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Abstract

There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation.
Previous studies have revealed that genes (and their products) that surround the origin of replication (oriCII) of Vibrio
cholerae chromosome II (chrII) are critical for controlling the replication and segregation of this chromosome. rctB, which
flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits
rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA.
Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least
two DNA binding domains—one for binding to oriCII and initiating replication and the other for binding to rctA and thereby
inhibiting RctB’s ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to
a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the
parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII
initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII
partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating
chrII replication and segregation.
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Introduction

Efficient linkage of chromosome replication and chromosome

segregation is necessary for all dividing cells. It is particularly

important for maintaining balanced genetic content in organisms

with more than a single chromosome, which includes a number of

bacterial orders (e.g., Vibrionaceae, Photobacteriaceae [1]). However, there

is relatively little knowledge of factors and mechanisms that link

replication and segregation of bacterial chromosomes. For the gram-

negative enteric pathogen Vibrio cholerae, whose genome is comprised

of two circular chromosomes [2], distinct mechanisms that control

the replication and segregation of each chromosome have been

described, but no mechanisms for linking or coordinating these

processes have been identified.

The two V. cholerae chromosomes have distinct initiator proteins

that are specific for their target chromosomes. The initiator of

chromosome I (chrI) replication is DnaA, a conserved AAA+
ATPase protein found in nearly all eubacteria [3–6]. V. cholerae

DnaA binds and melts the origin of replication of chrI (oriCI) but

not that of oriCII, the origin of replication of chromosome II (chrII)

[7]. It is likely that regulation of DnaA-mediated initiation of V.

cholerae chrI parallels DnaA-dependent control of replication

initiation in Escherichia coli [6,7].

The initiator of chrII replication is RctB, a protein that is

encoded near oriCII and conserved among, but restricted to, the

Vibrionaceae/Photobacteriaceae (Figure 1A) [3]. RctB specifically binds

and opens oriCII DNA in vitro, and its overexpression in V. cholerae

leads to overinitiation of chrII but not chrI [4,7]. RctB can bind

and hydrolyze ATP, despite a lack of known ATP binding motifs;

however, unlike other ATPase initiator proteins, the ATP-bound

form of RctB is inactive for oriCII replication [7]. RctB activity is

also negatively regulated by rctA, a neighboring gene [8]. Although

rctA is transcribed [3] and was originally annotated as an ORF [2],

it does not seem to encode a functional protein; instead at least one

role of rctA appears to be as a DNA site for binding RctB, perhaps

thereby titrating the initiator from oriCII [8]. Overall, the

regulation of RctB activity and chrII replication initiation, which

can be modulated by the factors noted above, by transcription

within the oriCII region [8], and by additional proteins such as

Dam and SeqA [3,9], is complex and incompletely understood.

Although distinct proteins govern initiation of chrI and chrII

replication, the replication of the two V. cholerae chromosomes is

thought to be coordinated with the cell cycle, which should

facilitate maintenance of genomic balance [10–12]. Genomic

integrity is also promoted by chromosome-specific par systems,

which have been implicated in the subcellular localization and/or

partitioning of the respective oriC regions of each chromosome

[13–16]. These systems consist of ParA ATPases, DNA-binding

ParB proteins, and cis-acting ParB binding sites, parS ([17,18] for

review). The two V. cholerae ParB proteins (ParB1 and ParB2,

encoded on chrI and chrII, respectively) recognize distinct parS

sequences (parS1 and parS2, respectively) [15]. While the
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nucleotide sequence of parS1 is identical to the ‘universal’ parS

sequence originally described in Bacillus subtilis [19], the nucleotide

sequence of parS2 is restricted to vibrio and photobacteria species

[15,20]. All but one of V. cholerae’s 10 consensus parS2 sites lie

within chrII, and most of them are located proximal to oriCII.

Interestingly, one of the parS2 sites, designated parS2-B, is located

within rctA, suggesting the possibility that this site could provide a

basis for coordination of the control of chrII replication and

segregation. Individual parS2 sites are not essential for V. cholerae

viability ([15] and data not shown); however, deletion of the chrII

parAB2 locus results in loss of chrII and cell death [16].

Here we explore how RctB interacts with rctA and how rctA

negatively regulates chrII replication. Our observations suggest

that RctB has at least two DNA binding domains - one for binding

to oriCII and the other for binding to rctA. RctB lacking its C-

terminus fails to bind rctA in vitro and its replicative activity is not

inhibited by rctA in vivo. Notably, the inhibitory effect of rctA on

RctB could also be alleviated by binding of ParB2 to the parS2 site

within rctA. Furthermore, ParB2 and RctB binding to rctA inversely

alter the expression of the parAB2 genes. Together, our findings

suggest that fluctuations in binding of the partitioning protein

ParB2 and the chrII initiator RctB to rctA underlie a regulatory

network controlling both oriCII firing as well the production of the

essential partitioning proteins ParA2 and ParB2. Thus, by binding

both RctB and ParB2, rctA serves as a nexus for regulatory cross–

talk coordinating chrII replication and segregation.

Results

A screen for factors enabling replication of an
oriCII-based plasmid containing rctA

Previous studies have established that plasmids harboring oriCII

(defined as the region between rctA and rctB ([3]; see Figure 1) as

the sole origin of replication can replicate in E. coli as long as RctB

is present, and that such replication can be inhibited by the

presence of rctA either in cis or in trans [8,21]. We utilized a similar

approach to further dissect the molecular basis of rctA’s inhibition

of oriCII-based replication. The replication capacity of plasmids

that included rctB, oriCII, and various additional linked sequences

were assessed by their efficiency of transformation into heterolo-

gous (E. coli) host strains containing either a control vector or one

that overexpressed RctB (Figure 1B). Using this system, we

obtained transformants within 24 hrs of introducing a plasmid that

lacked rctA (pYB289), regardless of whether RctB was overex-

pressed (Figure 1B[a]). In contrast, no transformants were

detectable 24 hrs after introduction of a plasmid that contained

rctA (pYB292) unless the RctB expression construct was also

present (Figure 1B[b]), consistent with the suggestion that

sequestration of RctB by rctA reduces its replicative activity [8].

