stress
contribution in the domain and enables to easily couple the velocity and the pressure fields with the fiber
stress contribution. The Arbitrary Lagrangian Eulerian (ALE) method is used to perform computations
when dealing with a free surface. The spatial discretization of the pressure and velocity fields is done on a
P1+4-P2 element, whereas elements with Lagrangian shape functions of order quadratic are used for .
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All the computations were carried out on a workstation Dell PowerEdge R930 with Intel Xeon E7-8860
v4 @ 2.20GHz CPU with 72 threads and 1TB RAM. CPU time depends on the investigated axisymmetric
geometries. The circular tube geometry, the flow through the center-gated disk and the die swell problem
requires around 9 hours, 1 day and 1 week of computation time, respectively. As much as possible, the
mesh is optimized to reduce the number of nodes while preserving the accuracy. For instance, for the pipe
problem, the default mesh settings are used (i.e., normal mesh) and boundary layers (thin quadrangles) are
generated around no-slip boundaries (see Fig. 2).

For the three flow problems, five types of boundary conditions, denoted by BC1 to BC5, are prescribed.
BC1 refers to a inlet velocity profile condition whereas BC2 is a outlet condition, where the total normal
stress and the shear stress are assumed to vanish. BC3 indicates a zero-slip condition and BC4 designates a
symmetry condition. The BC5 boundary condition is only experienced for the die swell problem and signifies
the free surface boundary (air-fluid interface), on which the surface tension is neglected. This leads to zero
normal and tangential stresses such as (—pd + oy + 7)-n = 0, where n is a outward unit vector normal to the
boundary domain. Additionally, a kinematic condition [29] is applied % + wg—’; —u = 0. This last equation is
in fact used in order to calculate the unknown position h(z,t) of the free surface. This kinematic condition
ensures that the free surface is a streamline, where a particle on the surface has a trajectory that remains
on the free surface, u-n = 0.

This work does not aim to test the effect of the model parameters but to show the possibility of using
the 3D probability distribution function in the future to develop more physical modeling, such as particle
migration. Hence, parameter values are kept constant over the different simulations such as the suspending
fluid viscosity g = 1000 Pa-s and the interaction coefficient C; = 0.01. The results presented in this work have
been obtained using the artificial numerical diffusion coefficient with ¢, = 1E — 10 m?/s, unless otherwise
indicated.

4. Flow through a circular pipe

Fiber suspensions flowing in circular tube are encountered in several manufacturing processes and is
therefore of interest from a practical viewpoint, but also for validating model implementation. The flow
through a pipe is described in Fig. 2, where half of the flow domain is considered, owing to the geometrical
symmetry. For this problem, L = 3R is the length of the tube and R = 1 m is its radius. At the entrance, a
laminar inflow (BC1) is assumed such as the normal velocity component is given by w/Wyax = 1—(r/R)?, where
the maximum velocity is wy,,y = 1 m/s and a (BC2) boundary condition is applied at the outlet. A zero-slip
boundary condition (BC3) is applied to the wall and the axisymmetric axis satisfies the symmetry condition
(BC4). Finally, a completely random distribution of fiber orientation is assumed at the tube entrance and is
imposed by a Dirichlet-type boundary condition such as ¢ = 1/(4r). The domain is discretized using 1495
elements as shown in Fig. 2.
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Figure 2: FE mesh for a circular tube: BC1 = laminar inflow; BC2 = pressure outlet; BC3 = zero-slip condition; BC4 =
symmetry condition.

The fiber orientation prediction is first examined with an uncoupled flow field (i.e., Np = 0), which is
assumed to be steady in the entire domain. In this case, all the streamlines are parallel to each other and
parallel to the wall, as depicted by the dashed black lines in Fig. 3. Hence, the flow through a pipe is a
pure shear flow except on the axisymmetric axis, where the velocity gradient vanishes. The background
color in Fig. 3 represents the dimensionless velocity component in the z-direction (i.e., —w/wyu,,) in the fluid
domain, for which a parabolic distribution is observed. The average fiber orientations are described by
ellipses derived from the second-order moments of the PDF. Indeed, the eigenvalues and the eigenvectors of
a, give the two major axes of the ellipse in the rz-plane and indicate the degree of orientation along these
two directions [30]. Furthermore, the filling color for the ellipses (taken from a gray-scale colormap) specifies
the magnitude for the eigenvalue in the 6-direction. A white color corresponds to the isotropic value (i.e.
1/3) whereas a black color signifies a value close to 0.17. It can be observed that the fiber orientation is
quasi-random close to the symmetrical axis, and the ellipses are flattened and aligned on the other end
close to the wall. In this region, a perfect alignment of fibers along the streamlines is not reached since the
nonzero value for C; tends to randomize the orientations, as predicted by the Folgar-Tucker model.

