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Let K be a field equipped with a valuation. Tropical varieties over K can be defined with a theory of Gröbner bases taking into account the valuation of K. Because of the use of the valuation, the theory of tropical Gröbner bases has proved to provide settings for computations over polynomial rings over a p-adic field that are more stable than that of classical Gröbner bases.

Beforehand, these strategies were only available for homogeneous polynomials. In this article, we extend the F5 strategy to a new definition of tropical Gröbner bases in an affine setting. We also provide a competitor with an adaptation of the F4 strategy to tropical Gröbner bases computations.

We provide numerical examples to illustrate time-complexity and p-adic stability of this tropical F5 algorithm. We also illustrate its merits as a first step before an FGLM algorithm to compute (classical) lex bases over p-adics.

Introduction

Tropical geometry as we understand it has not yet reached half a century of age. It has nevertheless spawned significant applications to very various domains, from algebraic geometry to combinatorics, computer science, economics, non-archimedean geometry (see [START_REF] Maclagan | Introduction to tropical geometry[END_REF], [START_REF] Einsiedler | Douglas Nonarchimedean amoebas and tropical varieties[END_REF]) and even attempts at proving the Riemann hypothesis (see [C15]).

Effective computation over tropical varieties makes decisive use of Gröbner bases. Since Chan and Maclagan's definition of tropical Gröbner bases taking into account the valuation in [START_REF] Chan | Gröbner bases over fields with valuations and tropical curves by coordinate projections[END_REF][START_REF] Chan | Diane Gröbner bases over fields with valuations[END_REF], computations of tropical Gröbner bases are available over fields with trivial or non-trivial valuation, but only in the context of homogeneous ideals.

On the other hand, for classical Gröbner bases, numerous algorithms have been developed allowing for more and more efficient computations. The latest generation of algorithms for computing Gröbner bases is the family of signaturebased algorithms, which keep track of where the polynomials come from in order to anticipate useless reductions. This idea was initiated in Algorithm F5 [F02], and has since then been widely studied and generalized ( [START_REF] Bardet | On the Complexity of the F5 Gröbner basis Algorithm[END_REF][START_REF] Christian | A survey on signature-based algorithms for computing Gröbner bases[END_REF]).

Most of those algorithms, including the original F5 algorithm, are specifically designed for homogeneous systems, and adapting them to affine (or inhomogeneous) systems requires special care (see [E13]).

An F5 algorithm computing tropical Gröbner bases without any trivial reduction to 0, inspired by the classical F5 algorithm, has been described in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF]. The goal of this paper is to extend the definition of tropical Gröbner bases to inhomogeneous ideals, and describe ways to adapt the F5 algorithm in this new setting.

The core motivation is the following. It has been proved in [V15] that computing tropical Gröbner bases, taking into account the valuation, is more stable for polynomial ideals over a p-adic field than classical Gröbner bases.

Thus, an affine variant of tropical Gröbner bases is highly desirable to handle non-homogeneous ideals over p-adics. For classical Gröbner bases, it is always possible to homogenize the input ideal, compute a homogeneous Gröbner basis, and dehomogenize the result. This technique is not always optimal, because the algorithm may end up reaching a higher degree than needed, computing points at infinity of the system, but it always gives a correct result and, in the case of signature Gröbner basis algorithms, is able to eliminate useless reductions. However, in a tropical setting, terms are ordered with a tropical term order, taking into account the valuation of the coefficients. As far as we know, there is no way to dehomogenize a system in a way that would preserve the tropical term order. Indeed, no tropical term order can be an elimination order.

Moreover, the FGLM algorithm can be adapted to the tropical case (see Chap. 9 of [V*]), making it possible to compute a lexicographical (classical) Gröbner basis from a tropical one, paving the way to a complete strategy to solve polynomial systems of dimension zero over Q p , applying first an F5 algorithm and then an adaptation of the FGLM algorithm to go from a tropical Gröbner basis to a classical Gröbner basis.

We provide numerical data to estimate the loss in precision for the computation of a lex Gröbner basis using a tropical F5 algorithm followed by an FGLM algorithm, in an affine setting.

Another classical strategy to compute Gröbner bases is Faugère's F4 algorithm [F99]. We provide a competitor to the F5 strategy with a tropical adaptation of F4, along with numerical data to compare their respective merits.

Up to our knowledge, this is the first study of an F4 algorithm in a tropical context. Regarding to computation at finite precision, there is a strong motivation for developping F4 algorithms along with F5 algorithms. In F4 algorithms, there is considerably more freedom in the choice of pivots during reduction. With more choices of reductors, a trade-off between speed and loss of precision is possible.

Related works

A canonical reference for an introduction to computational tropical algebraic geometry is the book of Maclagan and Sturmfels [START_REF] Maclagan | Introduction to tropical geometry[END_REF].

The computation of tropical varieties over Q with trivial valuation is available in the Gfan package by Anders Jensen (see [Gfan]), by using standard Gröbner bases computations. Chan and Maclagan have developed in [START_REF] Chan | Diane Gröbner bases over fields with valuations[END_REF] a Buchberger algorithm to compute tropical Gröbner bases for homogeneous input polynomials (using a special division algorithm). Following their work, still for homogeneous polynomials, a Matrix-F5 algorithm has been proposed in [V15] and a Tropical F5 algorithm in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF]. Markwig and Ren have provided a completely different technique of computation using projection of standard bases in [START_REF] Markwig | Yue Computing tropical varieties over fields with valuation[END_REF], again only for homogeneous input polynomials.

In the classical Gröbner basis setting, many techniques have been studied to make the computation of Gröbner bases more efficient. In particular, Buchberber's algorithm is frequently made more efficient by using the sugar-degree (see [START_REF] Alessandro | One sugar cube, please" or selection strategies in the Buchberger algorithm[END_REF][START_REF] Bigatti | Computing inhomogeneous Gröbner bases[END_REF]) instead of the actual degree for selecting the next pair to reduce. This technique was a precursor of modern signature techniques, in the sense that the sugar-degree of a polynomial is exactly the degree of its signature. General signature-based algorithms for computing classical Gröbner bases of inhomogeneous ideals have been extensively studied in [E13].

A shorter version of this article has been published in the Proceedings of the 43th International Symposium on Symbolic and Algebraic Computation (ISSAC 2018) with [START_REF] Vaccon Tristan | On Affine Tropical F5 Algorithms[END_REF]. The main additions are the exposition of the results and proofs in Section 3 and 4, which have been improved and extended, and a new section with Section 7, introducing an F4 algorithm to compute tropical GB.

Specificities of computating tropical GB

The computation of tropical GB, even by a Buchberger-style algorithm, is not as straightforward as for classical Gröbner bases. One way to understand it is the following: even for homogeneous ideals, there is no equivalence between tropical Gröbner bases and row-echelon linear bases at every degree. Indeed,we can remark that G = (f 1 , f 2 ) = (x + y, 2x + y) is a tropical GB over Q[x, y] with 2-adic valuation, w = [0, 0] and grevlex ordering: the leading term of the first polynomial being x and that of the second being y. Nevertheless, the corresponding 2 × 2 matrix in the vector space of homogeneous polynomials of degree 1 is not under tropical row-echelon form.

As a consequence, reduction of a polynomial by a tropical GB is not easy. For example, if we try to apply the classical algorithm of division to reduce x by G, the sequence of remainders would be -y, 2x, -2y, 4x, -4y, 8x, . . . and, while this sequence converges to zero, the division algorithm does not terminate.