Notably, after ,48 hrs, rare transformants were obtained with

pYB292 even in the absence of RctB overexpression. Most of these

colonies could be re-streaked, and plasmid DNA was recovered

and sequenced from sixty five transformants. Sixty of these

plasmids carried mutations that fell into one of three groups: 1)

deletions of rctA (n = 6), 2) substitutions in the rctB sequence that

Figure 1. Interactions between RctB, rctA, ParB2 and parS2
control oriCII-based replication. A) Schematic of oriCII region of
V. cholerae. DNA fragments used as EMSA probes in Figure 3 are shown
by dotted lines and the DNA fragment used in the transcription reporter
assay in Figure 7 is shown by the double line. Native parS2-B and mutated
parS2X sequences are also shown. Numbers correspond to genomic
sequence data (NC_002506). B) Overexpression of RctB and ParB2 enable
oriCII-based replication with origin fragments that include rctA and parS2.
Self-ligated DNA fragments containing either oriCII-rctB [a], rctA-oriCII-rctB
[b], or rctA(parS2X)-oriCII-rctB [c] were introduced into DH5a cells
harboring control vector (pGZ119EH) (open bars), or rctB (pYB285)
(closed bars) or parB2 (pYB273) (gray bars) expression vectors. Mean and
standard deviation of 5 independent experiments are shown. *No
transformants obtained after overnight incubation in $3 experiments.
doi:10.1371/journal.pgen.1002189.g001

Author Summary

There is scant knowledge of factors and mechanisms that
link bacterial chromosome replication and segregation. We
investigated the mechanisms that coordinate the replica-
tion and segregation of Vibrio cholerae chromosome II
(chrII). Our findings suggest that control of V. cholerae chrII
replication and segregation is linked by a regulatory circuit
that involves sequences, including parAB2, rctA, and rctB
(and their products), that flank this chromosome’s origin of
replication. The primary agent governing replication
initiation is RctB; however, initiation can also be influenced
by a previously characterized partitioning protein, ParB2,
which we now show counteracts rctA’s inhibitory effect
upon chrII replication. Analogously, the autoregulatory
parAB2 locus is the primary determinant of chrII segrega-
tion; however, this process can also be influenced by RctB,
which activates parAB2 expression by binding to rctA.
Thus, our findings suggest that the cross-talk between
these two systems both prevents extreme fluctuations in
protein and chromosome abundance and also enables
coordination of chromosome replication and partitioning.

V. cholerae Chromosome Replication and Segregation
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result in amino acid substitutions in RctB (n = 34), and 3)

substitutions or deletions in rctB that result in truncations of the

carboxyl terminus of RctB (n = 20) (Figure 2 and Table S1). In

general, strains carrying these plasmids grew at wild-type rates

following the initial 24 hr lag in their detection, suggesting that the

mutations within RctB did not impair its replicative capacity.

Notably, none of the mutations mapped to the oriCII sequence per

se, an observation that is consistent with the idea that an rctA

transcript or protein does not act in trans on oriCII. In the

remaining 5 cases, mutations were likely present in the host E. coli

chromosome, since the purified oriCII plasmids (which did not

harbor mutations) could be re-transformed into the DH5a strain

they were isolated from (after plasmid curing) but not into a fresh

isolate of DH5a.

The C-terminus of RctB interacts with rctA
The prevalence (20 of 60 clones) of RctB truncations among

pYB292 derivatives whose replication did not require RctB

overexpression (Figure 2, Table S1) suggested that the C-terminal

part of RctB might be required for its interaction with, and

inactivation by, rctA. However, the normal replication of plasmids

containing such truncations (predicted to remove at least 41, and

at most 159, amino acids from the C-terminus of RctB) indicates

that truncated RctB retains the capacity to melt oriCII and initiate

chrII replication. Together, these observations raise the possibility

that RctB has multiple sites and/or modes for interacting with

DNA. To explore this hypothesis, we compared the binding of

His-tagged full length RctB and RctB(D500–658), which lacks 159

amino acids of the protein’s C-terminus (hereafter referred to as

RctB[DC159]), to oriCII and rctA, using an electrophoretic mobility

shift assay (EMSA). Both proteins readily bound to oriCII, and they

appear to have a similar affinity for this sequence, although

RctB[DC159] appears to have a greater tendency to form

multimeric complexes on the DNA (Figure 3A). In contrast, while

wild type RctB bound to the rctA probe, almost no binding of

RctB[DC159] was detected (Figure 3A). Together, these observa-

tions suggest that RctB has at least two DNA binding domains;

one, which binds oriCII, is contained within RctB[1–499] and can

mediate oriCII-based replication, while the other, which binds rctA,

is at least partially contained within, or dependent upon, sequences

within RctB[500–658]. We were unable to demonstrate binding of

RctB[500–658] to rctA, suggesting that additional regions of RctB

likely also contribute to rctA binding. Thus, although some

sequence similarity has been noted between potential RctB target

sites within oriCII and rctA [8], our data raises the possibility that

RctB actually recognizes two distinct sequences. Additionally, our

data provides genetic and biochemical support for the hypothesis

that RctB binding to rctA is the basis for rctA’s negative influence on

oriCII-based replication.