_w/wmam
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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...\\\\\\\\\\\I
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® & & ¢ © ¢ ¢ 9 ¢ @ S

Figure 3: Dimensionless velocity component w in the domain (rz-plane) for a uncoupled solution (N, = 0). Average orientation
distributions are represented by ellipses and the black dashed lines are streamlines.
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For a fiber suspension flowing through a circular tube, the orientation field can be considered spatially
uniform if the coupling effect is ignored (i.e., N, = 0). It means that an observer moving with the fluid allows
one to calculate the dynamic orientation history along a streamline, or in other words, the material derivative
can be replaced by the total derivative leading to neglect the second term in the right-hand side of Eq. 4.
This is known as the single point calculation (SPC) and provides a method for expressing the components
of orientation tensors in terms of time (or total deformation, |y|) only. Following Férec et al. [8], the a,., a,
and a,, components are directly computed from the FP equation for 3D orientations with the assumption of
a homogeneous shear flow and with prescribing a constant velocity gradient value along a streamline. This
calculation is performed by discretizing the half sphere of unit radius into N = 150 X 150 element areas (i.e.,
AA), in contrast to the FE scheme where only N = 30 x 30 element areas are considered. More in detail,
a ~ 2 A0 A¢g Zfi 1 PiPi sin6; ¥;, which results from post-treatments. Here, a,, and a, indicate the fiber
orientations in the r- and z-directions, respectively, whereas a,, indicates out-of-plane orientation, from the
plane parallel to the r-direction toward the z-direction. Fig. 4 illustrates a comparison between the FE and
SPC results for the streamline at r/R = 0.9. It can be noticed that the FE results are consistent with the
SPC ones in providing the accurate dynamics and the appropriate steady-state conditions. This analysis
confirms the well-implementation of the FE code and also the choice for discretizing the configurational
domain with 30 x 30 element areas. An interesting aspect of this test is what would be the fiber orientation
distribution if a closure approximation is used. Let consider the invariant based orthotropic fitted closure
(IBOF) developed by Chung and Kwon [31], as this closure is generally handled for typical flow fields and
is known to be relevant. The IBOF closure is derived from the Caley-Hamilton theorem to yield a general
expression of a4 in terms of a, and the identity tensor. The six weighting coefficients depend on the second
and third invariant of a, since the first invariant is identically equal to 1. It can be shown that there are
only three independent coefficients among the six due to simplifications using the normalization and full
symmetry conditions. The three remaining coefficients are fit to a fifth-order polynomial combination of the
second and third invariants of a, and the approximate components of ay are compared to the orientation
tensors obtained from the PDF. The IBOF procedure is computationally more efficient than that of the
orthotropic fitted closure approximations since the costly matrix rotation calculations that are required
for the eigenvalue-based closures are avoided by the IBOF closure. Fig. 4 shows again the a,,, a,, and a,,
components obtained with the IBOF closure. Although a,, is well predicted, both a,, and a,, exhibit larger
overshoots. Furthermore, a,, value is slightly lower while a,, is overestimated as compared with the steady
plateau values. Table 1 reports these steady values and gives the absolute relative errors when the SPC
results are considered as the reference.
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Figure 4: 4y, a;; and a,, versus total strain for the streamline along the line r = 0.9R in a circular tube. FE and SPC designates
results from the finite element simulation and from single-point calculations (SPC) (using the FP equation with 150 x 150
incremental areas), respectively. Predictions obtained with the IBOF closure approximation are also shown. Note that —a,, is
plotted instead of a,, for a better clarity.

