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Towards a Driver Model to Clarify Cooperation Between Drivers and
Haptic Guidance Systems

Yishen Zhao1, Philippe Chevrel1, Fabien Claveau1 and Franck Mars2

Abstract— Understanding a driver’s behavior in a steering
task is essential to the development of haptic guidance systems.
This paper aims to predict driver torque control, especially
when haptic guidance is part of haptic feedback. A new
cybernetic driver model with an improved neuromuscular
system is proposed and identified. It is assumed that the
driver converts a target steering-wheel angle into torque by
both indirect and direct control. Indirect control refers to
the adaptation of the parameters of an internal model of
steering compliance as perceived by the driver. Direct control
accounts for the driver’s corrective action through direct haptic
feedback. The parameters of the model were identified with data
collected from experiments conducted with a driving simulator.
The results of identification were satisfactory and led to good
representation of the driver’s action, with or without haptic
guidance. The model accurately predicted driver torque output.
It can be used to study driver adaptation to haptic guidance
systems.

Index Terms— cybernetic driver model, haptic feedback,
neuromuscular system, parameter identification

I. INTRODUCTION

To meet the design guidelines for human-automation in-
teraction, a specific mode has been proposed, called “shared
haptic control.” Shared haptic control has attracted increasing
research attention in recent years [1], [2]. Its application to
vehicle steering control is generally referred to as a “haptic
guidance system.” The main functionality of the system is
to provide human drivers with continuous additional torque
feedback through the steering wheel. Hence, the steering
wheel is simultaneously controlled by the driver and the au-
tomated system so that it acts as an effective communication
interface. The benefits of haptic guidance systems have been
observed in lane-keeping performance [3]–[5].

To achieve sound cooperation between a driver and the
haptic guidance system, it is essential to understand human
behavior during a steering task. In several haptic guidance
systems (e.g. see [6], [7]), a driver model is directly included
to predict human driver behavior. A driver model can im-
prove performance by minimizing the potential for conflict
between the system and the driver. In addition, the model
can analyze how drivers adapt their behavior when driving
with the system.

A cybernetic driver model has been proposed in [8]–[10].
In this model, it is assumed that to steer the vehicle, the driver
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Fig. 1. Cybernetic driver model in [8]–[10].

implicitly aims at a steering angle δd, which is determined
from the visual scene (left part of Fig. 1). This angle is then
converted to a torque applied to the steering system through
co-activation of the muscles by α- and γ- motor commands.
The model has been successfully used in the synthesizing
a haptic steering system [11] and in discriminating various
types of distraction through analyzing parametric variations
[10], [12], [13].

However, the model has been designed and identified in
situations where the human drives alone. It considers only
the self-aligning torque as haptic feedback but does not
take into account the influence of a haptic guidance system,
which could be either parametric or structural. Generally, it
is difficult for a driver to distinguish between self-aligning
torque and haptic guidance torque because they act together
on the steering wheel and are perceived through the same
channel. Therefore, there is no reason to explicitly separate
them in the driver model, and it is the combination that is
called haptic feedback.

In addition, when analyzing the driver’s neuromuscular
behavior using the model, it becomes difficult to interpret the
intermediate torque generated by the α- and γ- commands.
Precisely, on the one hand, the co-activation of muscles must
generate a torque that is

Γα + Γγ ≈ Γs + Γd (1)

as the time constant TN is relatively small. On the other hand,
the total torque applied on the steering system, ignoring the
friction, is ∑

Γ ≈ Γd − Γs (2)

Substituting the Γd in (1) by the Γd in (2) gives

Γα + Γγ ≈ 2Γs +
∑

Γ (3)

The above calculations imply that from the target steering-
wheel angle δd, the intermediate torque generated by the α-
and γ- commands is double the strength of the self-aligning
torque. Such result has not been observed in any experiment
yet.
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Fig. 2. Structure of the proposed cybernetic driver model. Blue: two-point visual model; orange: driver internal model; green: direct haptic feedback loop.