ParB2 binding to parS2-B alleviates the negative
influence of rctA on oriCII replication

Similar to other chromosomal parS sites, most parS2 sites are

located proximal to oriCII on chrII [15,21]. One of these (designated

parS2-B) is found within the originally annotated rctA sequence

(Figure 1A, ref. [15]). A parS2 site is present at a similar position

relative to oriCII in the genomes of multiple other vibrio species [15],

despite an overall lack of conservation of the surrounding sequence.

We hypothesized that ParB2 binding to this parS2 site might influence

binding of RctB to rctA, and perhaps thereby regulate oriCII-based

replication. This possibility was investigated by measuring the effect

of ParB2 on the efficiency with which various oriCII-related replicons

could be transformed into E. coli. Overexpression of ParB2 had a

minimal effect on the transformation of pYB289, consistent with the

absence of rctA/parS2B within this construct (Figure 1B[a]). However,

overexpression of ParB2 caused a dramatic increase in the efficiency

with which the rctA-containing plasmid pYB292 could be introduced

into E. coli (Figure 1B[b]). The effect of ParB2 expression was

abolished when an alternate plasmid, pYB558, in which the

parS2-B site was mutated to parS2X [15], was transformed instead

(Figure 1B[c]). Transformants were still obtained with pYB558 when

it was introduced into a strain that overexpressed RctB but not when

it was introduced into a strain containing an empty vector, suggesting

that the mutation in parS2-B did not interfere with binding of RctB,

and thus that the two proteins do not recognize identical sequences

(Figure 1B[b]). Data from the transformation assay was consistent

with results from EMSAs, which revealed that ParB2 bound with

high affinity to wild type rctA but not rctA containing parS2X, while

RctB bound to both probes (Figure 3A). Overall, these data indicate

that ParB2 binding to parS2-B can mask the negative effect of rctA

upon replication of oriCII-based replicons.

RctB and ParB2 can simultaneously bind rctA
The simplest explanation for increased transformation efficiency

of pYB292 in the presence of overexpressed ParB2 is that binding

of ParB2 to rctA interferes with binding of RctB to this site, and

thereby makes more RctB available for replication initiation at

oriCII. However, EMSA analyses did not provide direct support for

this hypothesis. Instead, they indicate that RctB and ParB2 can

bind simultaneously to rctA (Figure 3B and Figure S1). DNase I

protection experiments confirmed that RctB can bind to rctA, but a

specific region of binding was not observed (Figure 4). Instead,

when ,40–80 ng of RctB were added to the assay, several non-

adjacent nucleotides that were distributed irregularly throughout

the rctA sequence were protected from DNase I digestion (Figure 4,

arrowheads). When higher amounts of RctB (,160–640 ng) were

added, the protection of individual bands became less pronounced

and much of the fragment exhibited a degree of protection,

including the parS2-B site. In contrast, ParB2 protected a ,20 bp

continuous stretch of DNA around the parS2-B site (Figure 4).

Inclusion of both RctB and ParB2 in the DNAse I protection

assays resulted in additive protection, consistent with simultaneous

binding of both proteins to rctA. Additionally, DNAse I-

hypersensitive sites (Figure 4, arrows) observed in the presence

of ParB2 alone became protected upon inclusion of RctB in the

reaction, suggesting that RctB can alter rctA structure even when

ParB2 is bound. Collectively the EMSA and footprinting assays

show that RctB and ParB2 can simultaneously bind to rctA.

However, given the similar patterns of protection of the parS2-B

region by the two proteins, it is difficult to ascertain whether ParB2

interferes with RctB’s binding to this domain within rctA.

Figure 2. Map of locations of mutations that enabled
replication of pYB292. Sites of amino acid substitutions are shown
by the pins and deletions are shown as bars. More detailed information
is presented in Table S1.
doi:10.1371/journal.pgen.1002189.g002

V. cholerae Chromosome Replication and Segregation
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Titration of ParB2 by ectopic parS2 sites reduces
oriCII-based replication

In order to assess the roles of ParB2, parS2 and rctA at more

physiological levels in vivo, we generated an additional construct

(pYB404) for the transformation assay that contained all 6 kb of

DNA from parB2 through rctB (Figure 1A), and thereby enabled

expression of ParB2 from its endogenous promoter. In contrast to

pYB292, pYB404 replicated in E. coli even without overexpression

of RctB or ParB2, despite the presence of rctA in this construct

(Figure 5A). Thus, ParB2 produced from its own promoter appears

to be sufficient to overcome the negative effect of rctA on oriCII-

mediated replication. However, overexpression of either RctB or

Figure 3. Binding of RctB and/or ParB2 to DNA fragments containing rctA and parS2. A) Binding of wild type or mutant RctB or ParB2
proteins to indicated DNA fragments. The amount of protein used in each lane was 0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 31, 100, 316, 1000 ng, from left to
right. B) Binding of RctB and ParB2 proteins to rctA. RctB and ParB2 were premixed and then added to the reaction tube. Amounts of proteins (ng) are
indicated and the dilution series from left to right was 0.03, 0.3, 3, 30 and 300 ng. Note that similar banding patterns were observed in experiments
where either RctB or ParB2 was added prior to the other protein (see Figure S1).
doi:10.1371/journal.pgen.1002189.g003

V. cholerae Chromosome Replication and Segregation
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ParB2 in the E. coli strain did increase the number of transformants

obtained, perhaps because limiting amounts of these proteins are

present when the plasmid is becoming established (Figure 5A).

