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1 Introduction and Preliminaries

One-block quantifier elimination is comprised of computing a semi-algebraic description of the
projection of a semi-algebraic set or of deciding the truth of a semi-algebraic formula with a
single quantifier.

Until now, it has been tackled in practice by using variants and improvements of the Cylin-
drical Algebraic Decomposition (CAD) algorithm. For example, see the software packages
QEPCAD [3], RegularChains [10] or the system Mathematica [11]. This algorithmic
framework suffers from a complexity that is doubly exponential in the dimension of the ambient
space. However, in [6] it is shown that one-block quantifier elimination can be performed within
a complexity that is singly exponential in that dimension.

This abstract reports on preliminary works which would allow one to avoid CAD and obtain
faster one-block quantifier elimination algorithms in practice. Given a semi-algebraic set S ⊂ Rn

and a projection map π : S → Rp, the core idea is to identify a real algebraic set K ⊂ Rp

with codimension at least one that contains the boundary of the projection π(S). Then, the
connected components of Rp −K would provide a finite collection of open semi-algebraic sets
of Rp whose union is dense in π(S).

Polynomial optimisation provides additional geometric ingredients which aid the develop-
ment of the above approach and as such serves as an illustrative context for these techniques.
To optimise a function f over a compact smooth real algebraic set S one may compute the
critical values of f , noting that by Sard’s Theorem these are in finite number, and identify
the one corresponding to the minimum. This approach has been extended to one-block quan-
tifier elimination in [8]. Furthermore, by Thom’s isotopy lemma [4], critical values capture the
topological changes in the fibres of f .

Our goal is now to further develop these techniques by dropping the compactness assump-
tion. In this context, computing the set of critical values is no longer sufficient. For instance,
the map f : R2 → R defined by f(z1, z2) = z41 + (z1z2 − 1)2 is clearly non-negative as it is a
sum of squares. However, along the path θ(t) = (1/t, t) we see that f(θ(t)) converges to 0 as
t → ∞. We deduce that the infimum of f , f∗, is 0 and is not reached. Furthermore, a short
computation, solving the system ∂f

∂z1
= ∂f

∂z2
= 0, confirms that 0 is not a critical value of f .

This illustrates that one needs a notion of asymptotic critical values which captures topological
changes in the fibres of polynomial maps “at infinity”.

For the remainder of this article, let K be a field (either R or C). The foundations for defining
a notion of asymptotic critical values of polynomial mappings, f = (f1, . . . , fp) ∈ K[z1, . . . , zn]p,
were introduced by Rabier in [1]. It has been shown that with a slightly modified definition,
one that we will use, this set has dimension at most p − 1. Therefore, Sard’s theorem extends
beyond critical values [2]. Define the Kuo distance

κ(df(z)) = min
1≤j≤p

‖wj(z)‖,
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where wj(z) is the restriction of dfj to the kernel of the Jacobian matrix of f with the jth row
removed. The set of asymptotic critical values is defined as follows in [2]:

K∞(f) = {c ∈ Cp|∃z(t) ∈ Kn such that ‖z(t)‖ → ∞, f(z(t))→ c, ‖z(t)‖κ(df(z(t)))→ 0}.

Furthermore, we denote by K0(f) the set of critical values of the map f . Using the above
notations we can define it as

K0(f) = {c ∈ Cp|∃z ∈ Kp such that dzf is not surjective}.

Theorem 1 ([2, Theorems 2.1, 3.1, and 4.1]). Let f : Kn → Kp be a polynomial mapping.
Then, the set of asymptotic critical values of f , K∞(f), is a complex algebraic set of dimension
less than p. Furthermore, let V ⊂ Cn be a connected component of Cn \ (K0(f) ∪ K∞(f)).
Then, f−1(V ) = ∅ or f : f−1(V )→ V is a locally trivial fibration.

Consider once more the example f = z41+(z1z2−1)2 and
the path θ(t) = (1/t, t). For i, j ∈ {1, 2}, we see that
as t→∞, θ(t)i

∂f
∂zj

(θ(t))→ 0. Thus, 0 is an asymptotic

critical value of f .
Moreover, degree bounds for the set of asymptotic

critical values of such a map f have previously been
given. Without delving too deep into the details, it is
shown in [5] that K0(f) ∪ K∞(f) is contained in an
algebraic set whose degree lies in O(Dn) where D dom-
inates the degrees of the components of f . Note that

one cannot hope to do much better since similar Bézout-like bounds already apply to K0(f)
and in the worst-case these bounds are reached.

Hence, a topical issue now is to obtain an efficient algorithm for computing asymptotic
critical values. Our contributions are the design and implementation of such an algorithm and
new degree bounds on the asymptotic critical values. Additionally, when p = 1 the practical
behaviour of this algorithm demonstrates the complexity results given in Proposition 6; that
is the complexity is polynomial in the degree of the input polynomial. For polynomials in
K[z1, . . . , zn], we shall make use of the following change of coordinates to handle the asymptotic
behaviour, sending zs = 0 to ∞:

τs(z) =

(
z1
zs
, . . . ,

zs−1
zs

,
1

zs
,
zs+1

zs
, . . . ,

zn
zs

)
.

