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Abstract—The analysis of groups of binary data can
be achieved by logical based approaches. These ap-
proaches identify subsets of relevant Boolean attributes
to characterize observations and may help the user to
better understand their properties. In this work, our
purpose is to highlight that different techniques may
be used to compute subsets of attributes. We compare
three different methods and propose a new algorithm
for computing Boolean patterns. Experiments are per-
formed on real biological data sets.

Index Terms—Logical analysis of data; multiple char-
acterizations; diagnostic test

I. Introduction

Let us consider two groups (sets) of observations P
and N (respectively positive and negative observations)
defined over a set A of Boolean attributes. Our purpose
is to compute a subset of A that may be used to ex-
plain/justify a priori the memberships of observations to
their respective groups. Logical analysis of data (LAD)
[11] combines concepts from partially defined Boolean
functions and optimization in order to characterize such
sets of data. Many applications have been pointed out, e.g.,
for diagnosis purposes when a physician wants to identify
common symptoms that are shared by a group of patients
suffering from similar diseases. Contrary to classification
approaches issued from machine learning techniques (e.g.,
clustering algorithms) the purpose here is to provide an
explicit justification of the data instead of an algorithm
that assigns groups to incoming data. Note that we assume
that the two groups are built by experts, or using expert
knowledge (this is thus definitely not a classification nor
a clustering problem).

As an example, let us consider a set of 8 Boolean
attributes (labeled from a to h) and 7 observations, dis-
patched into two groups P and N .

Observ. Groups Attributes
a b c d e f g h

1
P

0 1 0 1 0 1 1 0
2 1 1 0 1 1 0 0 1
3 0 1 1 0 1 0 0 1
4

N

1 0 1 0 1 0 1 1
5 0 0 0 1 1 1 0 0
6 1 1 0 1 0 1 0 1
7 0 0 1 0 1 0 1 0

In LAD methodology, a key concept consists in iden-
tifying patterns of similar values in groups. For instance,
a = 0 and b = 1 is a pattern that is shared by observations
1 and 3 in P and such that no observation in N is
covered by this pattern. Therefore this pattern could be
interpreted as a partial explanation of the observations of
group P . Among the sets of patterns, one has to decide
which compromise has to be achieved between their size
and the covering that they provide. Concerning the size
of the patterns, some properties have been exhibited in
order to focus on the most relevant one. In particular,
prime patterns are patterns whose number of attributes
cannot be reduced unless they are not patterns anymore.
Prime patterns correspond to the simplicity requirement
(in terms of attributes) while strong patterns correspond
to an evidential preference where a larger cover is preferred
(we refer the reader to [10] for a survey on LAD).

Alternatively, attributes f and g can also be used to
generate a Boolean formula φ ≡ (f ∧ g) ∨ (¬f ∧ ¬g),
which is true for observations in P (interpreted as Boolean
assignments on attributes) and false for observations in N .
Note that, the attribute b is not sufficient to explain group
P since observation 6 in N has also this attribute set to
1. φ is presented here in disjunctive normal form. Note
that such formula could be convenient for users, either
by minimizing the number of attributes (for instance,
to simplify their practical implementation in diagnosis
routines) or by minimizing the size of the formula (for
instance, to improve their readability). This approach
focuses on minimal characterizations in terms of number of
attributes and can be extended to consider several groups
simultaneously [9].
Motivations: In this paper, our main goal is to study
different techniques to select relevant attributes to help
the user to better understand groups of binary data and
eventually to identify relevant properties of data. Hence,
we consider the two previously described approaches:
patterns and minimal sets of attributes. We also aim to
compare these methods with a feature selection technique
(note that feature selection methods are commonly used
to improve classification algorithms by identifying relevant
attributes, but may also be useful for data visualization).
Contributions: We propose (1) A new algorithm to com-
pute all prime patterns, (2) to compare the attributes that



are selected by the two above-mentioned logical character-
ization techniques, (3) to compare these approaches with a
simple feature selection and (4) to study if the groups de-
fined by experts could be explained by classification using
the selected attributes. At last, we perform experiments
on different real benchmarks issued from biology.