In [START_REF] Chan | Gröbner bases over fields with valuations and tropical curves by coordinate projections[END_REF][START_REF] Chan | Diane Gröbner bases over fields with valuations[END_REF], Chan and Maclagan relied on a variant of Mora's tangent cone algorithm to obtain an effective division algorithm. In [START_REF] Vaccon | Matrix-F5 Algorithms and Tropical Gröbner Bases Computation[END_REF][START_REF] Vaccon | A Tropical F5 algorithm[END_REF], the authors relied on linear algebra and the computation of (tropical) row-echelon form. In this article, we extend their method to the computation of tropical Gröbner bases in an affine setting, through an F5 algorithm.

Main idea and results

Extending the tropical F5 algorithm to inhomogeneous inputs poses two difficulties. First, as mentioned, tropical Gröbner bases used to be only defined and computed for homogeneous systems. Even barebones algorithms such as Buchberger's algorithm are not available for inhomogeneous systems. The second problem is a general problem of signature Gröbner bases with inhomogeneous input. The idea of signature algorithms is to compute polynomials with increasing signatures, and the F5 criterion detects trivial reductions to 0 by matching candidate signatures with existing leading terms. For homogeneous ideals, the degree of the signature of a polynomial and the degree of the polynomial itself are correlated. This is what makes the F5 criterion applicable.

The paper [E13] has shown that Algorithm F5, using the position over term ordering on the signatures, has to reach a tradeoff between eliminating all reductions to 0 and performing other useless reductions.

More precisely, let f 1 , . . . , f m be homogeneous polynomials with coefficients in a field with valuation K, and define I k,d the vector space of polynomials in f 1 , . . . , f k with degree at most d. With the usual computational strategy, the algorithm computes a basis of I 1,1 , then I 2,1 , and so on until I m,1 , and then I 1,2 , and so on. In a lot of situations ideals with more generators have a Gröbner basis with lower degree [START_REF] Bardet | On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations Proceeding of the 2004[END_REF], and this strategy ensures that the algorithm does not reach a degree higher than needed.

However, the same algorithm for affine system will, at each step, merely compute a set of polynomials in each I k,d . This set needs not be a generating set because of degree falls. To obtain a basis instead, one has to proceed up to some I k,δ with δ ≥ d. When δ > d, some polynomials will be missing for the F5 criterion in degree less than δ, and the corresponding trivial reductions to 0 will not be eliminated.

In this paper, we show that the tropical F5 algorithm [START_REF] Vaccon | A Tropical F5 algorithm[END_REF] works in an affine setting, and we characterize those trivial reductions to 0 which are eliminated by the F5 criterion. In particular, we show that the Macaulay matrices built at each step of the computations are Macaulay matrices of all polynomials with a given sugar-degree.

Compared to [START_REF] Vaccon | A Tropical F5 algorithm[END_REF], the overall presentation of the F5 algorithms is clarified. It can now be summarized as the following strategy: filtration, signature, F5 elimination criterion, Buchberger-F5 criterion and finally the F5 algorithm.

Theorem 1.1. Given an ideal I generated by a set of (non-necessarily homogeneous) polynomials f 1 , . . . , f m ∈ K[X 1 , . . . , X n ], the Tropical F5 algorithm (Algorithm 3) computes a tropical Gröbner basis of I, without reducing to 0 any trivial tame syzygy (Def. 3.1).

We also examine an incremental affine version of the homogeneous tropical F5-algorithm and an affine tropical F4, and we compare their performances on several examples. Even in a non-homogeneous setting, the loss in precision of the tropical F5 algorithm remains satisfyingly low.

Organization of the paper

Section 2 introduces notations and nonhomogeneous tropical Gröbner bases. Section 3 then introduces the filtration on ideals necessary for F5 algorithms in this context. Section 4 provides a Buchberger-F5 criterion on which Section 5 elaborates a first tropical F5 algorithm. Section 6 briefly presents another variant of the F5 algorithm to compute nonhomogeneous tropical Gröbner bases, and Section 7 introduces a tropical adaptation of the F4 algorithm. Finally, Section 8 displays numerical results related to the precision behaviour and timecomplexity of all the algorithms we have described.

Let k be a field with valuation val. The polynomial ring k[X 1 , . . . , X n ] will be denoted by A. Let T be the set of monomials of A. For u = (u 1 , . . . , u n ) ∈ Z n ≥0 , we write x u for X u1 1 . . . X un n and |f | for the degree of f ∈ A. In A s , (e i ) s i=1 is the canonical basis.

The matrix of a list of polynomials written in a basis of monomials is called a Macaulay matrix.

Given a mapping φ : U → V, Im(φ) denotes the image of φ. For a matrix M, Rows(M ) is the list of its rows, and Im(M ) denotes the left-image of M , i.e., Im(M ) = span(Rows(M ). For w ∈ Im(val) n ⊂ R n and ≤ 1 a monomial order on A, we define ≤ a tropical term order as in the following definition: Definition 2.1. Given a, b ∈ k * and x α and x β two monomials in A, we write ax α < bx β if:

• |x α | < |x β |, or • |x α | = |x β |, and val(a)+w•α > val(b)+w•β, or val(a)+w•α = val(b)+w•β and x α < 1 x β .
For u of valuation 0, we write

ax α = ≤ uax α . Accordingly, ax α ≤ bx β if ax α < bx β or ax α = ≤ bx β .
Throughout this article, we are interested in computing a tropical Gröbner basis of I = f 1 , . . . , f s for some given f 1 , . . . , f s ∈ A (ordered increasingly by degree).

Tropical GB

A tropical term order provides an order on the terms of the polynomials f ∈ A.

Definition 2.2. For f ∈ A, we define LT (f ) to be the biggest term of f. We define LM (f ) to be the monomial corresponding to LT (f ) and LC(f ) the corresponding coefficient.

We define LM (I) to be the monomial ideal generated by the monomials LM (f ) for f ∈ I.

We can then naturally define what is a tropical Gröbner basis (tropical GB for short):

Definition 2.3. G ⊂ I is a tropical GB of I if span(LM (g) for g ∈ G) = LM (I).

Relation to definitions in other works

We can remark that for homogeneous polynomials our definitions coincide with those given in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF].

Still for homogeneous polynomials, our definition of LM (f ) coincides with that of lm(f ) in the article by Chan and Maclagan [CM19], similarly our LC(f ) and their lc(f ) coincides, and our LT (f ) equals to the product lc(f ) × lm(f ), and hence, we compute the same tropical Gröbner bases. None of them should be mistaken with their in w (f ) which lives in a residue ring and not in the polynomial ring A.

Remark 2.11 of [START_REF] Chan | Diane Gröbner bases over fields with valuations[END_REF] warns against a direct generalization of their definition to the affine setting, with the fact that f = (x + 2x 2 ) ∈ x , LM (f ) generates LM ( x ) but f do not generates x .

One reason why such a problem do not occur in our setting is the fact that we take first the degree into account.

While this choice is meaningful for our goal of solving polynomial systems over Q p , it is not enough by itself if, in a tropical setting, one wants to recover the initial terms of an ideal defined without taking into account the degree of the monomials.

If one is interested in Gröbner bases computation where one takes into account the valuation of the coefficients and not the degree of the monomials, we refer to the theory of Gröbner bases over Tate algebras in [START_REF] Xavier | Gröbner bases over Tate algebras[END_REF].