2 Our contribution

The first algorithm in this paper is designed based on the proof of Theorem 1 ([2, Theorems 3.1
and 4.1]), with one major difference. The geometric interpretation of the algorithm as designed
in [2] is to split the set of asymptotic critical values of a polynomial mapping f into np sets
which can be computed separately and then combined. That is, for 1 ≤ s ≤ n, 1 ≤ j ≤ p, it is

proven that K∞(f) =
⋃(n,p)

(s,j)=(1,1)K
j
s(f).

For a given (s, j), consider the mapping

M j
s : z ∈ Kn \ {zs = 0} 7→

(
f(τs(z)),

1

zs
wj(τs(z))

)
∈ Kp ×Kn−p+1.

We assume that f is a dominant mapping and so, the image of wj has dimension n− p+ 1

outside of a non-empty Zariski closed set. We consider the Zariski closure of the graph of M j
s (z)

and its intersection with the set {z ∈ Kn|zs = 0} ×Kp × {0} and project onto the value space
Kp. The resulting set is called Kj

s . The first change we make is to remove the necessity of
taking all 1 ≤ s ≤ n, using a generic linear change of coordinates.
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Proposition 2. Let f : Kn → Kp be a dominant polynomial mapping. Let A ∈ GL(n) be a
generic invertible matrix and define fA by fA(z) = f(Az). Let π be the canonical projection
map from Kn × Kp × Kn−p+1 to Kp. Then, with the set Kj

1 defined as above, K∞(f) =⋃p
j=1K

j
1(fA).

Note that one can derive from the above result an algorithm computing K∞(f) using alge-
braic elimination routines. Denote this method Algorithm 1.

We give a sketch of the proof. Firstly, the sets of asymptotic critical values of fA and f
are equal, K∞(f) = K∞(fA), see [7, Lemma 2.4]. Now, note that for a given s, the sets Kj

s

consist of the asymptotic critical values reached when the sth variable tends to ∞. Therefore,
a generic choice of A implies that for 1 ≤ s ≤ n, whenever zs goes to ∞ in a path towards

an asymptotic critical value, then so does (Az)1. Thus,
⋃p

j=1K
j
1(fA) =

⋃(n,p)
(s,j)=(1,1)K

j
s(fA) =

K∞(fA) = K∞(f) and so we need only compute p sets as opposed to np. We assume now that
the matrix A is generic enough.

Proposition 3. For 1 ≤ j ≤ p, assume that wj(z) is a dominant mapping. Let π be
the projection onto the value space of f . Let V be the Zariski closure of the graph of the
mapping M j

1 (fA) and let ui be the value in this graph of the (p + i)th component so that

π
(

(V \ V (z1)) ∩ V (z1, u1, . . . , un−p+1)
)

= Kj
1(fA). Let E be the set of affine linear spaces of

dimension n + p + 1 that contain the (z1, . . . , zn, c1, . . . , cp)-space. There exists a non-empty

Zariski open set O such that for all E ∈ O, π
(

((V ∩ E) \ V (z1)) ∩ V (z1, e)
)

= Kj
1(fA), where

e is the variable corresponding to the generic line in the (u1, . . . , un−p+1)-space. We denote this
method Algorithm 2.

From this proposition, one can derive a probabilistic algorithm which avoids considering the
extra variables introduced in Algorithm 1. In the case where the gradient mapping correspond-
ing to the (u1, . . . , un−p+1)-space is dominant, we can intersect this space with a generic line.
Alternatively, we could force the gradient mapping wj(τs(z)) to be parallel to a generic line.

Proposition 4. For 1 ≤ j ≤ p, assume that wj(z) is a dominant mapping. Let π be the
canonical projection onto the value space of f , Kp. Let V be the Zariski closure of the graph of
the mapping M j

1 (fA) and let πc : Kn×Kp×Kn−p+1 → Kn×Kp be the canonical projection map

onto the graph of the first p components of the mapping M j
1 (fA). Let (r1, . . . , rn−p+1) ∈ Kn−p+1

be a generic vector. Then let Dj be the hyperspace defined by set of minors of the matrix[
wj1(z) · · · wjn−p+1(z)
r1 · · · rn−p+1

]
.

Then, Kj
1(fA) ⊆ π

(
πc(V ∩Dj) \ V (z1) ∩ V (z1)

)
.

Again, the above result can be translated into an algorithm which we denote Algorithm 3.
We show that the algebraic set returned by Algorithm 3 has codimension at least 1 and that it
contains the set of asymptotic critical values of the input polynomial mapping. In many practical
cases, we will indeed find additional values but this method still has its merits. For example,
we can use it to quickly determine that a polynomial mapping does not have asymptotic critical
values if the output is empty. Algorithm 3 also allows us to give a tighter bound on the degree
of the asymptotic critical values.