II. Logical Analysis of Data
Logical Analysis of Data (LAD) ([6], [3], [10], [14]) con-

siders two groups of observations represented by Boolean
vectors. The purpose is to find a justification/explanation
of these groups. LAD is mainly based on the concept of
partially defined Boolean functions [20]. A justification
can be a formula that is satisfied by observations of one
group (called the positive group) while being falsified by
the observations of the other group (called the negative
group). Such a formula is then built on a subset of at-
tributes that discriminate one group against the other one.
In this context, LAD focuses on the notion of pattern that
corresponds to a subset of attributes whose values are sim-
ilar for several observations in the positive group, which
may help the user to identify common characteristics of
these observations. From a practical point of view, LAD
has been applied to many domains: biology and medicine
([18], [2], [1]), engineering [4], transportation [12]. The
Characterization Problem [9] is an extension of the LAD
methodology that considers simultaneously several groups
of observations. The Characterization Problem consists in
minimizing the number of attributes that are necessary to
discriminate mutually several groups of observations.

From these previous works, we propose a unified pre-
sentation of these possible characterizations of groups of
binary data.

A. Basic Principles: Boolean Functions
A Boolean function f of n variables, n ∈ N, is a mapping

f : Bn 7→ B, where B is the set {0, 1}. A vector x ∈ Bn is
a true vector (resp. false vector) of the Boolean function
f if f(x) = 1 (resp. f(x) = 0). T (f) (resp. F (f)) is the set
of true vectors (resp. false vectors) of a Boolean function
f . A partially defined Boolean function (pdBf) on Bn is
a pair (P ,N) such that P ,N ⊆ Bn and P ∩ N = ∅. P is
thus the set of positive vectors, and N the set of negative
vectors of the pdBf (P,N). The notion of partially defined
Boolean function is generalized by the following notion of
term proposed in ([14], [5]).

A term is a Boolean function tσ+,σ− whose true set
T (tσ+,σ−) is of the form: T (tσ+,σ−) = {x ∈ Bn|xi = 1 ∀i ∈
σ+, xj = 0 ∀j ∈ σ−} for some set σ+, σ− ⊆ {1, 2, ..., n},
σ+ ∩ σ− = ∅. A term tσ+,σ− can be represented by a
Boolean formula of the form: tσ+,σ−(x) = (

∧
i∈σ+ xi) ∧

(
∧
j∈σ− ¬xj).

B. Formulation of the Problem
We define now a Binary Data Characterization Problem
(BDCP).

Definition 1. An instance of the Binary Data Character-
ization Problem is a tuple (Ω,A, D,G) defined by a set of
observations Ω ⊆ B|A| of Boolean vectors built on a set
A of Boolean attributes. The observations are recorded in
a Boolean matrix D|Ω|×|A|. A function G : Ω → {P,N}
assigns a group G(o) to the observation o ∈ Ω.

The matrix D is defined as:
• the value D[o, a] represents the presence/absence of

the attribute a in the observation o.
• a line D[o, .] represents the Boolean vector of pres-

ence/absence of the different attributes in the obser-
vation o.

• a column D[., a] represents the Boolean vector of pres-
ence/absence of the attribute a in all the observations.

Given a subset A ⊂ A, DA is a matrix reduced to the
attributes of A.

As already mentioned, two possible notions of solution
are considered:
• computing minimal sets of attributes that discrimi-

nate the groups,
• computing patterns that are shared by observations

of the positive group.
C. Minimal Sets of Attributes

Given a BDCP instance (Ω,A, D,G) the purpose here
is to find a subset of attributes S ⊆ A such that two
observations from two different groups are always different
on at least one attribute in S.

Definition 2. Given an instance (Ω,A, D,G), a subset of
attributes S ⊆ A is a solution iff ∀(o, o′) ∈ Ω2, G(o) 6=
G(o′) → DS [o, .] 6= DS [o′, .]. In this case, the matrix DS

is called a solution matrix.

An instance may have several solutions of different sizes.
It is therefore important to define an ordering on solutions
in order to compare and classify them. In particular, for
a given solution S, adding an attribute generates a new
solution S′ ⊃ S. In this case we say that S′ is dominated
by S. We can also compute solutions of minimal size with
regards to the attributes they involve.