Filtration and S-GB

Definition and elimination criterion

One of the main ingredients for F5 algorithms is the definition of a vector space filtration of the ideal I. It is defined from the initial polynomials F = (f 1 , . . . , f s ) generating I. For simplicity, we assume that they are ordered by increasing degree.

First, we define an order on the monomials of the vector space A s . To that intent, we highlight some monomials which appear as leading monomial of a syzygy.

Definition 3.1. Let (a 1 , . . . , a s ) ∈ A s and i ∈ {1, . . . , s} be such that:

1. j a j f j = 0. 2. a i = 0 and a j = 0 for j > i.

3. for all j < i,

|a j f j | ≤ |a i f i |.
We call such a syzygy a tame syzygy and we define LM (a i )e i to be its leading monomial. We define LM (T Syz(F )) as the module in A s generated by the leading monomials of the tame syzygies. Trivial tame syzygies are the tame syzygies that are also trivial, i.e., in the module generated by the f i e j -f j e i .

The F5 criterion that we use in this article is designed to recognize some of the tame syzygies and use this knowledge to avoid useless reduction to zero of some polynomials. It is the main motivation for defining a filtration on the vector space A s .

For our definition, we need a degree-refining monomial ordering ≤ m on A. Any such order ≤ m is possible, and ≤ m need not be related to ≤ 1 and ≤.

We can then define a total order on the monomials of A s .

Definition 3.2. We write that x α e i ≤ sign x β e j if:

1. if i < j, or 2. if i = j and |x α f i | < |x β f j |, or 3. if i = j and |x α f i | = |x β f j |, and 
• x α e i /
∈ LM (T Syz(F )) and x β e j ∈ LM (T Syz(F )), or

• both x α e i , x β e j ∈ LM (T Syz(F )) and x α ≤ m x β , or

• both x α e i , x β e j / ∈ LM (T Syz(F )) and x α ≤ m x β .
Remark 3.3. To clarify, we have defined so far 4 different orders:

• the order < 1 is an order on the monomials of A;

• the order < is an order on the terms of A, which is compatible with the tropical structure, and uses < 1 for to break ties;

• the order < m is an order on the monomials of A;

• the order < sign is an order on the monomials of A s , which uses < m to break ties.

The orders < 1 and < m need not be related, because they are only used for breaking ties when comparing objects which are not related: tropical terms in A and monomials in A s . In practice, the order < m is only used to break ties at points where the actual order does not matter. As such, it can be any degree-refining monomial order.

Remark 3.4. The order < sign defined here may not satisfy Convention 2.1 (a) in [START_REF] Christian | A survey on signature-based algorithms for computing Gröbner bases[END_REF]: it may happen that x α < 1 x β or x α < x β , and yet that x α e i > sign x β e i . Namely, it will happen if x β e i / ∈ LM (T Syz(F )) and x α ∈ LM (T Syz(F )), or if both lie in or out of LM (T Syz(F )) and

x β < m x α .
This assumption, in a tropical setting, leads to further problems, since terms are ordered differently than monomials.

However, the reason for that assumption in [START_REF] Christian | A survey on signature-based algorithms for computing Gröbner bases[END_REF], as well as in most signature-based works in a classical setting, is to ensure that one can read the leading term of syzygies from their signature, for the F5 elimination criterion. In our scenario, the last clause of Def. 3.2 serves this purpose, and allows us to prove the F5 elimination criterion in a tropical setting (Prop. 3.13) Definition 3.5. We consider the vector space

I ≤sign x α ei := Span({x β f j , s.t. x β e j ≤ sign x α e i })
and the vector space I <sign x α ei defined accordingly. We define I = ↑x α ei I ≤sign x α ei as an increasing vector space filtration of I.

We then have a very natural definition of signature. In the literature, this notion of signature is sometimes called minimal signature.

Definition 3.6. For f ∈ I, the smallest x α e i such that f ∈ I ≤sign x α ei is called the signature of f and noted S(f ).

Example 3.7. Let F = (x 2 y+1, x 3 +1, y 3 -x, y 3 -y) ∈ Q 2 [x, y] with w = (0, 0). Let ≤ m and ≤ 1 be the graded lexicographical ordering. Then S(x -y) = ye 2 , as x-y = x×(x 2 y+1)-y×(x 3 +1), even though x-y = -1×(y 3 -x)+1×(y 3 -y).

We shall also need the notion of sugar-degree, as introduced and explored in [START_REF] Alessandro | One sugar cube, please" or selection strategies in the Buchberger algorithm[END_REF][START_REF] Bigatti | Computing inhomogeneous Gröbner bases[END_REF]. Definition 3.8. We define |x α e i | := |x α f i | to be the sugar-degree of x α e i .

For the purpose of Algorithm 3, we design a filtration compatible with the sugar-degree. Definition 3.9. We consider the vector space

I ≤d = Span({x β f j , s.t. |x β e j | ≤ d})
We then define, for x α e i with sugar-degree d, the vector space

I ≤d ≤sign x α ei = Span({x β f j , s.t.
x β e j ≤ sign x α e i and |x β f j | ≤ d}). I = ↑d I ≤d is also a vector space filtration. I ≤d can itself be filtrated by the I ≤d ≤sign x α ei . We have a compatible notion of signature:

Definition 3.10. For d ∈ Z >0 and f ∈ I ≤d , the smallest x α e i such that f ∈ I ≤d ≤sign x α ei is called the d-signature of f and noted S d (f ).

Remark 3.11. S d (f ) can be different from S(f ) for small d, but given an f , all S d (f ) are equal when d is large. Moreover, for any f ∈ I ≤d , S(f ) ≤ sign S d (f ).

Example 3.12. We set F = (x 2 y + 1,

x 3 + 1, y 3 -x, y 3 -y) ∈ Q 2 [x, y] as in Example 3.7. Then S 3 (x -y) = e 4 as x -y = -1 × (y 3 -x) + 1 × (y 3 -y), whereas S 4 (x -y) = ye 2 = S(x -y) since x -y = x × (x 2 y + 1) -y × (x 3 + 1).
The main motivation for defining the vector spaces I ≤d ≤sign x α ei is their finite dimension. Their compatibility with the sugar-degree allows the F5 algorithm to compute only one Macaulay matrix per sugar-degree d.

The goal of the F5 criterion is to recognize some x α e i such that the filtration is constant at I ≤d ≤sign x α ei . As a consequence, this knowledge allows to skip some calculation as, because of this constancy, they will not provide any new leading monomial. We can then state a first version of the F5 elimination criterion:

Proposition 3.13 ([F02]). If x α is such that x α e i ∈ LM (T Syz(F )), d ≥ |x α f i |,
then the filtration is constant at I ≤d ≤sign x α ei . Such an x α e i can be characterized using the following statement. If x α ∈ LM (I ≤d ≤sign x β ej ) for some x β and j such that

|x β f j | ≤ |x α |, then x α e i ∈ LM (T Syz(F )) for any i > j. A partial converse is possible: if x α e i ∈ LM (T Syz(F ))
is the leading monomial of a trivial tame syzygy, then there exists some x β and j such that

|x β f j | ≤ |x α | and x α ∈ LM (I ≤d ≤sign x β ej ).
Proof. For the first part, we can write (x α +g)f i = j<i a j f j , with LT (g) < x α and for all j < i, |a j f j | ≤ |x α f i |. Then:

x α f i = (-g)f i + i-1 j=1 a j f j .
By linear algebra and a complete reduction using as pivot the x β e j ∈ LM (T Syz(F )), we can assume that ge i has no monomial in LM (T Syz(F )) and obtain: x α f i ∈ I ≤d <sign x α ei , and therefore, the filtration is constant at I ≤d ≤sign x α ei . For the characterization, we can first write

x α + g = k≤j a k f k , with LT (g) < x α and for all k ≤ j, |a k f k | ≤ |x β f j | ≤ |x α |. Then (x α + g)f i - k≤j (a k f i )f k = 0 and we do have |x α f i | ≥ |(a k f i )f k | for all k ≤ j.
The partial converse statement is clear using the fact that trivial syzygies of leading monomial x α e i are such that x α ∈ LM ( f 1 , . . . , f i-1 ).