Table 1: Steady values for a,,, a;; and a,, obtained from SPC, FE and IBOF results and their associated absolute relative
€rrors.

SPC FE ERR;z  IBOF,  ERRypor, IBOF,, ERRysor,.
lrr 0.0933  0.0931  0.3% 0.0685  26.6% 0.0685  26.6%

a 07234 07253  0.3% 0.7699  6.5% 07733 6.9%

ar, 0.0795  0.0812  0.3% 0.0828  4.2% 0.0820  4.3%

Fig. ba depicts the steady-state fiber orientation distribution obtained from the SPC along the streamline
located at r/R = 0.9 at the tube exit (represented by a black pentagram in Fig. 3). As the mesh is very
fine (i.e., 150 x 150), this fiber orientation distribution, ¥gpc, is considered to be the reference. In terms of
elevation and azimuthal angles, Fig. 5a indicates that most of the fibers are aligned along 6 = ¢ ~ 0 and
0 ~ ¢ ~ m, which correspond to the z-direction. Fig. 5b presents the PDF obtained from the FE simulation
at the same location point. As shown in Fig. 6a, the difference between the reference and the FE solutions,
Wspc — Yre, is very small (minimum and maximum values of -0.02 and 0.01, respectively).
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(c) Recovery of the PDF by using the IBOF closure.

Figure 5: PDF located at the tube exit and at r/R = 0.9 (represented by a black pentagram in Fig. 3).
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Figure 6: PDF difference at the tube exit and at r/R = 0.9 (represented by a black pentagram in Fig. 3).

When using the IBOF closure approximation (see Fig. 4), some fiber orientation tensors such as a, and
a4 are known (the first one arises from an equation of change, i.e. Eq. 5, and the second one derives from the
closure approximation). Therefore, it is possible to recover the PDF based on a Fourier series expansion,
where the coefficients transform as tensors under rigid rotations of the material element [32]. By truncate
the series beyond the 4th-order terms, it is conceivable to describe the fiber orientation distribution in the
following form [3]

1 15 315
~— 4 —1f: ——f,
Y1BOF e + T2 by + 3o 14 by, (7)

where :: is the scalar product (quadruple contraction) of two fourth-order tensors. Eq. 7 is equivalent to
expanding the PDF in orthogonal functions (i.e., spherical harmonics) of the components of p and therefore
b, and by represent the deviatoric form of the second- and the fourth-order orientation tensors, respectively.
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In terms of index notation, they can be expressed as

bij = <Pipj> - %6ij’ (8a)

biju = <Pil’ ijP1>IBOF - ; (5ij (prp1) + Oix <Pjpl> 0l <P1Pk> + 0 {pip1) + 61 {piPr) + O <Pip j>)

1
+§ (5ij5kl + 00 + 5il5jk) , (8b)

and f, and fy are their associated tensor basis functions of p such as

1

fij=pipj— 551‘]‘, (9a)

fijki = PiPjPkP1 — % (5ij (pepi) + Oik (Pjpl> Oir <Pjpk> + 0k piP0) + 6 {PiPK) + i (Pipj>)

1
+§ (5ij5kl + 5ik5jl + 5i]6jk> . (Qb)

To check the accuracy of our calculations, orientation components obtained from Fig. 3 (see Table 1 and
column titled IBOF;,) with the help of the IBOF closure are used as entrance data in the above relationship
to reconstruct the fiber orientation distribution, called y;por. From this PDF, a, is recomputed and results
are given in Table 1 (column titled IBOF,,). Both results in and our are in accordance. Fig. 5c¢ depicts
the recovery of the PDF by using the IBOF closure. Negative values are observed, which are unphysical,
and in the regions where fibers are closely aligned along the z-direction, the reconstruction of the PDF up
to the 4th-order leads to erroneous values, as shown in Fig. 6b (minimum and maximum values of -0.26
and 0.43, respectively). Information given by a4 is insufficient to represent quasi-aligned distribution, which
represents most steady-state solutions for flow-induced orientation. Although all the solutions lead to a
close fiber orientation state for a,, the orientation distribution functions, describing most finely the fiber
micro-structure than a,, may have different shapes.