To solve these issues, this article presents a new driver
model with a reconsidered neuromuscular system (NMS).
The system is designed taking into account the haptic feed-
back, which is the sum of self-aligning torque and assistance
torque when driving with the haptic guidance system, or
only the former if driving alone. The structure of the model
is discussed in Section II. The methods adopted for data
collection and identification of the model parameters are
presented in Section III and IV, respectively. The results
are presented in Section V. Finally, we provide conclusions
about the results and propose future work in Section VI.

II. DRIVER MODEL WITH HAPTIC FEEDBACK

The main contribution of this paper consists of the new
driver model structure shown in Fig. 2. The description
of signals is listed in Table I. This model decomposes
the vehicle lateral-control task of driver into two steps: 1)
generating a target steering-wheel angle by a two-point visual
model; and 2) applying the target angle to limb-steering
system by NMS, with the implicit and explicit involvement
of haptic feedback, as shown by the dashed line and solid
line from Γfb, respectively.

A. Two-point Visual Model

The two-point visual model is adopted as a starting point.
As described in the literature [14], [15], the visual informa-
tion that a human perceives while driving is extracted from
both a distant and a near area. Two points within these zones,
referred to as far and near points respectively, are a simplified
representation of the visual inputs. The far point may be the
tangent point of the inner edge of the road; it represents
the anticipation of changes in the curvature of the road. The
near point is a few meters ahead of the vehicle. It represents
the visual perception of the lateral deviation of the vehicle
used by the driver to keep the vehicle in the lane. The angle

TABLE I
DESCRIPTION OF SIGNALS IN FIG. 2

Signal Description

θfar Far-point Angle
θnear Near-point Angle
δd Target Steering-wheel Angle
δSW Actual Steering-wheel Angle
ΓI Torque from Internal Model
Γd Driver Steering Torque
Γfb Haptic Feedback Torque
Γa Haptic Guidance Torque
Γs Self-aligning Torque

between the heading of the vehicle and these points, namely
θfar and θnear, are used as input for the visual model.

B. Neuromuscular Action

Neuromuscular-system modelling aims to represent two
fundamental mechanisms: 1) how muscles convert the target
steering-wheel angle into steering torque and 2) how haptic
feedback is involved in the driver’s control [8]. It has been
shown that humans can actually adapt to various types of
haptic feedback laws but cannot drive without such feedback
(i.e., with zero or inverted haptic feedback) [16]. In the
proposed model, the NMS associated with the limb-steering
system functionally acts as an angular servo system to ensure
that the actual steering-wheel angle follows the target angle.
The NMS may achieve this by direct or indirect control.
“Indirect control” here refers to parameter adaptation. Specif-
ically, the parameter defines an internal model of the steering
system, simply reduced to its stiffness. By contrast, “direct
control” consists of torque feedback that compensates for
errors of the internal model.



1) Driver Internal Model: There is reason to believe that
drivers adapt their behavior through their interactions with
the steering wheel, by perceiving steering compliance and
inversing it. This idea has been proposed and explored in
neural science [17]. The internal model results from driver
perception and prior knowledge of the steering system.
During driving, the arm muscles and the steering wheel
are combined to form a limb-steering system. The driver
learns about the dynamics of the system and adapts to
them by updating an internal model of steering system
compliance. Ideally, if the estimate is accurate (i.e. if the
internal model is equal to the inverse steering system), no
additional information is needed for the driver to reach the
target steering angle; the driver can accurately provide the
necessary steering torque. However, it is likely that this
estimate is only approximate and corresponds to a simple
(low-order) internal model [18]. In this study, it is limited to
a static gain KIvx, which depends on the longitudinal speed
vx of the vehicle.

An important characteristic of the internal model is that
it can be learned by the driver through experience with
the vehicle. The learning process can be rapid because an
experienced driver can easily adapt to another vehicle with
a different steering system. The same is true when the extra
guidance torque is applied to the steering system. From
a driver’s perspective, it appears that the dynamics of the
steering system is modified, and the driver thus adapts to
cooperate with the new steering dynamics. To represent
this process in the model, the haptic feedback signal is
used to update the internal model. The adaptation of the
internal model to the haptic guidance system should occur
at the start of the driving scenario. Analysis of the speed
of adaptation is beyond the scope of this study; only the
adjustment mechanism of the internal model is considered.