In concrete terms, during the computation of a Gröbner basis, we can omit any appearance of any

x α f i such that x α e i ∈ LM (T Syz(F )) and d ≥ |x α f i |.
We can recognize such a polynomial using the second part of the proposition. This will be used to eliminate unnecessary S-polynomials. For example, using the notations of 3.12, I ≤6 <sign x 2 ye2 = I ≤6 ≤sign x 2 ye2 , and we can avoid any appearance of x 2 yf 2 in our computations.

If all the f i 's are homogeneous, this criterion coincides with the usual F5 elimination criterion, as for example stated in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF], which eliminates all trivial reductions to zero in the course of the algorithm. For affine polynomials, the F5 criterion only eliminates those trivial reductions which are tame.

Tropical S-GB

In order to take advantage of the F5 elimination criterion to compute tropical Gröbner bases, we focus on the computation of tropical Gröbner bases which are compatible with the filtration: tropical S-GB. We first need the definition of reductions compatible with the filtration and the corresponding irreducible polynomials.

Definition 3.14 (Regular S-reduction). Let e, g ∈ I, h ∈ I. We say that e regular S-reduces to g with h, e → h S g, if there are t ∈ T and α ∈ k * such that:

• e -αth = g, and either g = 0 or LT (g) < LT (e), LM (g) = LM (e).

• S(th) < sign S(e).

We should remark that in the previous definition, we ask for the condition LM (g) = LM (e) so as to ensure that the leading monomial of e is eliminated. For example, reducing x 2 by x + y into 2x 2 + xy would never be acceptable.

We can naturally define then what is an regular S-irreducible polynomial.

Definition 3.15 (Regular S-irreducible polynomial). We say that g ∈ I is regular S-irreducible if there is no h ∈ I which regular S-reduces g. If there is no ambiguity, we might simply call g irreducible.

Example 3.16. We use F = (x 2 y + 1, x 3 + 1, y 3 -x, y 3 -y) ∈ Q 2 [x, y] as in Example 3.7. Then x 3 y + y = y × (x 3 + 1) regular S-reduces to -x + y, which is irreducible, and its signature is ye 2 .

Definition 3.17 (Tropical S-Gröbner basis). We say that G ⊂ I, a set of regular S-irreducible polynomials, is a tropical S-Gröbner basis (or tropical S-GB, or just S-GB for short when there is no ambiguity) of I, if for each regular S-irreducible polynomial h ∈ I, there exist g ∈ G and t ∈ T such that LM (tg) = LM (h) and tS(g) = S(h).

Definition 3.18. Definitions 3.14, 3.15 and 3.17 have natural analogues when one restricts to the vector space I ≤d and S d with regular S d -reduction, regular S d -irreducible polynomial and tropical S d -GB. These definitions also extends naturally when one restricts to the vector spaces I ≤sign x α ei or I ≤ d ≤sign x α ei , providing respectively S-GB up to signature x α e i and S d -GB up to d-signature x α e i .

Example 3.19. We use F = (x 2 y + 1, x 3 + 1, y 3 -x, y 3 -y) ∈ Q 2 [x, y] as in Example 3.7. Then G = (x 2 y + 1, x 3 + 1, x -y, y 3 -1, y -1), with respective signatures (e 1 , e 2 , ye 2 , xy 2 e 2 , e 3 , e 4 ), is a tropical S-GB of I.

Proposition 3.20. If G is a tropical S-Gröbner basis, then for any nonzero h ∈ I, there exist g ∈ G and t ∈ T such that:

• LM (tg) = LM (h) • S(tg) = tS(g) = S(h) if h is irreducible, and S(tg) = tS(g) < sign S(h) otherwise.
Hence, there is an S-reductor for h in G when h is not irreducible.

Proof. For h irreducible, the result is simply a consequence of the definition of a tropical S-GB. When h is regular S-reducible, it means that it can be reduced by h 2 a polynomial with same leading term but such that S(h 2 ) < sign S(h). If h 2 is irreducible, we are done. Otherwise, there exists h 3 with same leading term and such that S(h 3 ) < sign S(h 2 ), and so on. A consequence of Definition 3.2 is that there is no strictly decreasing sequence of monomials for ≤ sign . Consequently, after a finite number of iterations, we find h with same leading term as h, irreducible and such that S(h ) < sign S(h). We can then apply the definition of a tropical S-GB to conclude.

Corollary 3.21. If G is a tropical S-Gröbner basis, then G is a tropical Gröbner basis of I, for <.

As a consequence, computing a tropical S-GB provides a tropical GB, and we can use the F5 elimination criterion 3.13 to our advantage when computing these tropical S-GB. Moreover, we also have the following finiteness result: Proposition 3.22. Every tropical S-Gröbner basis contains a finite tropical S-Gröbner basis.

Proof. It is a property of the structure of monomial ideals, and the proof in the classical case from [AP, Prop. 14], using Dickson's lemma, can directly be transposed to the tropical setting.

Linear algebra and existence

For x α ∈ T and 1 ≤ i ≤ n, let us denote by M ac ≤sign x α ei (F ) the Macaulay matrix of the polynomials x β f j such that x β e j ≤ x α e i , ordered increasingly for the order on the x β e j 's. One can perform a tropical LUP algorithm on M ac ≤d (F ) (see Algo. 2 for more information1 ) and obtain all the leading monomials in I ≤sign x α ei . This can be (theoretically) performed for all x α e i to obtain the existence of an S-GB of I.

Singular reduction

If one allows large inequality in the signature condition of Definition 3.14, one gets the notion of S-reduction. Definition 3.23 (S-reduction). Let e, g ∈ I, h ∈ I. We say that e S-reduces to g with h, e → h S g, if there are t ∈ T and α ∈ k * such that:

• e -αth = g, and either g = 0 or LT (g) < LT (e), LM (g) = LM (e).

• S(th) ≤ sign S(e).

A S-reduction which is not regular, i.e., with S(th) = S(e), is called a singular S-reduction.

As a consequence, S-GB have the following generating property. Proposition 3.24. If G is an S-GB, then any f ∈ I can be reduced to 0 using S-reductions by multiples of elements of G.

More on signatures

We define Σ to be the set of signatures. Thanks to Proposition 3.13, not all x α e i can be a signature:

Remark 3.25. If x α e i ∈ LM (T Syz(F )) then x α e i / ∈ Σ.
We provide three lemmata to understand the compatibility of Σ with basic operations on polynomials.

Lemma 3.26. If f, g ∈ I are such that S(f ) = S(g) and LM (f ) = LM (g), then there exist b ∈ k * such that S(f + bg) < S(f ) and f + bg = 0.

If one takes the point of view of linear algebra, the proof is direct. This Lemma has a direct consequence on regular S-irreducible polynomials.