Proposition 5. Let f = (f1, . . . , fp) ∈ K[z1, . . . , zn]p be a polynomial mapping. Let d =
max1≤i≤p deg fi. Then the asymptotic critical values of f are contained in a hypersurface of
degree at most p(d+ 1)p((2p− 1)(d− 1))n−p.

Proposition 6. Let f ∈ Q[z1, . . . , zn] be a polynomial with degree d. Then, up to logarithmic
factors,
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• Algorithm 1 computes K∞(f) in O(d2n
2+O(n)) arithmetic operations in Q;

• Algorithm 2 computes K∞(f) in O(n7d4n+O(1)) arithmetic operations in Q;

• Algorithm 3 computes a set containing K∞(f) in O(n7d4n+O(1)) arithmetic operations in
Q.

3 Experimental results

fn Algo. 1 Algo. 2 Algo. 3

n time (s) time (s) time (s)

2 0.130 0.065 0.044

5 1.700 0.070 0.074

10 1511.148 0.330 0.275

15 ∞ 1.410 1.206

20 ∞ 5.124 4.170

25 ∞ 17.630 13.547

mn Algo. 1 Algo. 2 Algo. 3

n time (s) time (s) time (s)

3 1.443 0.579 0.059

4 ∞ 4.192 0.560

5 ∞ 271.094 100.696

Poly. Algo. 1 Algo. 2 Algo. 3

n time (s) time (s) time (s)

d2n20 45.458 0.306 0.245

d2n50 ∞ 7.037 5.243

d2n100 ∞ 269.335 123.789

d3n3 143.473 0.143 0.051

d3n5 ∞ 8.409 0.142

d3n7 ∞ 15812.523 1.054

d4n2 1.079 0.112 0.046

d4n4 ∞ 1.812 0.247

d4n6 ∞ 442.459 16.747

We implemented the above algorithms using the
Gröbner basis algorithm F4. We use the computer al-
gebra system Maple and FGb [9], implemented in C

by J.-Ch. Faugère, to perform the Gröbner basis com-
putations. The computations were performed on one
thread of a computing server equipped with an Intel
Xeon CPU E7-4820 v4 running at 2 GHz and with
1511 GiB of memory. The entry ∞ has been given
in the cases when the algorithm has not terminated
within 2 days.

Here, fn = z41 +
∑n

i=2(z1zi−1)2 is a family of poly-
nomials that share an asymptotic critical value 0 and
for n ≥ 3 they have an additional asymptotic critical
value at n − 1. The degree of the polynomials in this
family is fixed at 4 and so we show how the algorithms
perform with a large number of variables. We see that
Algorithm 1 struggles for n ≥ 10 while much larger
values of n are handled well by Algorithms 2 and 3.

Additionally, mn =
∑n

i=1

∏i
j=1 z

2i−j

j is a family
of polynomials whose degree grows exponentially with
the number of variables; for n ≥ 2, mn has a single
asymptotic critical value at 0. Algorithm 1 cannot
reach even n = 4 while Algorithm 3 shows some im-
provement over Algorithm 2.

On the other hand, one shows that sufficiently
generic dense polynomials do not have asymptotic crit-
ical values. Then, they serve as a good illustrator of
how Algorithm 3 can efficiently certify that the set of
asymptotic critical values of a polynomial mapping is

empty. We use the notation dinj to denote a generic dense polynomial of degree i in a poly-
nomial ring of j variables. Experimentally, it is clear that Algorithm 3 severely outperforms
Algorithm 1 and even Algorithm 2 when no asymptotic critical values are present. All three
algorithms perform far better in the simple case where d = 2. In this special case, the degree
bound we provide in Proposition 5 for the asymptotic critical values drops from O(dnpn−p+1)
to O(dppn−p+1).
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ICMS 2010. Ed. by Komei Fukuda et al. Berlin, Heidelberg: Springer, 2010, pp. 84–87. isbn: 978-
3-642-15582-6. doi: 10.1007/978-3-642-15582-6_17. url: http://dx.doi.org/10.1007/978-
3-642-15582-6_17.

[10] The RegularChains Library. 2015. url: http://www.regularchains.org/.

[11] Wolfram Research, Inc. Mathematica, Version 12.1. Champaign, IL, 2020. 2020. url: https:

//www.wolfram.com/mathematica.

5

http://www.jstor.org/stable/2952457
http://www.jstor.org/stable/2952457
https://doi.org/10.4310/jdg/1090347525
https://doi.org/10.4310/jdg/1090347525
https://doi.org/10.1145/980175.980185
https://doi.org/10.1145/980175.980185
https://doi.org/10.1007/s00454-005-1203-1
https://hal.archives-ouvertes.fr/hal-01351457
https://doi.org/10.1007/978-3-642-15582-6_17
http://dx.doi.org/10.1007/978-3-642-15582-6_17
http://dx.doi.org/10.1007/978-3-642-15582-6_17
http://www.regularchains.org/
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

	Introduction and Preliminaries
	Our contribution
	Experimental results