When the coupling effect is considered (i.e., N, # 0 in Eq. 2), the fiber suspension becomes a non-
Newtonian fluid since the particle stress contribution appear in the momentum equation (see Eq. 1b). Indeed,
anisotropic viscosities are obtained once average fiber orientations leave their 3D random configuration. In
Fig.7, a Newtonian profile is observed at the flow inlet imposed by the boundary condition. Since an isotropic
orientation is also assumed at z = 0, the equivalent viscosity is homogeneous at the tube entrance. Just after
the entrance, streamlines are slightly disturbed (leading to extension in the r-direction) and become parallel
to each other while approaching the tube exit. Indeed, the velocity profile becomes flatter between the core
(along the axisymmetric axis, —w/wy,, reduces from 1 m/s at the inlet to 0.931 m/s at the outlet), where
the orientation is not aligned and the wall where fibers are closely aligned and therefore, the flow manifests
a non-Newtonian behavior. In Fig. 7, we recall that the magnitude for the eigenvalue in the 6-direction is
related to the filing color for the ellipses. Here, a white color corresponds to 0.35 (i.e., close the isotropic
value) whereas a black color indicates a value close to 0.18. In terms of fiber orientation, the coupling
between flow and orientation has a negligible effect since a shear flow dominates in this simple geometry.
This is not true for the pressure field, which increases when increasing the coupling effect [17].
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Figure 7: Dimensionless velocity component w in the domain (rz-plane) for a coupled solution (N, = 10). Average orientation
distributions are represented by ellipses and the black dashed lines are some streamlines.

5. Center-gated disk flow

This type of flow is frequently encountered in injection molding and therefore is an important test problem
for modeling fiber orientation. This radial flow in a disk is a combination of shearing flow in the rz-plane
and elongational flow in the rf-plane. An interesting aspect of this flow geometry is that the region near
the boundaries is shear dominant and the region near the mid-plane of the gap is elongation dominant. It
results in a transition region in the gap, where shear and elongation are combined. Under this configuration,
the flow is 2D but the orientation is 3D.

BC3
“A
BC1y

VVVVV
AN NN AN NN AR

BC4

Figure 8: FE mesh for center-gated disk: BC1 = laminar inflow; BC2 = pressure outlet; BC3 = zero-slip condition; BC4 =
symmetry condition. The black dashed line is parallel to the symmetry centerline at z/H = 0.4 and 0.8.

For the problem under consideration, the half-gap-width, H, and the maximum velocity, u,.., are used
as the length and the velocity scales to nondimensionalize the flow parameters. If a fully developed velocity
profile is presumed at the entry of the disk (BC1) (see Fig. 8), therefore the dimensionless velocity profile is
u* = (1 -z2)/r* for an isothermal and Newtonian fluid [33]. This later relationship can be easily integrated
to give the position of a material particle as a function of time. If a fluid particle starts at radius R} =1 at
time r* = 0 then it stays at a constant height z* and its radial position is given by
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=R 207 (1 - 72). (10)

Then, the velocity gradient tensor can be derived based on the velocity profile and suggests that some of
its components are not spatially uniform. It means that each fiber experiences a continuously changing shear
and extensional gradient depending on its r and z location. In this work, the orientation structure at large
distances from the entry (i.e., r/H > R, = 20) is not studied since most transient orientation behaviors are
assumed to occur close to the inlet at short radial distances. Since the flow and orientation are symmetric
about the mid-plane of the gap (BC4), the solution is carried out only in one half of the domain. There is no
flow, parallel or perpendicular, at the wall (BC3) and at the exit, the boundary condition (BC2) is imposed.
The geometry of the half disk is discretized into a finite difference grid of triangular and rectangular elements
(with a total of 1786 elements), as shown in Fig. 8. The results presented in the following are obtained using
an isotropic fiber orientation for the flow entrance and are taken along the radial distance from the inlet
gate at three different locations through the thickness, z* = z/H = 0, 0.4 and 0.8 (see the black dashed
lines parallel to the wall in Fig. 8). In this case, the artificial numerical diffusion coefficient, ¢, is set to
1E — 7 m?/s for the spatial diffusion in the FP equation (see Eq. 6).
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Figure 9: Variation of orientation tensor components with respect to the radial distance r/H at three different z/H locations
through the gap width.
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Figs. 9a and 9b depict the tensor components for a,, and a,, at three different z/H locations through the
gap width in a center-gated disk. For z/H = 0 and 0.4, the stretching flow dominates at small radii and
therefore a,, and a,, decrease as fibers rotate transverse to the flow. After a certain radial location, the flow
at z/H = 0.4 becomes shear dominant and a,, increases monotonically. Indeed, at larger radii the ratio of
shear rate to stretch rate increases, and the dominant orientation shifts towards the flow direction. At the
height of z/H = 0.8, a,, increases due to the shear in the rz-plane and is still increasing at R;. The non-zero
value for the fiber interaction coefficient maintains a small amount of out-of-plane orientation, as graphed
in Fig. 9c, even for very large strains. This keeps the fibers susceptible to the shearing flow, which tends
to rotate the fibers towards the radial direction. If fiber-fiber interactions are negligible (i.e., C; = 0), the
shearing flow will cause fibers to lie almost flat in the rz-plane with a,, tending to zero.