Lemma 3.27. All regular S-irreducible polynomials of a given signature share the same leading monomial.

We finally state one last lemma about the compatibility of signatures with multiplication.

Lemma 3.28. If g ∈ I and τ ∈ T then S(τ g) ≤ sign τ S(g). If moreover τ S(g) ∈ Σ, then S(τ g) = τ S(g) and for all µ ∈ T such that µ divides τ , S(µg) = µS(g).

Proof. The first part is direct. For the second part, one can show that it is possible to write that τ g = h + r for some h ∈ I of signature τ S(g), irreducible, and r ∈ I <sign τ S(g) and conclude that S(τ g) = τ S(g).

For the last statement, assume that there exists a µ ∈ T dividing τ such that S(µg) < sign µS(g). Then S(τ g) = S( τ µ µg) ≤ sign τ µ S(µg) < sign τ µ µS(g) = τ S(g), which is a contradiction.

Lemma 3.29. The previous lemmata, 3.26, 3.27, 3.28 are also true if one uses S d -signature instead of signatures when restricting to I ≤d .

Buchberger-F5 criterion

In this section, we explain a criterion, the Buchberger-F5 criterion, on which we build our F5 algorithm to compute tropical S-Gröbner bases. It is an analogue of the Buchberger criterion which includes the F5 elimination criterion.

We need a slightly different notion of S-pairs, called here normal pairs, before we can state the Buchberger-F5 criterion.

Definition 4.1 (Normal pair). Given g 1 , g 2 ∈ I, let Spol(g 1 , g 2 ) = u 1 g 1 -u 2 g 2 be the S-polynomial of g 1 and g 2 , with for i ∈ {1, 2}, u i = lcm(LM (g1),LM (g2))

LT (gi)

. We say that (g 1 , g 2 ) is a normal pair if:

1. the g i 's are regular S-irreducible polynomials.

S(u

i g i ) = LM (u i )S(g i ) for i = 1, 2. 3. S(u 1 g 1 ) = S(u 2 g 2 ).
We define accordingly d-normal pairs in I ≤d . Theorem 4.2 (Buchberger-F5 criterion). Suppose that G is a finite set of regular S-irreducible polynomials of I = f 1 , . . . , f s such that:

1. for all i ∈ 1, s , there exists g ∈ G such that S(g) = e i .

2. for any g 1 , g 2 ∈ G such that (g 1 , g 2 ) is a normal pair, there exists g ∈ G and t ∈ T such that tg is regular S-irreducible and tS(g) = S(tg) = S(Spol(g 1 , g 2 )).

Then G is a S-Gröbner basis of I. The analogue result using d-normal pairs to recognize an S d -GB in I ≤d is also true.

Remark 4.3. The converse of this result is clear. Theorem 4.2 is an analogue of the Buchberger criterion for tropical S-Gröbner bases. To prove it, we adapt the classical proof of the Buchberger criterion and the proof of the tropical Buchberger algorithm of Chan and Maclagan (Algorithm 2.9 of [C13]). First we need two lemmata.

Lemma 4.4. Let x α , x β , x γ , x δ ∈ T and P, Q ∈ A be such that LM (x α P ) = LM (x β Q) = x γ and x δ = lcm(LM (P ), LM (Q)). Then

Spol(x α P, x β Q) = x γ-δ Spol(P, Q).
Proof. Exercice 8 in Section 2.6 of [CLO].

Lemma 4.5. Let G be an S-Gröbner basis of I up to some signature σ. Let h ∈ I, be such that S(h) ≤ sign σ. Then there exist r ∈ N, g 1 , . . . , g r ∈ G, Q 1 , . . . , Q r ∈ A such that for all i and x α a monomial of Q i , S(x α g i ) = x α S(g i ) ≤ sign S(h) and LT (Q i g i ) ≤ LT (h), the x α S(g i )'s are all distinct and non-zero, and, finally, we have

h = r i=1 Q i g i .
Proof. It is clear by linear algebra. One can form a Macaulay matrix whose rows correspond to polynomials τ g with τ ∈ T, g ∈ G such that S(τ g) = τ S(g) ≤ sign S(h). Only one row is possible per non-zero signature, and each monomial in LM (I ≤sign σ ) is reached as leading term by only one row. It is then enough to add a row corresponding to h at the bottom of this matrix and perform a tropical LUP form computation (see Algorithm 2) to read the Q i 's on the reduction of h.

Proof of Theorem 4.2. We prove the main result by induction on the signature. We follow the order ≤ sign for the induction. It is clear for σ = e 1 . It is also clear that if we have an S-GB up to < sign e i then we have an S-GB up to ≤ sign e i . We write the elements of G as g 1 , . . . , g r for some r ∈ Z >0 .

Let us assume that G is an S-GB up to signature < sign σ for some signature σ and let us prove it is a S-GB up to ≤ sign σ. We can assume that all g ∈ G satisfy LC(g) = 1. Let P ∈ I be irreducible, with LC(P ) = 1 and such that S(P ) = σ. We prove that there is τ ∈ T, g ∈ G such that LM (P ) = LM (τ g) and S(τ g) = τ S(g) = σ.

Our first assumption for G implies that there exist at least one g ∈ G and some τ ∈ T such that τ S(g) = S(P ) = σ.

If LM (τ g) = LM (P ) we are done. Otherwise, by Lemma 3.26, there exists some b ∈ k * such that S(P + bτ g) = σ for some σ < sign σ.

We can apply Lemma 4.5 to P + bτ g and obtain that there exist h 1 , . . . , h r ∈ A, such that P = r i=1 h i g i , and for all i, and x γ monomial of h i , the x γ S(g i ) = S(x γ g i ) ≤ sign σ are all distincts. We remark that LT (P ) ≤ max i (LT (g i h i )). We denote by m i := LT (g i h i ).

Among all such possible ways of writing P as r i=1 h i g i , we define β as the minimum of the possible values of max i (LT (g i h i ))'s. Such a β exists thanks to Lemma 2.10 in [START_REF] Chan | Diane Gröbner bases over fields with valuations[END_REF] (whose adaptation to the non-homogeneous setting is straightforward). We write x u = LM (β).

If LT (P ) = ≤ β, then we are done. Indeed, there is then some i and τ in the terms of h i such that LM (τ g i ) = LM (P ) and S(τ g i ) = τ S(g i ) ≤ sign σ.

We now show that LT (P ) < β leads to a contradiction. We can renumber the g i 's so that, for some d:

• β = ≤ m 1 = ≤ • • • = ≤ m d . • β > m i for i > d.
We can assume that among the set of possible (h 1 , . . . , h r ) that reach β, we take one such that this d is minimal. Since LT (P ) < β, we have d ≥ 2.

We can write (using the fact that LC(g 1 ) = LC(g 2 ) = 1):

Spol(g 1 , g 2 ) = lcm(LM (g 1 ), LM (g 2 )) LM (g 1 ) g 1 - lcm(LM (g 1 ), LM (g 2 ) LM (g 2 ) g 2 .
By construction, LM (h 1 )S(g 1 ) = LM (h 2 )S(g 2 ). By Lemma 4.4, there exists a term µ such that µ lcm(LM (g1),LM (g2))

LM (gi)

= LM (h i ) for i ∈ {1, 2}. Using Lemma 3.28, we get that (g 1 , g 2 ) is a normal pair.