The torque from the internal model is passed through a
first-order system with a time constant TN to represent that
muscles require time to produce the torque control ΓI . The
value of TN is fixed at 0.23 s, which corresponds to the
cut-off frequency of 0.7 Hz for reflexive muscle activity
previously proposed [19].

2) Explicit Haptic Feedback Loop: As stated above, the
internal model that the driver learned can hardly be equiv-
alent to the inverse limb-steering dynamics. To compensate
for the error between the internal model’s output ΓI and
the driver steering torque Γd, a closed-loop control must be
formed. This control uses signals perceived by the driver
from the steering wheel. From the perspective of muscle
anatomy and physiology, muscles contain two types of
sensors that convert mechanical stimuli into neural activity.
The first is the muscle spindle, which detects changes and
the change rate of muscle length. The second is the Golgi
tendon organ, which detects changes in muscle force. In other
words, either the steering-wheel angle δSW , steering-wheel
angular speed δ̇SW or the haptic feedback Γfb can be used
to establish the closed-loop control.

In our model, an explicit haptic feedback loop is intro-
duced based on the difference between the haptic feedback

Fig. 3. Left: fixed-base driving simulator; right: track used in the
experiment.

torque and the output torque of the internal model (i.e.,
Γfb − ΓI ). Other choices could have been δd − δSW or
δ̇d − δ̇SW . However, haptic feedback compensation is con-
sidered to be faster and more intuitive for the driver, while a
minor error between the target steering angle and the actual
steering angle would be more difficult to detect through
muscle sensors and would likely be compensated for by
visual information. For example, a small static error in the
steering-wheel angle will gradually lead to a lane change and
will eventually be corrected by the driver. In other words, the
NMS is more likely to counterbalance the haptic feedback to
stabilize the steering wheel than to achieve the exact target
steering-wheel angle.

III. DATA ACQUISITION

A. Apparatus

An experiment for acquiring data was performed using
a fixed-base driving simulator powered by SCANeR Studio
(Fig. 3, left). It simulates the interior environment of a family
car, with a complete dashboard; a five-speed gear stick; gas,
brake and clutch pedals; and a steering wheel connected to a
TRW steering system. Sensors for measuring steering-wheel
angle, speed and torque are mounted in the steering system.
The visual scene is displayed on three LCD screens: a central
one in front of the driver and two others oriented at 45◦

relative to the center. The screens cover a field of view of
25◦ high and 115◦ wide. In the experiment, a small family
car, the Citroën C5, was chosen as the vehicle model.

B. Haptic Guidance System

A haptic guidance system was implemented in the driving
simulator using a controller designed in Simulink. The con-
troller was previously developed [7] and its global architec-
ture is shown in Fig. 4. The final guidance Γa was a com-
bination of anticipatory and compensatory assistance. The
anticipatory assistance generates a reference trajectory (ref-
erences for states, xref , and control input, uref , of vehicle-
road model) from previewed road curvature, ρpreviewed,(

Γref
xref

)
= KFF (p)ρpreviewed (4)

where KFF (p) represents the transfer function of the tra-
jectory generator. The applied anticipatory torque was then
determined by accounting for the targeted sharing level:
Γaref = αantΓref . The compensatory assistance adjusted
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Fig. 4. Design strategy of the haptic guidance system.

the vehicle’s position in the lane. It consisted of an H2/H∞
static output feedback that controlled the steering against
disturbances and uncertainties:

Γfb = Kfb(xvr − xref ) (5)

Similarly, the applied compensatory torque control was
determined according to the sharing level, αcomp, of the
compensatory part: Γafb

= Γfb(αcomp).
In this study, both sharing levels were fixed at 50%. This

configuration results in a system that delivers clear haptic
guidance, although without any action from the human driver
it will eventually leave the lane during some curves.

C. Participants

Five participants took part in the experiment. They were
recruited from students and staff of the Laboratory of Digital
Sciences in Nantes and Institute Mines-Télécom Atlantique
Nantes. All participants possessed a valid driver’s license
with at least three years of driving experience. The partic-
ipants had no known medical issues that could affect their
driving skills. None of them had ever experienced a haptic
guidance system.