A solution S ⊆ A is non-dominated iff ∀s ∈ S, ∃(o, o′) ∈
Ω2 s.t. G(o) 6= G(o′) and DS\{s}[o, .] = DS\{s}[o′, .]. A
solution S ⊆ A is minimal iff @S′ ⊆ A with |S′| < |S| s.t.
S′ is a solution.

According to previous works [9], given an instance
(Ω,A, D,G), the BDCP can be formulated as the following
0/1 linear program :

min :
|A|∑
i=1

yi

s.t. :
C . Y t > 1t

Y ∈ {0, 1}|A|, Y = [y1, ..., y|A|]

where Y is a Boolean vector that encodes the pres-
ence/absence of the set of attributes in the solution. C is a



matrix that defines the constraints that must be satisfied
in order to ensure that Y is a solution. Let us denote Θ
the set of all pairs (o, o′) ∈ Ω2 such that G(o) 6= G(o′).
For each pair of observations (o, o′) that does not belong
to the same group, one must insure that the value of at
least one attribute differs from o to o′. This will be insured
by the inequality constraint involving the 1 vector (here
a vector of dimension |Θ| that contains only values equal
to 1). The minimization objective function insures that we
aim to find a minimal solution.

More formally, C is a Boolean matrix of size |Θ| × |A|
defined as:
• Each line is numbered by a couple of observations

(o, o′) ∈ Ω2 such as G(o) 6= G(o′) ((o, o′) ∈ Θ).
• Each column represents an attribute.
• C[(o, o′), a] = 1 if D[o, a] 6= D[o′, a], C[(o, o′), a] = 0

otherwise.
• We denote C[(o, o′), .] the Boolean vector representing

the differences between observations o and o′ on each
attribute. This Boolean vector is called constraint
since one attribute a such C[(o, o′), a] = 1 must be
selected in order to insure that no identical observa-
tions can be found in different groups.

Two algorithms have been proposed to compute solu-
tions [8]:
• NDS (Non Dominated Solutions) that computes the

set of all non-dominated solutions.
This algorithm find all Y ∈ {0, 1}|A| of the linear
program above such as C . Y t > 1t

• MWNG (Merging with negative variables) that com-
putes all minimal non dominated solutions.
This algorithm finds all the solutions of the linear
program above.

Note that the computation of all minimal non domi-
nated solutions is related to the Min Set Cover problem
and the Hitting Set problem [17].

D. Patterns
Let us consider P = {o ∈ Ω|G(o) = P} the group

of positive observations and N = {o ∈ Ω|G(o) = N}
the group of negative ones. A pattern aims to identify
a set of attributes that have identical values for several
observations in P . Of course this pattern must not appear
in any observation of N .

Definition 3. A pattern of a pdBf (P,N) is a term tσ+,σ−

such that |P ∩ T (tσ+,σ−)| > 0 and |N ∩ T (tσ+,σ−)| = 0.

Given a term t, V ar(tσ+,σ−) is the set of attributes (also
called variables) defining the term (V ar(tσ+,σ−) = {xi|i ∈
σ+ ∪ σ−}) and Lit(tσ+,σ−) = {xi ∪ x̄j |i ∈ σ+, j ∈ σ−}
the set of literals (i.e. a logic variable or its complement)
in tσ+,σ− . Given a pattern p, the set Cov(p) = P ∩ T (p)
is said to be covered by the pattern p.

Example 1. Let us recall the introductory example.

Observ. Group Attributes
a b c d e f g h

1
P

0 1 0 1 0 1 1 0
2 1 1 0 1 1 0 0 1
3 0 1 1 0 1 0 0 1
4

N
1 0 1 0 1 0 1 1

5 0 0 0 1 1 1 0 0
6 1 1 0 1 0 1 0 1
7 0 0 1 0 1 0 1 0

p1 = ¬a ∧ b and p2 = ¬f ∧ ¬g are two patterns covering
respectively observations 1 and 3 (p1) and 2 and 3 (p2).

Let us consider now p3 = f ∧ g. p2 and p3 are two
patterns using identical attributes: V ar(p2) = V ar(p3) but
Lit(p2) 6= Lit(p3). p2 ∪ p3 cover the positive group (since
Cov(p2) ∪ Cov(p3) = P ) with only two attributes.