If S(Spol(g 1 , g 2 )) = σ, by the second property of the F5 criterion, we are done. Indeed, it provides us with some t 0 and g 0 such that t 0 g 0 is regular Sirreducible with signature σ, and as all regular S-irreducible polynomials of a given signature share the same leading monomial, thanks to Lemma 3.27, we have with t 0 and g 0 a satisfying τ and g.

Otherwise, S(Spol(g 1 , g 2 )) < sign σ. Moreover, let

L = LC(h 1 g 1 ) x u lcm(LM (g 1 ), LM (g 2 ))
.

Then we have S(L • Spol(g 1 , g 2 )) ≤ sign σ thanks to Lemma 4.4. Using the same construction as before with the second assumption of the F5 criterion and Lemmata 3.26 and 4.5, we obtain some

h i 's such that L • Spol(g 1 , g 2 ) = r i=1 h i g i , LT (h i g i ) ≤ LT (L • Spol(g 1 , g 2 ))
< β for all i. Furthermore, the signatures S(x α g i ) = x α S(g i ) for i ∈ {1, . . . , r} and x α in the support of h i are all distinct.

We then get:

P = r i=1 h i g i , = r i=1 h i g i -L • Spol(g 1 , g 2 ) + r i=1 h i g i , = h 1 -LC(h 1 g 1 ) x u LM (g 1 ) + h 1 g 1 + h 2 + LC(h 1 g 1 ) x u LM (g 2 ) + h 2 g 2 + r i=3 (h i + h i ) g i , =: r i=1 h i g i ,
where the h i 's are defined naturally. By construction, LT ( h

1 g 1 ) < LT (h 1 g 1 ) = β and LT ( h i g i ) ≤ β for i ≤ d and LT ( h i g i ) < β for i > d.
As a consequence, we have obtained a new expression for f with either max i (LT ( h i g i )) < β or this term attained stricly less than d times, which is in either case a contradiction with their definitions as minima. So LT (P ) = ≤ β, which concludes the proof of the main result. It is then direct to adapt the previous proof to the case of an S d -GB. This theorem holds also for S-GB (or S d -GB) up to a given signature. We have the following variant for compatibility with sugar-degree: Proposition 4.6. Suppose that d ∈ Z >0 , and G is a finite set of polynomials of I such that:

1. Any g ∈ G is regular S d -irreducible in I ≤d .
2. For all g 1 , g 2 ∈ G we have g 1 , g 2 ∈ I ≤d along with Spol(g 1 , g 2 ) and both sides of the S-pair for g 1 and g 2 .

3. For all i ∈ 1, s , there exists g ∈ G such that S d (g) = e i .

for any

g 1 , g 2 ∈ G such that (g 1 , g 2 ) is a d-normal pair, there exists g ∈ G and t ∈ T such that tg is regular S d -irreducible and tS d (g) = S d (tg) = S d (Spol(g 1 , g 2 )).
Then G is an S-Gröbner basis of I.

Proof. Using Theorem 4.2, it is clear that such a G is an S d -GB.

It remains to prove that G is then an S-GB.

A first remark if σ is a signature then for any

f ∈ I ≤d , if S d (f ) = σ then S(f ) = σ. It is a consequence of Remark 3.11. A second remark is that if f ∈ I ≤d is such that S d (f ) ≤ sign σ, then S(f ) ≤ sign σ.
One can then use the same proof on induction on σ as for Theorem 4.2 except for the decomposition of LSpol(g 1 , g 2 ) in signature ≤ sign σ in terms of the g i 's. If S(LSpol(g 1 , g 2 )) < sign σ, then it is true by induction. Otherwise, S(LSpol(g 1 , g 2 )) = σ, and as (g 1 , g 2 ) is a d-normal pair, then S d (LSpol(g 1 , g 2 )) = σ by the first remark. One can then use the S d -GB property, and the second remark. Given the decomposition, all arguments are the same.

Remark 4.7. When going from S d to S, one should be aware that signatures can drop, even for regular S d -irreducible polynomials. For instance, looking back to Example 3.12, x -y is regular S d -irreducible, with S d (x -y) = e 4 when d = 3. Then, x -y is also regular S-irreducible, but of signature ye 2 . If instead, we had taken a small variation with F = [x 2 y + 1, x 3 + 1, y 3 + x, y 3 + y], then e 4 is not even a signature. It is an S 3 -signature but disappears in sugar-degree 4 as y 3 + y = -x × (x 2 y + 1) + y × (x 3 + 1) + (y 3 + x), and the signature of y 3 + y is e 3 .

Fortunately, Proposition 4.6 is enough to tell when d is big enough for an S d -GB to be an S-GB (even though signatures might still drop going from S d to S).

F5 algorithm

In this section, we present our F5 algorithm. To this intent, we need to discuss some crucial algorithmic points: how to recognize with which pairs to proceed and how to build the Macaulay matrices and reduce them.

The main algorithm is Algorithm 3 (on page 21), and will be presented in the last part of this section. Two key subfunctions are the Symbolic Preprocessing algorithm, used to build the Macaulay matrices processed by the main algorithm and given as Algorithm 1 (on page 19) and the Tropical LUP algorithm, used to reduce those matrices, and given as Algorithm 2 (on page 20).

We recommend that the reader first take a look at the main algorithm, Algorithm 3 on page 21, in order to get a global idea before reading linearly this Section.

Admissible pairs and guessed signatures

It is not possible to check the second condition in the Definition 4.1 in advance in an F5 algorithm. Indeed, one needs an S-Gröbner basis up to the corresponding signature to be able to certify it. To circumvent this issue, we use the weaker notion of admissible pair.

Definition 5.1 (d-Admissible pair). Given g 1 , g 2 ∈ I ≤d , let Spol(g 1 , g 2 ) = u 1 g 1 -u 2 g 2 be the S-polynomial of g 1 and g 2 . We have

u i = lcm(LM (g 1 ), LM (g 2 ))
LT (g i ) .

We say that (g 1 , g 2 ) is a d-admissible pair if:

1. LM (u i )S d (g i ) = x α i e ji / ∈ LM (T Syz). 2. LM (u 1 )S d (g 1 ) = LM (u 2 )S d (g 2 ).
To certify that a set is an S d -GB, handling d-admissible pairs instead of dnormal pairs is harmless. Indeed, d-normal pairs in I ≤d are contained inside the d-admissible pairs. Whether a pair is d-admissible can be checked easily before proceeding to reduction using the second part of the F5 elimination criterion (Prop 3.13).

During the execution of the algorithm, when a polynomial x α g is processed, it is at first not possible to know what is its signature. Algorithm 3 (on page 21) has computed S d (g) beforehand. Thanks to the F5 elimination criterion (Prop 3.13), we can detect some of the x α g such that S(x α g) = x α S(g) and eliminate them. For the processed polynomials, we use x α S d (g) as a guessed signature in the algorithm. Once an S-GB up to signature < sign x α S d (g) is computed, we have the following alternative. First case: S d (x α g) < sign x α S d (g) and x α g reduces to zero (by the computed S d -GB up to d-signature < sign x α S d (g)) using possibly singular reduction (as in Subsection 3.4). The guessed signature was wrong but it is harmless as the polynomial is useless anyway. Second case: S d (x α g) = x α S d (g), and then the guessed signature is certified. Once the criterion of Proposition 4.6 is satisfied, all signatures are certified.