D. Scenarios

The track used in the experiment is shown in Fig. 3 (right).
It was a two-lane road with a lane width of 3.5 m. All
curves were Euler spirals with continuous changes in the
curvature of the road. At the beginning of the experiment,
all participants were provided with a brief introduction to
the simulator, including the haptic guidance system. They
were then instructed to drive in two different scenarios in
random order: with and without the haptic guidance system.
During the task, the vehicle longitudinal speed was fixed at
64 km/h (18 m/s) so that they only needed to control the
steering wheel. They were asked to drive in the right-hand
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Fig. 5. Visual model with delay for identification.

lane without making any lane changes for 10 min in each
scenario, which equaled to almost two laps on the track.

IV. MODEL PARAMETER IDENTIFICATION

It is difficult to identify the entire model directly, for the
following reasons: 1) the target steering-wheel angle is not
measurable; 2) the internal model is implicitly affected by the
haptic feedback; 3) some parameters are weakly identifiable
with the entire model. Thus, the model is separated into three
parts that are identified one by one, sequentially. The data
collected from the experiment are also equally divided into
two parts, one for identification and another for validation.

A. Visual Model Identification

The visual model considered, shown in Fig. 5, borrows
from that in Fig. 1. The main problem is that the target
steering-wheel angle δd that the driver is supposed to derive
from the visual angle is unknown. The only relevant signal
measured was the actual angle of the steering wheel, δSW .
Assuming that there is only a delay between the two angles,
it is possible to obtain the visual model with delay by
identification using δSW as an output, which yields the
desired parameters (Kp,Kc, TI , TL).

One minimal realization of the visual model with delay
(approximated by a first-order system) is written as follows:

ẋ = Ax+Bu

y = Cx+Du
(6)

with

y = δd, u =
[
θfar θnear

]T
,

A =

[
− 1

TI

0

− 1
τ
Kc

vx
(TL

TI
− 1) − 1

τ

]
B =

[
0 1

TI

1
τKp

1
τ
Kc

vx
TL

TI

]
C =

[
0 1

]
D =

[
0 0

]
The input signals highlighted in Fig. 6 were approximated
as follows, with Dfar = 18m and ls = 5m.

θfar ≈ Dfar × ρ, θnear ≈ −yL/ls (7)

The identification was performed using the prediction error
minimization (PEM) [20] method with data from the exper-
iment. The system identification toolbox in MATLAB was
used to compute the identification results. The criterion was:

J =

N∑
k=1

e2
v[k] (8)
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where ev[k] represents the difference between the measured
output and predicted output of the model δ̂SW :

ev[k] = δSW [k]− δ̂SW [k] (9)

A potential problem with using the actual steering-wheel
angle to identify the visual model is that when a haptic
guidance system is used for driving, the actual steering-wheel
angle represents the joint effort of the human driver and the
haptic guidance system. The identified visual model would
in this case be a projection of the dynamics of the driver-
automation system. To avoid this problem, it is necessary
that the visual model of the human driver is invariant.
For this purpose and for each participant, the visual model
was identified from the data of the scenario without haptic
guidance, and kept as-is in the scenario with haptic guidance
to identify the rest of the driver model.

B. Driver Internal Model Identification

As the vehicle’s longitudinal speed was fixed at 18 m/s
in the experiment, only the static gain KI needed to be
identified in the driver internal model. This could be achieved
by fixing the value of parameters in the visual model and
minimizing the following criterion:

J =

N∑
k=1

e2
I [k] (10)

where
eI [k] = Γd[k]− Γ̂I [k] (11)

C. Explicit Haptic Feedback Loop Identification

Once the visual model and the driver internal model had
been identified, the resulting parameter values could be used
to identify the entire model by focusing on the explicit haptic
feedback loop. One minimal realization of the entire model
can be written as follows:

ẋ = Ax+Bu

y = Cx+Du
(12)

TABLE II
IDENTIFIED VISUAL MODEL

Participant Kp Kc TI TL τ FIT (%)