We consider different types of patterns:

Definition 4. A pattern p is called prime if and only if the
removal of any literal from Lit(p) results in a term which
is not a pattern.

Obviously, a pattern is prime if and only if the removal
of any variable from V ar(p) results in a term which is not
a pattern.

In Example 1, p2 = ¬f ∧ ¬g is a prime pattern. p4 =
¬a ∧ b ∧ ¬c is not prime because pattern p1 = ¬a ∧ b is
prime.

Definition 5. A pattern p1 is called strong if there does
not exist a pattern p2 such that Cov(p1) ⊂ Cov(p2).

In Example 1, p2 = ¬f ∧ ¬g is a strong pattern. p4 =
¬a ∧ b ∧ ¬c is not strong because p1 = ¬a ∧ b is a pattern
and Cov(p4) = {1} ⊂ Cov(p1) = {1, 3}.

Definition 6. A pattern p1 is called strong prime if and
only if

1) p1 is a strong pattern and,
2) if there exists a pattern p2 such as Cov(p2) =

Cov(p1) then p1 is prime

In [15], it has been proved that a pattern is strong prime
if and only if it is both strong and prime. Therefore, the
set of all strong prime patterns is the intersection of the
set of all prime patterns and the set of all strong patterns.

In the experiments, we are interested in covering the
whole set of observations P by a subset of prime and
strong prime patterns. Such a complete cover of group P
is considered as a solution for the pattern approach. This
cover is thus considered as the justification of group P
from the pattern point of view.

III. Computation of Prime Patterns and Group
Covers

We propose a new algorithm that uses the computation
of all non dominated solutions of the BDCP problem in
order to compute prime patterns.

In LAD, the aim is to find a pattern that covers a maxi-
mum number of observations of P , such as no observation



of N contains this pattern. From BDCP point of view,
the notion of solution is rather different. Given a solution
S of a BDCP instance (Ω,A, D,G) defined as above, the
attributes of S do not generally correspond to a pattern for
the observations in P , unless all observations are identical
on S. In this case a solution of the BDCP obviously
coincides with a prime pattern in terms of attributes.

In particular, if |P | = 1, the set of all solutions of the
BDCP coincides in terms of attributes with the set of
all prime patterns that cover the only observation in P ,
because in both cases no attribute can be removed.

Given a non-dominated solution S of the BDCP (com-
puted by previously mentioned algorithms for instance),
it is easy to transform an observation o of the group
P into prime pattern p. Each attribute a of S appears
positively (resp. negatively) in p if D[o, a] = 1 (resp.
D[o, a] = 0). This transformation will be insured by the
Transformation Pattern procedure in Algorithm 1.

For each observation, we can generate all prime patterns
that cover this observation. If we generate all prime pat-
terns for all observations, we generate prime patterns p,
and determine Cov(p) for each one.

Algorithm 1 returns the set Pat of all prime patterns,
and the set Cov of coverage of all patterns p ∈ Pat. Cov
is a set of elements Vp, ∀p ∈ Pat. Each element Vp is a
set of all observations covered by p.
Note that it is not necessary to compute the set Cov to
generate the set Pat. Hence, each step that involves the
set Cov can be removed.

Algorithm 1. Prime Patterns Computation (PP).
Data: D: matrix of data, with two groups {P,N}.
Result: Pat: set of all prime patterns
Result: Cov: set of covers of each prime pattern.
Pat = ∅
Cov = ∅
forall o ∈ P do

Generate the constraint matrix Co as if o was the
only one observation in P
Sol={set of all non dominated solutions for Co}
forall s ∈ Sol do

p=Transformation Pattern(s,o)
if p /∈ Pat then

Pat = Pat ∪ {p}
//Create a new element Vp of Cov which
will be a set of observations covered by p.
Vp = {o}
Cov = Cov ∪ {Vp}

end
else

//Vp is already in Cov; update
Vp = Vp ∪ {o}

end
end

end
return Pat and Cov;

Note that Algorithm NDS [8] can also generate solutions
of smaller size than a given bound B. Given a bound B,
we can only generate prime patterns with a size inferior
to B.