We also assessed the influence on transformation efficiency of

supplying additional copies of parS2 from one of three plasmids

with different origins of replication and copy numbers: F (1–2

copies/cell), pSC101 (,5 copies/cell) and p15A (18,22 copies/

cell) [22]. The number of pYB404 transformants obtained was not

altered if the ectopic parS2 sequences were in the F-plasmid or

even in pSC101 harboring two copies of parS2 separated by 1.4 kb

Figure 4. Protection of rctA from DNase I digestion in the
presence of RctB or RctB and ParB2. The DNase I protection assay
was performed with 0, 10, 20, 40, 80, 160, 320 and 640 ng RctB bound
to a 59-32P-labeled DNA probe containing rctA (including parS2-B,
indicated at the side of the gel), in the absence or presence of ParB2
(100 ng). M denotes the G+A chemical sequencing ladder. The bracket
indicates the ParB2 footprint. The arrowheads indicate nucleotides
protected by RctB in multiple independent experiments. The arrows
indicate hypersensitive sites.
doi:10.1371/journal.pgen.1002189.g004

Figure 5. Titration of ParB2 by multicopy parS2 prevents oriCII
replication. A) Establishment of an oriCII plasmid containing parAB2-
rctA-oriCII-rctB (pYB404) without overexpression of RctB or ParB2. B)
pYB404 and pYB289 (oriCII-rctB) were introduced into DH5a cells
harboring plasmids containing either parS2 (closed bar), parS2X (gray
bar), control (open bar), or two copies of parS2 (hatched bar) with
various replication origins (indicated on the right, with reported copy
numbers shown in parentheses). Means and standard deviations from 3
independent experiments are shown.
doi:10.1371/journal.pgen.1002189.g005

V. cholerae Chromosome Replication and Segregation
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(pYB451, yielding ,10 ectopic copies of parS2 (Figure 5B).

However, there was a marked decrease in the efficiency of pYB404

electroporation when the ectopic parS2 sites were provided from

the moderate-copy-number vector p15A (Figure 5B, p15A ori). In

contrast, the parS2X sequences, which do not bind ParB2, did not

alter pYB404 transformation efficiency when supplied from any of

the vectors. (Figure 5B, gray bars). Neither wild type nor mutant

parS2 sequences altered the transformation efficiency of a vector

(pYB289) that lacks rctA. Thus, the presence of 10 parS2 sequences

(notably, their level within the V. cholerae genome) is compatible

with replication of a oriCII-based replicon containing rctA/parS2B.

However, an increase to 20 copies (e.g., as should happen

following chrII replication) interferes with oriCII-based replication,

presumably because ParB2 is titrated away from the parS2-B site at

the origin and thus can’t counteract rctA-dependent repression.

This finding suggests that ParB2 makes an important contribution

to controlling replication as well as partitioning of V. cholerae chrII.

ParB2-parS2 and RctB-rctA interactions contribute to
oriCII replication control in V. cholerae

To further explore the contributions of rctA and parS2-B to

regulation of chrII replication, we constructed DrctA V. cholerae

(YBB995) and parS2-B::parS2X V. cholerae (YBB999). These mutant

strains did not have detectable growth defects compared to the

wild type V. cholerae strain N16961 (Figure S2), indicating that rctA

or parS2-B mediated control of oriCII is not critical for V. cholerae

viability in rich media. However, quantitative PCR assays

measuring the oriCII : oriCI ratio revealed that these mutations

influence oriCII replication. The DrctA cells exhibited a higher

oriCII : oriCI ratio compared to wild type cells (Table 1), in

agreement with a previous report [23]. In contrast, the parS2-

B::parS2X strain YBB999 had a modest but statistically significant

(p = 0.001) reduction in the oriCII : oriCI ratio compared to the wild

type (Table 1). Both of these results are consistent with our findings

using the heterologous host and support the model that ParB2

binding to parS2-B inhibits the negative effect that rctA exerts on

RctB-mediated oriCII replication.

The causes and consequences of chrII overinitiation have not

been thoroughly analyzed. However, previous work revealed that

extreme overinitiation of oriCII mediated by the RctB mutant

RctB[R269S] resulted in a block in V. cholerae cell division,

manifest as cell elongation along with a marked decrease in

viability [7]. In contrast, modest overinitiation of oriCII resulting

from overexpression of wild type RctB had virtually no effect on

cell viability or morphology (Figure 6A, 6C; see [4,7,23]).

Similarly, the modest overinitiation of oriCII caused by the rctA

deletion in YBB995 did not have a detectable affect on cell

viability or morphology (Figure 6; [23]). However, deletion of rctA

sensitized V. cholerae to the deleterious effects of RctB overexpres-

sion. In the DrctA background, RctB overexpression reduced cell

viability, particularly in M9 media (Figure 6B), led to an increase

in the oriCII : oriCI ratio (Table 1), and led to cell filamentation

(Figure 6D). In contrast, in the parS2-B::parS2X background, RctB

overexpression had little discernible influence on cell division or

viability (Figure 6A, 6B), as might be expected given that the basal

level of chrII replication initiation in this strain is even lower than

in the wild type strain, whose viability was also unimpaired by

RctB overexpression. Collectively, these data suggest that V.

cholerae can adapt to some variability in RctB levels and

availability, and that numerous regulatory processes are geared

towards preventing the toxic effects of overinitiating replication of

chromosome II.