P1 3.69 2.63 0.38 7.19 0.57 85.61
P2 3.82 3.69 0.45 5.80 0.56 79.45
P3 3.63 2.49 0.44 7.00 0.53 84.86
P4 3.67 2.15 0.70 6.47 0.61 82.70
P5 3.79 2.99 0.62 8.16 0.62 86.79

with

y = Γd, u =
[
θfar θnear Γfb

]T
,

A =


− 1

TI

0 0

−KIvx
1
TN

Kc

vx
(TL

TI
− 1) − 1

TN
0

0 −Kfb

Tfb
− 1
Tfb



B =


0 1

TI

0

KIvx
1
TN
Kp KIvx

1
TN

Kc

vx
TL

TI
0

0 0
Kfb

Tfb


C =

[
0 1 1

]
D =

[
0 0 0

]
Similar to the identification of the visual model, the results
were also calculated using the PEM method implemented
in the system identification toolbox of MATLAB. The only
two parameters to be identified at this stage were Kfb

and Tfb. The other parameters were fixed at their nominal
values, which were obtained at previous identification stages.
The criterion was similar to (10), except the error was the
difference between the measured driver steering torque and
the predicted steering torque of the model:

J =

N∑
k=1

e2
d[k], ed[k] = Γd[k]− Γ̂d[k] (13)

V. RESULTS

A. Visual Model with Delay

As detailed in section IV-A, the visual model was iden-
tified first, based on the data recorded ad hoc when the
participants were driving alone. The identified parameters
of the model, including the time delay ,τ , are listed in
Table II. The FIT value, which indicates the difference
between the predicted model output and the measured output,
is calculated as follows:

FIT =
(

1− ‖δSW − δ̂SW ‖2
‖δSW −mδSW

‖2

)
× 100% (14)

where mδSW
is the arithmetic mean of δSW .The identifica-

tion results converged to almost the same ranges in value
for all participants, with the model explaining on average
83.88% of the actual steering-wheel angle. No parameter
showed an abnormal value. The variation of model param-
eters, especially for the near-point angle input, could imply
different driving styles. In addition, the values of delay were



TABLE III
IDENTIFIED DRIVER INTERNAL MODEL

Without Haptic Guidance With Haptic Guidance
Participant KI FIT (%) KI FIT (%)

P1 0.214 83.46 0.128 51.09
P2 0.211 81.48 0.157 64.33
P3 0.217 85.42 0.129 59.51
P4 0.213 82.20 0.128 64.80
P5 0.210 82.42 0.156 51.18

close because they mainly represented the transport delay of
the simulator (computation, graphics, sensors etc.) [8].

B. Driver Internal Model

The identified values of the driver internal gain, KI , based
on the data without and with the haptic guidance system,
are listed in Table III. These values enable a comparison of
the torque output predicted by the identified driver internal
model, Γ̂I , and the measured driver steering torque, Γd,
which is the FIT value shown in the table, calculated as
follows:

FIT =
(

1− ‖Γd − Γ̂I‖2
‖Γd −mΓd

‖2

)
× 100% (15)

where mΓd
is the arithmetic mean of Γd.

A significant decrease in the gain of the driver internal
model was observed when the participants were driving with
the haptic guidance. This was reasonable, as one of the
main objectives of the haptic guidance system is to reduce
the driver’s effort in controlling the vehicle by providing
additional torque. It also demonstrates that, as hypothesized,
the participants adjusted their internal model to cooperate
with the haptic guidance during the experiment. In fact,
all five participants successfully completed the experiment
without having any difficulty in maintaining the vehicle in the
lane. For all participants, the reduction of the gain KI was
around 60% to 70%, which is related to the 50% sharing level
chosen for the haptic guidance system in the experiment. The
difference may suggest that participants did not fully rely on
the system.

There was also a significant difference in the FIT values
between the two conditions. Without the haptic guidance, the
predicted torque output from the driver internal model was
rather close to the measured driver steering torque. This was
not the case with the haptic guidance. To investigate this dif-
ference, a residual analysis was performed. As an example,
Fig. 7 shows the residual of the driver internal model (i.e.,
Γd− Γ̂I ) of participant P1 in both conditions. Without haptic
guidance, the residual was almost white noise—because in
this situation the haptic feedback was merely self-aligning
torque. The self-aligning torque is usually modelled as being
approximately proportional to the steering-wheel angle [21].
Thus, a driver internal model in the form of a simple gain
is almost accurate. However, this is not the case when the
haptic guidance is part of the haptic feedback. In that case,
the relationship between the haptic feedback and the steering

Fig. 7. Residual of the driver internal model for P1. Left: without haptic
guidance; right: with haptic guidance.