Now, using the set Cov we can run Algorithm 2 to
compute only strong prime patterns. From the set of all
covers, we can compute the subset of strong patterns
among prime patterns.

Algorithm 2. Strong Prime Patterns Computation
(SPP).
Data: Cov: set of coverage of each prime pattern.
Pat: set of all prime patterns
Result: SPP : set of all strong prime patterns.
SPP = ∅
forall p ∈ Pat do

if @p′ ∈ Pat s.t. Cov(p) ⊂ Cov(p′) then
SPP = SPP ∪ {p}

end
end
return SPP;

IV. Find a covering for a group with the
minimal number of patterns

When computing all non-dominated solutions (see [8]),
many solutions are generated. Hence, it is difficult to
identify the most suitable solutions with regards to user-
defined criteria. Another criterion could be to minimize the
size of the Boolean formula of the solution for each group
in disjunctive normal form (DNF) for sake of simplicity
(as mentioned in Introduction). In DNF, conjunctions of
literals are connected by the logical connector ∨ (disjunc-
tion), where each conjunction corresponds to a pattern.
The size of the Boolean DNF formula is thus the number
of patterns.

Example 2. Let us consider again Example 1

Observ. Groups Attributes
a b c d e f g h

1
P

0 1 0 1 0 1 1 0
2 1 1 0 1 1 0 0 1
3 0 1 1 0 1 0 0 1
4

N

1 0 1 0 1 0 1 1
5 0 0 0 1 1 1 0 0
6 1 1 0 1 0 1 0 1
7 0 0 1 0 1 0 1 0

S1 = {f, g} is a solution of the corresponding BDCP.
The Boolean formula corresponding to solution S1 for the
group P is (in DNF): (f ∧ g) ∨ (¬f ∧ ¬g). The size of
this Boolean formula is 2, because it contains two Boolean
conjonctions (i.e. two patterns): (f ∧ g) and (¬f ∧ ¬g).

When searching for a cover by means of patterns, we
may again turn to a Min-Set Cover problem since we



search the smaller set of patterns that cover all obser-
vations of the group P . Using the set Cov generated by
Algorithm 1, we can build a constraint matrix M for this
problem, where each line i represents observations of the
studied group P and each column j represents a prime
pattern. M [i,j] = 1 if the pattern j covers the observation
i, 0 otherwise.

Now, finding a covering for the positive group with the
minimal number of patterns leads to solving the min-set
cover problem represented by the following linear program:

min :
|A|∑
i=1

yi

s.t. :
M . Y t > 1t

Y ∈ {0, 1}|A|, Y = [y1, ..., y|A|]

where Y is a Boolean vector that encodes the pres-
ence/absence of each pattern in the solution. So, we can
use any classic covering algorithm as the MWNG algo-
rithm mentioned above to solve the problem and find the
minimal number of patterns that fully cover the positive
group.

V. Correlation Based Feature Selection (CFS)
In this section, we describe an attributes selection tech-

nique that could be relevant in our context of binary
data. Among the feature selection methods, the filtering
methods consist in classifying the attributes according to
an appropriate selection criterion. This criterion generally
depends on the relevance (i.e. correlation) of the attribute
on a given cluster (i.e., group). Given a cluster, CFS aims
at computing the subset of attributes that are relevant to
justify this group from a classification point of view.

The CFS method [13] will be based on a measure
µ evaluating a set of attributes A ⊆ A with regards
to a group of observations G, taking into account the
correlation between these attributes:

µ(A,G) = m× ρ̄G,A√
m+m× (m− 1)× ρ̄A,A

where m = |A|. Value ρ̄G,A is the average of the correla-
tions between the attributes chosen and a cluster/group
G:

ρ̄G,A = 1
m

m∑
i=1

ρG,Ai

and ρ̄A,A is the average of the cross-correlations between
the selected attributes:

ρ̄A,A = 2
m× (m− 1)

m−1∑
i=1

m∑
j=i+1

ρAi,Aj

where Ai is the attribute i in A. Our purpose consists
thus in determining the subset A with the highest value
µ(A,P ) (where P is the set of positive observations). In

experiments, we use a R library 1. Once the attributes
have been selected by CFS, we will check their relevance
by running a classification method and observe if these
attributes allow us to rebuild the initial groups. Moreover,
we will be interested in comparing the attributes selected
by CFS and the two previously described approaches.