RctB and ParB2 control transcription of parAB2
Additional forms of cross-talk between RctB and the parAB2 locus

are evident from analyses of oriCII-region transcription, which

revealed that binding of either ParB2 or RctB to rctA altered parAB2

promoter activity. As has been observed for several additional parAB

systems [24–26], ParB2 significantly decreased the expression of a

PparAB2 - lacZ fusion (more than 4-fold; Figure 7). This repression was

abolished when parS2-B was mutated to parS2X (Figure 7), strongly

suggesting that ParB2 binding to parS2-B is required for autorepres-

sion of the parAB2 locus. In contrast, RctB modestly enhanced

expression of parAB2 (Figure 7, p = 0.0003), an effect that does not

appear to depend on the parS2-B site in rctA. Thus, RctB binding to

rctA may, despite initially limiting the amount of initiator protein

available for replication initiation, ultimately promote replication, as

such binding prompts expression of ParB2, which can counter

repression of replication. Additionally, these results suggest that cross-

talk between pathways controlling replication and partitioning is

bidirectional, which is likely to enhance the coordination of these two

critical processes.

Discussion

Collectively, our observations suggest that control of V. cholerae

chrII replication and segregation is linked by a regulatory circuit

that involves ,6 kb of sequence (and its products) that flank oriCII

and includes parAB2, rctA, and rctB. The primary agent governing

replication initiation is RctB; however, initiation can also be

influenced by a previously characterized partitioning protein,

ParB2, which we now show counteracts rctA’s inhibitory effect

upon chrII replication. Analogously, the autoregulatory parAB2

locus is the primary determinant of chrII segregation; however,

this process can also be influenced by RctB, which activates

parAB2 expression. It appears likely that the cross-talk between

these two systems both prevents extreme fluctuations in protein

and chromosome abundance, and enables coordination of

chromosome replication and partitioning.

Binding of the chrII replication initiator RctB to the chrII origin

and surrounding sequences appears to be more complex than was

previously recognized. Our analyses indicate that RctB may in fact

have multiple DNA binding modes/domains, which recognize

distinct sequences. RctB lacking its C-terminus (as many as 159

amino acids) retained the capacity to bind to oriCII and to initiate

replication at this site. However, both EMSA experiments and

Table 1. Ratio of oriCII/oriCI in V. cholerae strains.

Media Strain Genetype oriCII / oriCI

LB* N16961 wild type 1#

YBB995 DrctA 1.5360.06

YBB999 parS2-B::parS2X 0.8560.04

M9{ YBB703 wild type/vector 1#

YBB682 wild type/rctB+ 2.4860.24

YBB2003 DrctA/vector 1.3160.06

YBB2004 DrctA/rctB+ 3.1460.46

YBB2005 parS2-B::parS2X/vector 0.9460.13

YBB2006 parS2-B::parS2X/rctB+ 1.7060.17

*Samples were obtained from mid-log phase cultures at an OD600 of ,0.7.
{Samples were obtained from cultures grown in M9-Glucose supplemented
with 100 mM IPTG for 2.5 hrs.
#Defined as 1.
doi:10.1371/journal.pgen.1002189.t001
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DNase I protection assays (Figure S3) revealed that RctB[DC159] is

unable to bind to rctA. Residues outside of the C-terminal 159 amino

acids are also likely to contribute to rctA binding, although they

remain to be identified. The presence of distinct DNA binding

domains within the N- and C- terminal parts of RctB introduces the

possibility that a single RctB can simultaneously bind to rctA and

oriCII. Additional studies are needed to assess whether the binding of

RctB to these two sites introduces a bend in the DNA between them.

Studies to assess whether the point mutations within rctB that enable

a bypass of rctA-mediated replication inhibition do so by altering

binding to rctA or instead alter other aspects of RctB’s activity or its

affinity for oriCII are also warranted.

To date, precise sequences targeted by RctB have not been

identified; it has been speculated that this protein recognizes some

short (11 and 12-mer) repeated sequences within the origin and

surrounding sequences [3,8]. Our footprinting analyses suggest

that multiple RctB proteins are interacting with the DNA;

however, the repeats do not seem to be the principal target of

RctB’s C-terminal DNA-binding domain, as many protected sites

lie outside of the repeats. The distribution of sites within rctA that

are protected from DNase I digestion by RctB is unusual, in that

RctB appears to interact with multiple non-continuous bases

throughout this sequence. One possible explanation for this result

is that RctB binding alters the secondary structure of rctA DNA.

Although the DNase I protection assays suggest that multiple RctB

proteins interact with rctA, especially at high protein concentra-

tions, EMSAs only revealed a single shifted band. The different

assay conditions (e.g. the presence of competitor DNA in the

EMSAs) may explain this apparent discrepancy. Additional

analyses are needed to assess the binding sites for RctB in oriCII.

Our studies confirmed previous reports that rctA inhibits

replication of oriCII-based replicons. The inhibitory effect of rctA

Figure 6. Overinitiation of oriCII can influence cell viability. A) and B) Plating efficiency of indicated strains on indicated media containing
chrolamphenicol. C) and D) Phase-contrast images of YBB2003 (DrctA/vector) (C) and YBB2004 (DrctA/rctB+) (D) after 4 hr of induction by IPTG.
bar = 2 mm.
doi:10.1371/journal.pgen.1002189.g006
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can be overcome by overexpression of RctB (Figure 1B; [8]).