What happens when we can obtain f with signature S d (f ) = x α e i in degree d, and S d+1 (f ) = x β e j < sign x α e i in degree d + 1? Thanks to the way Algorithm 1 (on page 19) handles polynomials, always looking for smallest signature available, f and its multiples will then be built using only the second way. The first way of writing will at most appear so as to be reduced by the second one.

For instance, if we look back at Example 3.12, (e 4 , x -y) will only be used in sugar-degree 3. In sugar-degree 4 and more, it is (ye 2 , x -y) that will appear. (e 4 , x -y) may only appear in sugar-degree 4 to be reduced to 0 by (ye 2 , x -y).

Symbolic Preprocessing and Rewritten criterion

One of the main parts of the F5 algorithm, Algorithm 3 (on page 21), is the Symbolic Preprocessing: Algorithm 1 on page 19. From the current set of Spairs, sugar-degree d, and the current S d-1 -GB, it produces a Macaulay matrix. One can read on the tropical reduction of this matrix new polynomials to append to the current basis to obtain an S d -GB. It mostly consists of detecting which pairs are admissible and selecting a (complete) set of reductors.

A special part of the algorithm is the use of Rewritten techniques (due to Faugère (see [F02])).

The idea is the following. Once a polynomial has passed the F5 elimination criterion and is set to appear in a Macaulay matrix, it can be replaced by any other multiple of an element of G of the same d-signature. Indeed, assuming correctness of the algorithm without any rewriting technique, if one of them, h, is of d-signature x α e i , the algorithm computes a tropical S-Gröbner basis up to d-signature < sign x α e i . Hence, h can be replaced by any other polynomial of same signature: it would be reduced to the same polynomial. By induction, one can prove that all of them can be replaced at the same time. We also remark that this is still valid for replacing a row of a given guessed d-signature by another of the same guessed d-signature.

One efficient way is to replace a polynomial t×g by the polynomial x β h (h ∈ G) of same (guessed) d-signature tS d (g) such that x β has smallest degree.2 It actually leads to a substantial reduction of the running time of the F5 algorithm. Taking the sparsest available polynomial is another possibility.

Linear algebra

To reduce the Macaulay matrices while respecting the signatures, we use the following tropical LUP algorithm from [V15]: Algorithm 2 on page 20. If the rows correspond to polynomials ordered by increasing signature, the algorithm computes a row-reduction of the matrix, respecting the signatures and the tropical ordering, and such that each resulting non-zero row has a different leading monomial. As a consequence, we get on the resulting matrix all the leading monomials in the vector space generated by the rows of the initial matrix.

Example 5.2. We provide here a small example to illustrate the tropical LUP algorithm.

We start with the following Macaulay matrix, over Q 3 [x, y] with w = (0, 0), and ≤ m and ≤ 1 are the graded lexicographical ordering. Return M ; else for i = 1 to n row do Find j such that M i,j has the greatest term M i,j x monj for ≤ of the row i; Swap the columns 1 and j of M , and the 1 and j entries of mon;

By pivoting with the first row, eliminates the coefficients of the other rows on the first column; Proceed recursively on the submatrix M i≥2,j≥2 ;

Return M ;

x 4 x 3 y y 4 x 2 xy y 2 ye 3 1 3

x 2 e 3 1 9 3 ye 4 3 9 9 e 5 9 9 3 1 9 . The x α e i 's are the signatures of the polynomials corresponding to the rows that are given as entry of the algorithm. In this case, mon is [x 4 , x 3 y, y 4 , x 2 , xy, y 2 ].

The output of the tropical LUP algorithm is then the following matrix.

x 4 x 2 x 3 y xy y 4 y 2 ye 3 1 3

x 2 e 3 1 9 3 ye 4 9 9 9

e 5 -35 0 -18 .

A Complete Algorithm

We now provide with Algorithm 3 on page 21 a complete version of an F5 algorithm wich uses Buchberger-F5 criterion and all the techniques introduced in this section. Definition 6.1. We write that x α e i ≤ incr x β e j if: ]). If x α ∈ LM (I i-1 ), then the filtration is constant at I ≤x α ei .

1. if i < j. 2. if i = j and |x α f i | < |x β f j |. 3. if i = j and |x α f i | = |x β f j |, and • x α / ∈ LM (I i-1 ) and x β ∈ LM (I i-1 ), or • both x α , x β ∈ LM (I i-1 ) and x α ≤ x β , or • both x α , x β / ∈ LM (I i-1 ) and x α ≤ x β . Proposition 6.2 ([ F02 
Proof. We can write x α + g = j<i a j f j , with for all j a j ∈ I, and g ∈ I with no monomial in LM (I i-1 ). Then:

x α f i = (-g)f i + i-1 j=1 (a j f i )f j ,
and the filtration is constant at I ≤x α ei .

It is then possible to state a Buchberger-F5 criterion and provide an adapted F5 algorithm. The two algorithms will then differ in the following way.

1. For a given x α and e i , the vector space I <incr x α ei is much bigger in the iterative setting, often of infinite dimension. Thus, polynomials of signature x α e i can be more deeply reduced.

2. More syzygies can be avoided in the iterative setting.

3. However, many more matrices are to be produced: one for each i and each necessary degree. Construction of the matrices is not mutualised by degree anymore.

The F4 approach

Another way to compute tropical Gröbner bases for affine polynomials is to adapt Faugère's F4 algorithm [F99].

Roughly, the F4 algorithm is an adaptation of Buchberger's algorithm such that all S-polynomials of a given degree are processed and reduced together in a big Macaulay matrix, along with their reducers. The algorithm carries on the computation until there is no S-polynomials to reduce.

In a tropical setting, we have adapted the so-called "normal strategy" of F4 using the tropical LUP algorithm to reduce the Macaulay matrices.

For simplicity of exposition, we have only used Algorithm 2 to reduce the Macaulay matrices.

Nevertheless, so-called tropical row-echelon forms (Algorithm 3.2.2 and 3.7.3 of [V15]) are also possible. This enables a trade-off between speed, thoroughness of the reduction and loss in precision. Indeed, contrary to the F5 strategy where one has to reduce with respect to signatures, any reasonable strategy of reduction is possible.

In this section, we present the algorithm, along with proof of correctness and termination.

Buchberger criterion and reduction

Defining algorithm for reduction in a tropical setting is not straightforward. A classical example comes from trying to use a naive adaptation of the classical polynomial reduction algorithm to reduce x by the family G = (x + y, y + 2x), in Q 2 [x, y] with w = (0, 0). Even though G is a minimal Gröbner basis, the corresponding algorithm would not terminate, going through all the 2 n x's and -2 n y's as intermediate polynomials to reduce.

Yet, we need an algorithm for reduction so as to state a Buchberger criterion, on which the correctness of F4 is based. As in [START_REF] Vaccon | Matrix-F5 Algorithms and Tropical Gröbner Bases Computation[END_REF][START_REF] Vaccon | A Tropical F5 algorithm[END_REF], this issue can be circumvented using matrix reduction.

We begin by adapting the Symbolic-Preprocessing algorithm, removing any call for signatures. The corresponding version is presented in Algorithm 4 on page 23. Algorithm 4 allows us to construct matrices on which we can perform reduction. Algorithm 5 on page 24 is then build upon it. It is used to define the reduction of a polynomial by a family of polynomials. It will then be used only for theoretical purpose as a way to provide a Buchberger criterion for termination of F4.

Proof. If Algorithm 6 does not terminate for some initial (f 1 , . . . , f s ), it means that there is an infinite sequence of polynomials (h i ) i∈N that are added to G. Indeed, otherwise, the algorithm would terminate as it would run out of S-pairs.