VI. Experimental Study
In this section, our purpose is to compare the different

sets of attributes computed by the different methods that
have been presented. Remember that these attributes
aim at characterizing the groups of data.Therefore, our
experimental study can be sketched by Figure 1

In the first part of this section, given a set of instances,
we compare :
• the number of attributes obtained by the attributes

minimization approach and by the patterns minimiza-
tion approach

• the number of required patterns for covering the
positive group using the attributes computed by these
two approaches.

In the second part of this section, we attribute sets
obtained by minimization with those obtained by the
variable selection method CFS. Finally, we check if the at-
tributes obtained by the variable selection method allows
us to highlight pertinent attributes for the characterization
problem (i.e., minimization).

A. Data Instances
In order to evaluate and compare the previously de-

scribed approaches, we consider different sets of observa-
tions.
• Instances ra100 phv, ra100 phy, rch8, ralsto,

ra phv, ra phy, ra rep1 and ra rep2 correspond to
biological identification problems. Each observation is
a pathogenic bacterial strain and attributes represent
genes (e.g., resistance genes or specific effectors).
These bacteria are responsible of serious plant
diseases and their identification is thus important.

Fig. 1. Overview of experimental process

1https://www.rdocumentation.org/packages/FSelector/
versions/0.21/topics/cfs



The main challenge for biologists is to characterize
groups of bacteria using a limited number of genes
to design simple and cheap diagnosis tests [7]. The
original files are available2. In the original data sets,
several groups were considered. Here, we have consid-
ered the first group of bacteria as the positive group
and the union of the other groups as the negative
group. Note that similar results have been obtained
when considering other groups as positive groups.

• Instance vote r is available on the Tunedit reposi-
tory3 for machine learning tests.

The characteristics of the instances (number of observa-
tions, size of the positive group and number of attributes)
are described in Table I.

TABLE I
Characteristics of the instances

Instances Observations Positive group size # Attributes
ra100 phv 101 21 50
ra100 phy 105 31 51
rch8 132 5 37
ralsto 73 27 23
ra phv 108 22 70
ra phy 112 31 73
ra rep1 112 38 155
ra rep2 112 37 73
vote r 435 168 16

B. Experiments
Let us recall the main characteristics of the three meth-

ods that we consider in these experiments. Our purpose is
to compare these methods in terms of selected attributes.
• MinS : computes minimal sets of attributes to identify

the group P (see Section II-C).
• Pattern : computes a cover of P using patterns (see

Section II and IV).
• CFS : computes a set of relevant attributes for P with

regards to correlation considerations (see Section V).
1) Number of Attributes: In Table II, we compare for

(MinS and Pattern) the total number of attributes that
are used. Concerning MinS , these attributes correspond to
the attributes in a minimal solution. Concerning Pattern ,
we consider the minimal number of attributes that must
be used to fully cover the set P using patterns. Note that,
in both cases, several solutions may exist for the same
instance.

And also note that the number of attributes is rather
similar for both methods when considering small instances.
Nevertheless, we observe a difference on ra rep1 and
ra rep2 instances. Let us note that for ra rep2 this
difference represents only 11% of the total number of
attributes of the instance, and only 6.5% for ra rep1.

2http://www.info.univ-angers.fr/˜gh/Idas/Ccd/ce f.php
3http://tunedit.org/repo/UCI/vote.arff

TABLE II
Number of attributes used by MinS and Pattern

Instances # Attributes MinS # Attributes Pattern
ra100 phv 2 2
ra100 phy 3 4
rch8 3 3
ralsto 5 5
ra phv 2 2
ra phy 3 4
ra rep1 12 22
ra rep2 11 19
vote r 10 14

2) Number of Patterns for Covering P : In Table III,
we focus on the patterns. The value # Patterns MinS
corresponds to the minimal number of patterns that are
required to cover the positive group when using only
the minimal set of attributes computed by MinS (in this
case we recompute the patterns for the set of attributes
selected by MinS , see relationships in Section IV). The
value # Patterns is the minimal number of patterns that
are necessary to cover the positive group but here the cover
is based on all possible patterns.