Unexpectedly, our work revealed that rctA’s effect can also be

mitigated by overexpression of ParB2, which recognizes a parS2

site (parS2-B) within rctA. At least three non-mutually exclusive

models can explain how ParB2 abolishes rctA inhibition of

replication. One possibility is that ParB2 competes with RctB in

binding to rctA, resulting in more free RctB that can interact with

oriCII. However, both EMSA and DNase I protection assays

demonstrated that ParB2 does not block all RctB binding within

rctA in vitro; at most, only the subset of RctB binding sites in parS2-

B are blocked by the presence of ParB2. However, these in vitro

assays may not fully reflect binding dynamics in vivo in which

binding to rctA maybe influenced by the adjacent oriCII site and by

additional factors such as IHF. An alternative possibility is that

RctB binding to rctA alters the secondary structure of the oriCII

region in a manner that inhibits replication. ParB2 binding to

parS2-B could counteract RctB-mediated remodeling of oriCII,

thereby promoting replication. ParB2 might also alter the extent to

which rctA is transcribed, which has also been shown to influence

rctA’s effectiveness as a replication inhibitor [8]. It is unlikely that

the effect of ParB2 upon replication is mediated by a direct

interaction between this protein and RctB, as no such interaction

was detected using a bacterial two hybrid system (Figure S4).

Regardless of the mechanism by which it acts, it is clear that

ParB2, previously described as a key agent mediating chrII

segregation, also contributes to regulation of chrII replication,

thereby enabling linkage of these cellular processes.

We hypothesize that the organization of this regulatory scheme

is adapted to accommodate the cell cycle. As ParB2 accumulates,

perhaps to amounts that are sufficient to enable chrII segregation,

the repressive effects of rctA are relieved, and initiation of chrII

replication ensues. Subsequently, ParB2 is re-distributed among

the newly synthesized parS2 sites, and its binding to parS2-B is

reduced, enabling rctA to inactivate RctB, and thereby reducing

the ability of RctB to initiate replication.

Cross-talk between chrII replication and partitioning is also

evident at the level of transcription. The parAB2 locus is

autorepressed by parB2, as has been observed for other parAB loci

[24–26]; in addition, we demonstrate that parAB2 transcription is

activated by RctB. The contrasting effects of these two regulators

are likely to rebalance ParAB levels if their abundance becomes

aberrantly elevated or reduced.

Undoubtedly, additional factors and mechanisms intersect with

these regulatory circuits. For example, previous studies have

revealed that RctB can repress its own transcription [27,28] as well

as the transcription of rctA [28]. Transcription of rctA has been

reported to inhibit the negative influence of rctA on RctB [8].

Additional regulatory processes also contribute to control of

replication initiation. For example, ATP binding inhibits RctB

activity by decreasing its ability to bind oriCII [7] and the

methylation status of oriCII also influences RctB binding to oriCII

[9]. Given the centrality of chromosome replication and

segregation to the perpetuation of the species, the existence of

multiple and perhaps redundant mechanisms to increase the

robustness of the control of these processes is expected. Consistent

with this idea, we only observed significant impairment of V.

cholerae growth when RctB was over-expressed in an rctA mutant, a

condition that likely allows considerable overinitiation of chrII.

Overinitiation also leads to growth impairment and cell filamenta-

tion in E. coli and Caulobacter crescentus [29–31].

Although coordinated control of chromosome replication and

segregation makes sense to ensure proper chromosome inheritance

to daughter cells, little mechanistic information linking these

essential processes is available. Recent work by Murray and

colleagues revealed that in B. subtilis the ParA ortholog Soj can

inhibit or stimulate chromosome replication initiation via

interactions with the initiator protein DnaA, while the ParB

ortholog Spo0J inhibits initiation of chromosome replication by

blocking Soj dimerization [32,33]. A similar regulatory scheme

was recently described for V. cholerae chrI; Chattoraj and colleagues

reported that ParA1 stimulates chrI replication and ParB1 inhibits

ParA1 [34]. However, ParA2 appears to govern chrII replication

initiation via a distinct mechanism that does not require it to

interact with the replication initiator RctB. In contrast to findings

for Soj and ParA1, which interact with DnaA, we did not detect

interaction between ParA2 and RctB using a bacterial two hybrid

system. Our findings, along with previous reports, suggest that

further exploration of the roles of Par systems in control of

chromosome replication in diverse bacteria is warranted. Since

chromosomal par genes are found in ,70% of bacterial genomes

[20], Par proteins and parS sites may commonly exert control over

chromosome replication. Finally, it will be interesting to explore

whether mechanisms exist to link the replication and/or

segregation of the two chromosomes in V. cholerae and other

bacteria with multiple chromosomes.

Materials and Methods

Plasmids and strains
Most of the plasmids used in this study are listed in Table 2. The

sites and mutations present in the rctA containing oriCII-based

plasmids (discussed in Figure 1B[b]) are shown in Table S1. The

plasmids used for the bacterial two hybrid analysis are shown in

Table S2.

A two-step strategy for construction of oriCII-based plasmids was

followed. First, different segments of DNA proximal to oriCII were

amplified and cloned into pYB199, a derivative plasmid of pKD4

Figure 7. Transcriptional control of parAB2 promoter by RctB
and ParB2. b-galactosidase activities of parAB2 promoter with or
without an intact parS2 were measured in the presence of a plasmid
expressing RctB (pYB284) (black bars) or ParB2 (pSM922) (gray bars), as
well as a vector control (pBAD33) (open bars). Averages and standard
deviations are shown and * represents significant (p value,0.01)
difference between the indicated groups.
doi:10.1371/journal.pgen.1002189.g007
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[35] which harbors the R6K origin and genes conferring

resistance to ampicillin (bla) and kanamycin (aph). Second, the

resulting plasmids were digested with XbaI and the fragment

containing the oriCII region and aph was gel-purified, self-ligated

and then electroporated into E. coli DH5a. Spontaneous

suppressor mutants in the rctA containing oriCII-based plasmids

(shown in Figure 2 and Table S1) were isolated by electroporating

,100 ng of self-ligated DNA fragments into DH5a cells. Colonies

that arose after an ,48 hr incubation were re-streaked and then

plasmid DNA was purified and sequenced. In addition, to confirm

that mutation in the plasmid enabled establishment, each mutant

plasmid was re-electroporated into DH5a. The mutations in

parS2-B yielding parS2X (Figure 1A) were generated using the

QuickChange XL Site Directed Mutagenesis Kit (Stratagene). To

construct pYB141, pYB217, pYB447, and pYB448, 15-bp double

stranded DNA fragments containing either parS2-A or parS2X were

inserted into the EcoRI site of the vectors (pWKS30 and

pXX705). Plasmids pYB193 and pYB216 were constructed in a

similar fashion using the NheI and HindIII sites in the pBAD33

vector. To construct pYB451, the second copy of parS2-A was

inserted at the AflII site of pYB447, which is ,1.4 kb away from

EcoRI site where the first copy of parS2-A was inserted. Plasmid

Table 2. Plasmids used in this study.