For those h i to be added in the algorithm, they have to provide an LM (h i ) not already in the monomial ideal LM (g), g ∈ G for the current G. This would mean an infinite number of generator in a monomial ideal, which is a contradiction. Hence the algorithm terminates.

As for correctness, it is an application of the Buchberger criterion. After every turn in the while loop, all already processed S-polynomial of an S-pair reduce to 0 by G. Hence, after termination, it is the case for all the S-pairs of G and we can apply Buchberger's criterion.

Linear algebra and reduction

The call for Algorithm 2 in Algorithm 6 can be replaced by a call to Algorithm 3.2.2 of [V15]. When dealing with coefficients only known at finite precision, it allows the usage at each step of the best pivot available, providing a better stability.

Remark 7.3. If the input polynomials are homogeneous, the weight is w = [0, . . . , 0] and one uses Algorithm 3.2.2 of [V15], then one can show that the following behaviour regarding to precision in a p-adic setting happens: loss in precision due to divisions do not accumulate. This is not the case for affine polynomials, but one can still expect the loss in precision to often be moderate in practice.

Numerical experiments

A toy implementation of our algorithms in Sagemath [Sage] is available on https://gist.github.com/TristanVaccon. We have gathered some numerical results in the following arrays. Timings are in seconds of CPU time.3 

Benchmarks

Here, the base field is Q with 2-adic valuation. We have applied the tropical F5 algorithm, Algorithm 3, an iterative tropical F5, and a tropical F4 algorithm on the Katsura n and Cyclic n systems for varying n. Dots mean no conclusion within a dozen hours. For a given p, we take three polynomials with random coefficients in Z p (using the Haar measure) in Q p [x, y, z] of degree 2 ≤ d 1 ≤ d 2 ≤ d 3 ≤ 4. We first compute a tropical Gröbner basis for the weight w = [0, 0, 0]4 and the grevlex monomial ordering, and then apply an FGLM algorithm (tropical to classical as in Chapter 9 of [V*]) to obtain a lex GB. For any given choice of d i 's, we repeat the experiment 50 times. Coefficients of the initial polynomials are all given at some high-enough precision O(p N ) for no precision issue to appear. 5We can not provide a certificate on the leading monomials of the output basis though: we can not prove that no non-zero coefficient has been taken for zero due to the lack of precision in a way that impacts the computation.

Results are compiled in the following arrays.

Firstly, an array for timings given as couples: average of the timings for the tropical F5 part and for the FGLM part, with D = d 1 +d 2 +d 3 -2, the Macaulay bound. We add that for p = 2, 3, there is often a huge standard deviation on the timings of the F5 part.

Algorithm 1 :

 1 Symbolic-Preprocessing-Rewritten input : P , a set of d -1-admissible pairs of sugar-degree d and G such thatG ∩ I ≤d-1 is an S d-1 -GB output: A Macaulay matrix for Q polynomial in P doReplace Q in P by the polynomial (uS(g), u × g) with g latest added to G reaching the same guessed signature ;C ← the set of the monomials of the polynomials in P ; U ← the polynomials of P with their signature, except only one polynomial is taken by guessed signature ;D ← ∅ ; while C = D do m ← max(C \ D) ; D ← D ∪ {m} ; V ← ∅ ; for g ∈ G do if LM (g) | m then V ← V ∪ {(g, m LM (g) )} ; (g, δ) ← the element of V with δ × g ofsmallest guessed signature not already in the signatures of U, with tie-breaking by taking minimal δ (for ≤ m ) ; U ← U ∪ {δ × g} ; C ← C ∪ {monomials of δ × g} ; M ← the polynomials of U, written in a Macaulay matrix and ordered by increasing guessed signature ; Return M ; Algorithm 2: The tropical LUP algorithm input : M , a Macaulay matrix of degree d in A, with n row rows and n col columns, and mon a list of monomials indexing the columns of M. output: M , the U of the tropical LUP-form of M M ← M ; if n col = 1 or n row = 0 or M has no non-zero entry then

Algorithm 4 :

 4 F4-Symbolic-Preprocessing input : P , a list of pairs of elements of A, G a list of elements in A. output: A Macaulay matrix C ← the set of the monomials of the polynomials in P ; U ← the polynomials of P ;D ← ∅ ; while C = D do m ← max(C \ D) ; D ← D ∪ {m} ; V ← ∅ ; for g ∈ G do if LM (g) | m then V ← V ∪ {(g, m LM (g) )} ; (g, δ) ← the element (g, δ) of V with δ × g of biggest leading term,with tie-breaking by taking minimal δ (for ≤) ;U ← U ∪ {δ × g} ; C ← C ∪ {monomials of δ × g} ;M ← the polynomials of U, written in a Macaulay matrix ; Return M ;

We can summarize that the tropical LUP algorithm is an adaptation of a row-echelon form computation to the tropical setting so that one can read the leading monomials in the tropical sense from the rows of the reduced matrix.

Indeed, such an h can be considered as one of the most reduced possible.

Everything was performed on a Ubuntu 16.04 with 2 processors of 2.6GHz and 16 GB of RAM.

Efficiency of this choice regarding to the loss in precision was studied in the extended version of[V15] 

By precision issue, we mean for example a loss in precision such that it is not possible to determine which term is the leading term, due to some terms of the form O(p n )x α . We refer the interested reader to the Section 4 of[V15] 
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Affine Tropical GB

Notations

Proof. It relies on Theorem 4.2 and then Proposition 4.6. The proof is by induction on the sugar-degree, then i, then the x α e i . One first proves that at the end of the main while loop any guessed signature is correct, or its row has reduced to zero, and then that S d -GB are computed, signature by signature. One can then apply 4.6 on the output to conclude. Termination is a consequence of correctness and Prop. 3.22. For the syzygies, it is a direct consequence of the second part of Prop. 3.13.

Remark 5.4. Condition 1 of 4.2 and 3 of 4.6 is not satisfied when for some i,

. This is harmless as: 1. As soon as it is found by computation, no signature in e i will appear anymore. 2. The Buchberger-F5 criterion can be applied omitting f i .

Iterative F5

In this section, we present briefly another way of extending the F5 algorithm to the affine setting: a completely iterative way in the initial polynomials. The idea is to compute tropical Gröbner bases for f 1 , f 1 , f 2 , . . . , f 1 , . . . , f s .

This corresponds to using the position over term ordering on the signatures, or in terms of filtration, to the following filtration on A s : Proof. We already have the Buchberger-F5 criterion, Theorem 4.2. It is clear that Buchberger's criterion can be obtained as a weak variant of the Buchberger-F5 criterion, getting rid of the signatures.

An algorithm and its proof

We can now present a Tropical F4 Algorithm with Algorithm 6 on page 24. Add to G all the polynomials obtained from M that provide leading monomials not in {LM (g) for g ∈ G} ;

Add to B the corresponding new pairs ;

Return G ;

Proposition 7.2. The Tropical F4 algorithm, Algorithm 6 terminates and computes a tropical GB of I. Coefficients of the output tropical GB or classical GB are known at individual precision O(p N -m ). We compute the total mean and max on those m's on the obtained GB. Results are compiled in the following array as couples of mean and max. The first array is for the F5 part and the second for the precision on the final result. Most of the loss in precision appears in the FGLM part. In comparison, the F5 part is quite stable, and hence, our goal is achieved.