As done in the previous flow simulations, numerical solutions for the PDF are obtained by integrating
the Fokker-Planck equation following a material point [13]. At each time, Eq. 10 gives the radial position of
the material point from which the local velocity gradients are deduced. All calculations are performed by
using 150 x 150 element areas and run from R = 1 to R} = 20. It is seen that the difference in the predictions
between FE and SPC results through the thickness is very small, leading again to validate the numerical
implementation. As illustrated in Fig. 9, it is worth mentioning that the IBOF closure approximation does
a good job of matching the exact results. It should be noted that both orientation components a,, and a,,
would reach a steady-state value at a larger radial distance than depicted in Fig. 9 and Fig. 10.

Fig. 10 shows the predicted orientation results using the uncoupled (N, = 0) and the coupled (N, = 10)
solutions at three distinct locations through the thickness (i.e., z* = z/H = 0, 0.4 and 0.8). Although the
developing flow field is quantitatively different for both cases, the orientation states are qualitatively similar
because the flow field is still elongation dominant near the centerline and shear dominant near the wall.
Similar behaviors have been observed by Ranganathan and Advani [34], who showed in addition that a
uniform velocity profile at the flow inlet exhibits a more pronounced difference between the coupled and
uncoupled approaches. Lastly, we would like to point out that Altan and Rao [33] provided an analytical
solution for the 3D orientation distribution function in a center-gated disk for slender fibers in which they
neglected particle interactions (i.e., C; = 0).
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different z/H locations through the gap width.
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6. Die swelling flow

The die swell phenomenon occurs when a polymer liquid, discharged from channel, experiences free
surface flow. The axisymmetric extrudate swell flow of a fiber suspension plays an important role in the
industrial application (i.e., capillary/slit type process or extrusion) and is therefore investigated numerically
using the 3D PDF.

Fig. 11 illustrates the geometry of the axisymmetric die swell along with the boundary conditions. Note
that a fully developed parabolic profile (i.e., w = Wy [1 —(r/ ro)z], where Wy, = 107 m/ s) and a random
fiber orientation are imposed at the die inlet (BC1). The die radius is rp = 0.25 mm and the die length and the
extrudate swell is taken to be 3.6ry and 5ry, respectively. This domain dimension is based on the geometry
of the 3D printer nozzle from E3D [35] and is discretized using 839 elements. It is worth mentioning that
since the flow domain evolves with time, Eq. 4 solves a 5D problem, two spatial coordinates r and z, two
configurational coordinates 6 and ¢, and time 7 (a time step (of unit time) which is chosen). Fig. 11 (on the
left) presents the final mesh once the evolution of the flow domain determined by the kinematic equation
has converged.
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Figure 11: On the left) FE mesh for a die swell problem: BCl = laminar inflow; BC2 = pressure outlet; BC3 = zero-slip
condition; BC4 = symmetry condition; BC5 = free surface. On the right) Dimensionless velocity component w in the domain
(rz-plane) for a uncoupled solution (N, = 0). Average orientation distributions are represented by ellipses and the black dashed
lines are some streamlines.