TABLE III
Number of patterns for MinS and Pattern

Instances # Patterns MinS # Patterns Pattern
ra100 phv 1 1
ra100 phy 5 2
rch8 1 1
ralsto 7 3
ra phv 1 1
ra phy 5 2
ra rep1 27 7
ra rep2 25 6
vote r 71 10

On Table III, we observe that the attributes computed
by MinS are not suitable for finding a good set of covering
patterns (based on these attributes the number of patterns
for building a cover of the positive set increases). It means
that the explanation provided by MinS differs from the
pattern approach in terms of patterns (i.e., the attributes
are different).

3) Comparing MinS with CFS: In Table IV, we present
the following observations:
• The number of minimal solutions computed by MinS ,
• The number of attributes of these minimal solutions,
• The number of attributes of the best solution com-

puted by CFS ,
• The maximum number of common attributes between

the subset computed by CFS and minimal solutions of
MinS . Since many solutions can maximize the number
of common attributes, we also indicate in parentheses
how many solutions satisfy this criterion.

Remember that the CFS method computes a subset of
relevant attributes. In order to evaluate the relevance of
this subset of attributes, we propose to check that they



may be useful for data clustering (i.e., grouping together
similar data). Therefore we use a clustering algorithm
and check that the resulting clusters correspond to the
initial positive and negative groups. We use here a k-
means algorithm ([19], [16]) since it is a simple, efficient
and well-known clustering technique (of course the number
of clusters is set to 2).

The accuracy of the clustering is evaluated according
to the similarity between predicted cluster c and the real
original group r. Given n observations we consider two n
dimensional vectors C and R such as ci is the predict group
of observation i and ri corresponds to its real original
group. We define the accuracy as:

Acc(C,R) = |2× ( 1
n

n∑
i=1

(ri − ci)2)− 0.5|

Note that Acc(C,R) ∈ [0, 1]. Values close to 1 corre-
spond thus to a high accuracy.

For each instance the accuracy of the clustering based on
the attributes selected by CFS is presented between paren-
theses. Since k-means is a statistical method we repeat the
clustering process and evaluate the mean value of accuracy
over 20 independent runs. The last column corresponds to
the maximal number of common attributes between the
subset computed by CFS and minimal solutions computed
by MinS . Since several solutions may maximize the number
of common attributes we also indicate in parentheses how
many solutions satisfy this criterion.

TABLE IV
MinS vs. CFS

Instances # MinS sol # att. in # att. CFS # com. att.
min sol. (accur.) (# sol)

ra100 phv 1 2 4 (0.465) 0 (1)
ra100 phy 1 3 1 (0.562) 1 (1)
rch8 1 3 6 (0.439) 0 (1)
ralsto 5 5 3 (0.288) 2 (1)
ra phv 1 2 3 (0.519) 0 (1)
ra phy 1 3 1 (0.589) 1 (1)
ra rep1 134 12 6 (0.393) 3 (1)
ra rep2 106 11 11(0.536) 3 (26)
vote r 1 10 4 (0.706) 3 (1)

Using an attribute selection technique such as CFS in
order to explain our data by clustering techniques (i.e.,
distance based methods) appears not really relevant here.
Note that attributes selected by CFS are different from
attributes computed for MinS . Moreover, MinS reduces
the number of attributes used for characterization. Note
that we have also performed clustering using the attributes
computed in MinS solutions leading also to poor clustering
accuracy (but MinS is definitely not a feature selection
method since it searches for combinations of attributes to
characterize data).

Better results are obtained for the vote r instance,
where 3 of the 4 attributes selected by CFS are also in-
volved in the unique minimal solution for MinS . Moreover,

the accuracy is higher (0.7). Nevertheless CFS selects only
4 attributes, while 10 are necessary to characterize the
instance in the MinS approach. Therefore this feature
selection technique could not really be used to improve
the characterization problem’s results.