Name Description Resistance{ Reference

pBAD33 p15A ori Cm [40]

pCB192-YY pCB192 but no EcoRI site in 39 of lacZ Amp [38], This study

pCVD442 vector for allelic exchange Amp [37]

pET-RctB pET28b rctB Km [7]

pGZ119EH ColD ori Cm [41]

pSM843 pET28b parB2 Km [15]

pSM922 pBAD33 parB2 Cm Sarah McLeod, This study

pWKS30 pSC101 ori Amp [42]

pXX705 F ori Amp [43]

pYB141 pXX705 parS2-A Amp This study

pYB190 pCRII Km [16]

pYB193 pBAD33 parS2-A Cm This study

pYB199 pKD4 MCS* Amp, Km This study

pYB216 pBAD33 parS2X Cm This study

pYB217 pXX705 parS2X Amp [15]

pYB264 pYB199 rctA oriCII rctB Amp, Km This study

pYB273 pGZ119EH parB2 Cm This study

pYB276 pYB199 oriCII rctB Amp, Km This study

pYB285 pGZ119EH rctB Cm [7]

pYB289 oriCII rctB Km [7]

pYB292 rctA oriCII rctB Km This study

pYB294 pBAD33 rctB Cm This study

pYB355 pET28b rctB[DC159] Km This study

pYB379 pYB199 rctA (parS2-B::parS2X) oriCII rctB Amp, Km This study

pYB403 pYB199 parB2 parA2 rctA oriCII rctB Amp, Km This study

pYB404 parB2 parA2 rctA oriCII rctB Amp, Km This study

pYB405 pCRII oriCII Km This study

pYB406 pCRII rctA Km This study

pYB407 pCRII rctA (parS2-B::parS2X) Km This study

pYB432 pCVD442-based allelic exchange plasmid to construct DrctA Amp This study

pYB445 pCVD442-based allelic exchange plasmid to construct parS2-B::parS2X Amp This study

pYB447 pSC101 parS2-A Amp This study

pYB448 pSC101 parS2X Amp This study

pYB451 pSC101 parS2-A parS2-A Amp This study

pYB452 pCB192-YY PparAB2-rctA lacZ Amp This study

pYB453 pCB192-YY PparAB2-rctA (parS2-B::parS2X) lacZ Amp This study

pYB558 rctA (parS2-B::parS2X) oriCII rctB Km This study

*MCS; multi cloning site.
{Resistance; Amp, ampicillin; Cm, chloramphenicol; Km, kanamycin.
doi:10.1371/journal.pgen.1002189.t002
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pCB192-YY, a derivative of the transcriptional fusion vector

pCB192 [36] in which the EcoRI site in the 39 end of lacZ was

removed by introduction of a silent mutation (GAATTC to

GAATTT), was used to create transcriptional fusions to the

parAB2 promoter. The parAB2 promoter region was amplified and

cloned into the HindIII-EcoRI site of pCB192-YY. All the

relevant DNA sequences of all plasmids used in this study were

determined. The sequences of the oligonucleotides used in this

study are listed in Dataset S1.

Mutations were introduced on to the V. cholerae chromosome

(DrctA, and parS2-B::parS2X) via allele exchange using pCVD442-

based plasmids as described [37]. V. cholerae strains used in this

study are listed in Table 3.

Transformation efficiency experiments
DH5a cells harboring either pGZ119 (vector),or Isopropyl-b-D-

1-thiogalactopyranoside (IPTG) inducible rctB or parB2, pYB285

or pYB273 respectively, were grown in LB broth containing

100 mM IPTG till mid-log phase to prepare electrocompetent

cells. Similarly, DH5a cells harboring plasmid-borne parS2

sequences or control plasmids were grown until mid-log phase to

prepare chemical competent cells. 40 ng of self-ligated DNA or

10 ng of pYB404 DNA were introduced into the competent cells.

As a control, 10 ng of plasmid pYB190 was also introduced into

competent cells in each experiment. The number of colonies

obtained in the pYB190 transformations were used to normalize

transformation efficiencies. Means and standard deviations were

derived from 3–5 independent experiments for all plasmids tested.

Beta-galactosidase assays
Assays were performed in triplicate with log phase cultures as

described previously [38]. Two tailed, two-sample equal t-tests

were used to compare the results from 3 independent experiments

(total 9 samples each) for the statistical analysis.