TABLE IV
IDENTIFIED EXPLICIT HAPTIC FEEDBACK MODEL

Without Haptic Guidance With Haptic Guidance
Participant Kfb Tfb FIT (%) Kfb Tfb FIT (%)

P1 0.92 0.014 91.11 0.97 0.023 86.34
P2 0.90 0.012 91.83 0.90 0.028 88.97
P3 0.86 0.013 91.66 0.96 0.022 86.26
P4 0.92 0.014 91.79 0.91 0.027 85.38
P5 0.89 0.016 91.36 0.97 0.027 88.34

wheel angle depends on the design strategy of the haptic
guidance system and is difficult to predict only with the
driver internal model. This leads to the difference between
FIT values and the useful information left in the residual,
which is explained by the explicit haptic feedback loop.

C. Explicit Haptic Feedback Loop

The identified explicit haptic feedback loop, without and
with the haptic guidance system, is listed in Table IV. The
FIT is calculated similarly as (15), where the predicted
model output is Γ̂d and the measured output is Γd.

The FIT values of the model with the explicit haptic
feedback loop showed a close match between the predicted
and measured driver steering torque, under both conditions
(either with or without the haptic guidance). Compared with
the results in Table III, a distinct improvement is evident,
especially when haptic guidance torque was part of the haptic
feedback. These results indicate that this model structure was
valid in both situations, although with haptic guidance there
was still a substantial loss of around 3% to 5%. This point
could be investigated in future research.

A similar gain between the two experimental conditions
was obtained for the explicit haptic feedback loop. The time
constant was almost doubled in the case of haptic guidance
but remained smaller than the neuromuscular time constant
fixed, TN , which was 0.23s. The difference between Tfb
and TN could correspond to the fact that control by spinal
feedback pathways (30-40 ms for the arm muscles) is more
efficient and faster than control by supraspinal pathways (i.e.
the visual system) [22]. It should be noted, however, that the
Tfb value could also be artificially increased or decreased by
potential delays in the dynamics of the torque sensors. The
difference in Tfb between the two conditions is probably
related to the predictive property of the haptic guidance



Fig. 8. Validation of the entire driver model for P1. Left: without haptic
guidance; right: with haptic guidance.

system. As part of its design strategy, the system anticipates
changes in road curvature and can generate guidance torque
even before the driver does. The haptic feedback that includes
the assistance torque therefore occurs before the haptic
feedback includes only the self-aligning torque, allowing the
human driver more time to react.

Once each part of the model was identified, validation of
the entire model using experimental data was performed to
verify the model prediction. As an example, Fig. 8 shows
the results of the validation of participant P1 under both
conditions. The figure shows that the driver model output
predicts well the driver steering torque measured in the
validation data, whether driving without or with the haptic
guidance system.

VI. CONCLUSION

In this article, a new cybernetic model of the driver in the
steering task is proposed, with a reconsidered neuromuscular
sub-model. The objective is to model the driver’s steering
control behavior, especially when a haptic guidance system
is active. The haptic feedback signal, which includes both
guidance and self-aligning torque, is used as a key input to
the new model. It intervenes in the steering control, both by
adapting the gain of the internal model to the compliance
of the steering system (implicit feedback) and by explicit
feedback after comparison with the target torque derived
from the visual system. The results from our identification
study show a good fit between the predicted and measured
steering torque by the driver. Future work will focus on the
model with different haptic steering systems set at different
split levels. Additional tests involving more drivers will be
conducted to examine how the proposed model can help to
further understand how drivers interact with haptic guidance
systems.
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Université d’Evry-Val d’Essonne, Nov. 2008. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-00364073

[22] E. De Vlugt, “Identification of Spinal Reflexes,” Ph.D. dissertation,
Delft University of Technology, 2004.