4) Evaluation of the Attributes for MinS and Pattern:
In Table V and Table VI, we evaluate the relevance of
attributes using scores. We want to assess the ability of
an attribute to discriminate observations according to the
initial groups. Given an attribute a, the score denoted
score(a) is computed by counting the number of obser-
vations where the value of this attribute differs in a same
group.

score(a) = |2× ( 1
n

n∑
j=1

(gj − aj)2)− 0.5|

where:
• aj is the value of attribute a for observation j,
• gj ∈ {0, 1} is the group assigned to observation j.
Note that an attribute that fully discriminates the

groups (i.e., whose values will be always identical or always
different for all observations of the two groups) has a
score value of 1. Given a set of attributes (for instance
representing a MinS solution or a Pattern solution), its
score is the average of the scores of its attributes.

In Table V, we focus on MinS :
• The first column is the best possible score obtained

by a solution among the set of minimal solutions.
• In the second column, in order to evaluate this best

score, we compute the ratio of it with regards to the
maximal score that can be obtained when selecting
the same number of attributes but using the best
attributes with regards to the score function. A ratio
of 1 means that the minimal solution is built using
only attributes with highest scores.

• The third column indicates the best possible score
among attributes that do not appear in any solution
(i.e., which are not selected by MinS).

• The fourth column indicates the best possible score
among the whole set of attributes.

TABLE V
Attributes Scores for MinS

Instances score sol max ratio max att no sol max att
ra100 phv 0.624 0.663 0.96 0.96
ra100 phy 0.549 0.653 0.829 0.905
rch8 0.323 0.35 0.924 0.924
ralsto 0.43 0.602 0.836 0.89
ra phv 0.648 0.686 0.963 0.963
ra phy 0.577 0.634 0.929 0.929
ra rep1 0.217 0.593 0.321 0.518
ra rep2 0.239 0.636 0.357 0.5
vote r 0.439 0.7 0.683 0.894

Except on the vote r instance, we note that the value
of the ratio is low, which shows that the scores of the MinS



solutions are rather low. These solutions are therefore
composed of attributes with low scores. Moreover, the best
score of the attributes not appearing in any solution is
close to the best score. It means that attributes with a
high score do not participate to solutions. This suggests
that MinS solutions are not built with attributes that are
the most correlated to the groups. And again, this scoring
system does not allow preprocessing of data and offers
information that is different from MinS .

In Table VI, we study solutions using Pattern . Since
the number of attributes is variable, we indicate in the
first column the number of attributes in the solution with
the best scores between parentheses.

TABLE VI
Attributes Scores for Pattern

Instances score sol (#att) ratio max att no sol max att
ra100 phv 0.624(2) 0.663 0.96 0.96
ra100 phy 0.467(4) 0.58 0.829 0.905
rch8 0.515(4) 0.557 0.924 0.924
ralsto 0.333(6) 0.514 0.836 0.89
ra phv 0.648(2) 0.686 0.963 0.963
ra phy 0.527(4) 0.581 0.893 0.929
ra rep1 0.211(26) 0.616 0.339 0.518
ra rep2 0.158(19) 0.447 0.5 0.5
vote r 0.468(15) 0.930 0.531 0.894

Similarly to MinS , we observe that the scores of the
variables are not correlated to the requirements to build a
cover by means of patterns.

Experimental Highlights:
• As expected, MinS computes the smallest subsets

of attributes, which is relevant when attributes are
costly to generate (e.g., biological complex routines);

• The proposed Pattern algorithm computes the small-
est sets of patterns for covering the positive set P ,
which is useful to observe common characteristics
shared by observations; attributes involved in these
patterns differ from those selected by MinS ;

• MinS and Pattern constitute indeed complementary
methods for practitioners who need to better under-
stand and analyze groups of binary data by focusing
on different characterizations of the observations;

• Feature selection processes like CFS do not provide
relevant information with regards to logical charac-
terization or patterns computation.

VII. Conclusion

In this paper, we focus on attributes in the general
context of logical characterization and analysis of binary
data. We have defined new algorithms to generate com-
plete sets of patterns. Our experiments show that patterns
computation and computation of minimal solutions for
the characterization problem constitute interesting and
complementary alternatives to classic statistical based
methods for features selection.
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