Electrophoretic mobility shift assay (EMSA)
Wild type RctB-His6, RctB[DC159]-His6, and ParB2-His6

proteins were purified as previously described [15]. Sequences

used for oriCII, rctA, and rctA (parS2-B::parS2X) (see Figure 1A)

EMSA probes were initially cloned into the pCR-Blunt II-TOPO

vector (Invitrogen), yielding pYB405, pYB406, and pYB407,

respectively. pYB190, a pCR-Blunt II TOPO derivative contain-

ing an irrelevant 10 bp, was used to construct the negative control

probe. To prepare radio-labeled probes, appropriate DNA regions

were amplified from the plasmids with universal M13 forward and

reverse primers [22], end labeled with [c-32P] ATP with

polynucleotide kinase (New England Biolabs), purified from 6%

DNA retardation gels (Invitrogen), and ethanol precipitated. In the

binding reactions, 5,000 cpm of probe DNA containing different

concentrations of RctB and/or ParB2 in a reaction buffer of

20 mM Tris-Cl (pH 7.5), 1 mM EDTA, 150 mM NaCl, 12.5 mg/

mL poly (dI-dC), and 0.1 mg/mL BSA were incubated for 10 min

at room temperature. The reactions were then electrophoresed in

a 6% DNA retardation gel in 0.56 TAE and visualized by

autoradiography.

DNase I foot print assay
DNase I footprint assays were performed as previously

described with minor modifications [39]. The rctA probe was

made by PCR using 59-32P-radiolabeled rctA 59-FP

(CGTTTAAATAACCCACATATTCTTCGATAAGG) and

rctA 39-FP (ATACCTATTCGCTGGAGGAAAGATAGG)

primers on a plasmid encoding parAB2-rctA-oriCII-rctB (pYB403).

The probe was purified from 6% DNA retardation gels, eluted,

and ethanol precipitated. 1,200,000 cpm of probe was incubated

with different amounts of RctB without and with 100 ng of ParB2

in 20 mL of 20 mM Tris-Cl pH 8.0, 125 mM NaCl, 1 mM DTT

for 10 min at room temperature. 0.1 U of DNase I (Applied

Biosystems) was added to each reaction and incubated at room

temperature for 30 sec. The digestions were quenched by the

addition of 6 mL of 660 mM Tris-Cl pH 9.5, 66 mM EDTA,

3.3% SDS and placed on ice. Samples were ethanol precipitated,

resuspended in recrystalized formamide, and 20,000 cpm of each

was run on an 8% polyacrylamide gel with 8 M urea (National

Diagnostics) in 16TBE. The gels were then dried and visualized

by autoradiography.

Quantitative PCR assay
Genomic DNA was prepared from each strain by phenol-

chloroform extraction followed by ethanol precipitation. The

genomic DNA was then digested with PstI and 10 pg was used for

each quantitative PCR (qPCR) reaction. Genomic DNA from an

N16961 stationary culture was used to generate the standard

curve. qPCR was performed with the StepOnePlus Real-Time

PCR system (Applied Biosciences) using SYBR Green Master mix

(Applied Biosciences) according to the manufacturer’s protocol.

The primer pairs used for oriCI and oriCII were described

previously [4]. Each qPCR run was done in triplicate and the

ratio was calculated from three independent experiments.

Growth curves and microscopy
V. cholerae cells harboring a plasmid borne copy of an IPTG-

inducible rctB or a control vector were grown in either LB or M9-

Glucose media containing 100 mM IPTG at starting OD600 of

0.003. Subsequently, OD600 and CFU were monitored hourly.

Growth curves shown in Figure S2 are representative of at least

three independent experiments. A small aliquot of cells was

removed at 4 hr, fixed with 3% paraformaldehyde, and then

examined with 1006 alpha-plan lens on a Zeiss Axioplan 2

microscope.

Supporting Information

Dataset S1 List of oligonucleotides used in this study.

(XLS)

Figure S1 Binding of RctB and ParB2 proteins to rctA. A) and

C), RctB was added to the reaction tube 8 min prior to addition of

ParB2. B) and D), ParB2 was added to the reaction tube 8 min

Table 3. V. cholerae strains used in this study.

Name Description Source/Reference

N16961 [2]

YBB682 N16961/pYB285 [7]

YBB703 N16961/pGZ119EH [7]

YBB995 N16961 DrctA This study

YBB999 N16961 parS2-B::parS2X This study

YBB2003 YBB995/pGZ119EH This study

YBB2004 YBB995/pYB285 This study

YBB2005 YBB999/pGZ119EH This study

YBB2006 YBB999/pYB285 This study

doi:10.1371/journal.pgen.1002189.t003
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prior to addition of RctB. Amount of proteins in titration was 0.03,

0.3, 3, 30 and 300 ng, from left to right.

(TIF)

Figure S2 Growth curves of V. cholerae strains. OD600 nm (A)

and Colony forming units (CFU) (B) of V. cholerae N16961 (gray

circles), YBB995 (DrctA; open triangles) and YBB999 (parS2-

B::parS2X; closed squares) cells grown in LB media at indicated

time points are shown.

(TIF)

Figure S3 Protection of rctA from DNase I digestion by

RctB[DC159]. The DNase I protection assay was performed with

0, 10, 20, 40, 80, 160, 320 or 640 ng RctB[DC159] bound to a

59-32P-labeled DNA containing rctA (including parS2-B, indicated

at the side of thegel). M denotes the G+A chemical sequencing

ladder.

(TIF)

Figure S4 Interactions between RctB and ParB2. A pair of

plasmids that express RctB or ParB2 fused to the T18 and T25

subunits of adenylate cyclase was simultaneously introduced into

E. coli BTH101. After transformation, 2 mL of cells were spotted

onto LB plates containing ampicillin (100 mg/mL), kanamycin

(50 mg/mL), IPTG (100 mM), and bromo-chloro-indolyl-galacto-

pyranoside (X-gal, 60 mg/mL) and incubated overnight at 30uC.

(TIF)

Table S1 List of mutant oriCII plasmids.

(DOC)

Table S2 List of plasmids used for bacterial two hybrid assay.

(DOC)
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