The background color, shown in Fig. 11 (on the right), represents the dimensionless components w of
the velocity field for the axisymmetric creeping die swell flow for a fiber suspension without coupling (i.e.,
N, = 0). Some streamlines are also depicted in this figure as well as the fiber orientation distribution
(described by ellipses), which indicates the degree of orientation along every direction. Note that the filling
color for the ellipses (taken from a gray-scale colormap) specifies the magnitude for the eigenvalue in the
6-direction. A white color corresponds to the value of 0.438 whereas a black color signifies a value close to
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0.181. It can be noted that the fiber orientation distribution inside the die is similar to what is observed
within the tube geometry. Immediately after the die exit and close to the centerline, a,, component of the
fiber orientation tensor decreases, which is explained by the negative elongation in the z-direction and an
expansion in the r-direction, both of which decrease the fiber alignment in the z-direction. On the opposite
side close to the free surface, fibers along streamlines exhibit a slight misalignment over a short distance (in
the region where z ~ 0) as the magnitude of the elongation velocity gradient rapidly exceeds that for radial
expansion and therefore a,, increases similar to streamlines close to the centerline. Since the magnitude of
the fluid velocity is greater at the center of the die, the elongation flow causes fibers close to the centerline
to align faster in the r-direction than fibers close to the free surface. This effect causes decrease of fiber
alignment along the flow direction at the die exit to be greater than other streamlines further from the
centerline of the die.

Usually the swell is characterized by a measurable parameter y = r/ry presented as the ratio of cross
sectional areas of extrudate to the die. Fig. 12 depicts y with respect to the dimensionless z variable when
using the coupled and decoupled approaches. For the case where N, = 0, a final extrudate swell of y = 1.13
agrees well with the results obtained by Mezi et al. [35] (denoted by Ref. in Fig. 12). The same observation
can be made for the coupled model, which has a higher value for y. Based on the same mesh grid, the same
calculations are performed by using the IBOF closure approximation and the tensor representation. It is
found that FE and IBOF solutions have the same tendencies. The discrepancies observed with the reference
solutions are explained by a finer mesh grid close to the die exit.

1.2 T T T T

1.15

1.05

z/ro

Figure 12: Die swell ratio versus relative abscissa for uncoupled and coupled solutions obtained from FE and IBOF analyses.
The insert is a zoom of the steady values for the coupled solutions.

Lastly, Fig. 13 depicts two steady-state fiber orientation distributions obtained from the FE calculation.
At z/rg = 5, two different locations are selected along the free surface and the centerline, respectively. Both
locations are represented by a black pentagram on the right in Fig. 11. For the location point on the free
surface, Fig. 13a is found to be similar to Fig. bb, giving the fiber orientation distribution close to the
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tube wall at the exit. On the contrary and as discussed before, the PDF located point on the centerline
(see Fig. 13b) clearly differs from the previous one and shows that most fibers are aligned along the radial
385 direction.

/2
¢ 00 9

(a) PDF along the free surface at z/ro = 5.

/2
¢ 00 9

(b) PDF along the centerline at z/rg = 5.

Figure 13: PDF from FE with a mesh of 30 X 30 element areas for N, = 0.

7. Concluding remarks

The flow and orientation of a fiber suspension are studied in three axisymmetric flow geometries. The
momentum equations and the evolution equation for the 3D probability distribution orientation are coupled
with flow using a rheological constitutive equation and solved using a finite element method. The IBOF

300 closure approximation is found to match relatively well the fiber orientation results when compared with
the probability distribution function. Differences between the orientation distributions using the coupled
and decoupled approaches are not significant except for the velocity field solutions. In particular, the die
swell ratio increases with increasing the coupling coefficient when fibers are randomly distributed at the flow
inlet.
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This numerical approach can be useful to test the accuracies of recent or forthcoming closure approxi-

mations. It will be also possible to explore the flow predictions for viscoelastic fluids, for fibers suspended
in generalized Newtonian fluids [8, 36] and viscoelastic fluids [10], for interacting fibers [23, 37], for prob-
lems involving long and semi-flexible fibers [38, 39] or nanotubes [40], without being hampered by errors
arising due to the use of closure approximations. More generally, it will be very helpful for developing new
constitutive models involving probability distribution function.
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