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Fig. 1. Given an input terrain, user-prescribed control regions defining the average temperature and precipitation, and glacier parameters such as accumulation
and ablation rates, we perform a multiresolution Shallow Ice Approximation to generate the ice thickness of the glaciers as well as physical quantities such
as flow direction or shear stress. From those parameters, we procedurally amplify the ice layer with details such as icefalls, crevasses, and moraines. We
implemented the simulation on graphics hardware, allowing for interactive feedback and controlled authoring.

Glaciers are some of the most visually arresting and scenic elements of cold
regions and high mountain landscapes. Although snow-covered terrains
have previously received attention in computer graphics, simulating the
temporal evolution of glaciers as well as modeling their wide range of
features has never been addressed. In this paper, we combine a Shallow Ice
Approximation simulation with a procedural amplification process to author
high-resolution realistic glaciers. Our multiresolution method allows the
interactive simulation of the formation and the evolution of glaciers over
hundreds of years. The user can easily modify the environment variables,
such as the average temperature or precipitation rate, to control the glacier
growth, or directly use brushes to sculpt the ice or bedrock with interactive
feedback. Mesoscale and smallscale landforms that are not captured by the
glacier simulation, such as crevasses, moraines, seracs, ogives, or icefalls are
synthesized using procedural rules inspired by observations in glaciology
and according to the physical parameters derived from the simulation. Our
method lends itself to seamless integration into production pipelines to
decorate reliefs with glaciers and realistic ice features.
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1 INTRODUCTION
Glaciers take a variety of forms: from valley glaciers found in moun-
tains, ice fields striding mountain ranges, to ice shelves floating
on the ocean surface. Formed where the accumulation of snow
exceeds its melting over many years, glaciers slowly deform and
flow due to stresses induced by their weight, creating crevasses,
seracs, and other distinguishing features. They also abrade bedrock
and debris from their substrate to create landforms such as cirques
and moraines. We refer to Figures 3 and 24 for illustrations of the
different formations, and Section 6 for a detailed description.

The sheer variety of shapes and range of scales of glaciers presents
significant simulation and modeling challenges. Despite the vast
variety of methods for generating synthetic terrains [Galin et al.
2019], effectively modeling, generating, and authoring glaciers, i.e.,
the ice sheet covering bedrock, remains an unsolved problem. The
challenge stems not only from the complex physical mechanisms
involved in their formation and evolution, but also from the range
of scales of landform features that should be generated.

Several validated models have been proposed in geology for sim-
ulating ice-flow and glacial erosion [Braun et al. 1999; Egholm
et al. 2011; Headley et al. 2012; Mahaffy 1976]. These models shape
mountains and yield characteristic landforms such as tunnel val-
leys, cirques, and arêtes, hanging valleys at the convergence of two
glaciers, and glacial lakes. Erosion simulation is beyond the scope
of our work, as it addresses large-scale terrain erosion taking place
over tens of thousands of years. Although different approaches for
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simulating the evolution of the seasonal snow cover under the in-
fluence of the environment have been proposed, those techniques
address a different and complementary phenomenon: seasonal snow
accumulation, which occurs at a different time scale.
Our work comes from the observation that the general shape of

glaciers can be effectively approximated by efficient simulations
such as the Shallow Ice Approximation (SIA), while details at dif-
ferent scales can be synthesized procedurally by using generation
rules derived from the many observations made in geomorphol-
ogy [Huggett 2016] and glaciology [Cuffey and Paterson 2010].
In this paper, we propose a multiresolution simulation based on

the SIA, allowing for easy and efficient control for representing
and authoring glaciers across a range of scales (see accompanying
video). Our method not only simulates the shape of glaciers but also
generates small-scale characteristic landforms such as moraines,
crevasses, or ogives. We use a layered data structure to represent
the bedrock, ice, and snow, and simulate the ice evolution at inter-
active rates while providing control to the user. The output of the
simulation, i.e. the ice thickness, the flow direction, shear stress,
and other parameters, is then seamlessly streamed to a procedural
amplification process that synthesizes feature density maps that
allow a stochastic placement of glacier features.

The main contributions of our work include: 1) an interactive mul-
tiresolution simulation of ice mass evolution based on the physics
of glaciers and models currently used in glaciology, 2) a procedural
approach based on rules from geomorphology, for amplifying the
data produced by the simulation and modeling detailed features
such as crevasses, icefalls, or moraines and 3) a variety of intuitive
control tools that allow the users to interact with the simulation or
modify the glacier features placement with interactive feedback.

2 RELATED WORK
Although simulating glaciers has never been addressed in Com-
puter Graphics, our method relates to terrain modeling and snow
cover generation. We refer the reader to [Galin et al. 2019] for a
complete review of terrain modeling techniques, including proce-
dural generation, erosion simulation and example-based synthesis.
In geomorphology, we refer to [Cuffey and Paterson 2010] for a
more complete overview of the numerical simulation of glaciers
and erosion. Existing methods for modeling snow cover fall in two
categories: physical simulation, and procedural generation.

2.1 Simulation
Particle-based techniques compute a distribution of snow by simulat-
ing the effect of wind on the trajectory of snow particles so that they
drift and gather onto the ground or objects. Nishita et al. [1997] use
an implicit model to reconstruct a smooth snow surface from skeletal
point elements. Fearing [2000] introduced an accumulation model
by sampling surface elements with snow particles and backtrack-
ing their trajectory to source clouds while accounting for collision
and stability. Subsequent work improves wind influence when de-
termining the upward trajectory, using Navier-Stokes [Moeslund
et al. 2005] or Boltzmann approaches [Wang et al. 2006]. Hinks
and Museth [2009] used a dynamic wind-field to carry snow par-
ticles and generate realistic snow accumulation patterns using an

implicit-surface model. Stomakhin et al. [2013] simulated the com-
plex behavior of snow under different environmental conditions by
using a semi-implicit Lagrangian method.

Separating static structure represented by voxels [Sai-Keung and
I-Ting 2015] or a heightfield [Dagenais et al. 2016], from dynamic
elements implemented with particles can also be beneficial, since it
allows the interaction between snow and dynamic objects [Dage-
nais et al. 2016]. Particle-based methods suffer from the common
limitation that they do not scale beyond small scenes (with an upper
limit of about 100 × 100 m2).

Physically-based heat transfer methods use the different thermal
interactions between objects and the influence of environmental
conditions to simulate snow accumulation, ice formation and snow
melt. Muraoka and Chiba [2000] simulated snowfall using vortex
fields and snow melt using heat conduction. Maréchal et al. [2010]
introduced a complete finite volume method over a voxel grid to
simulate snowfall and conductive, convective and radiative thermal
transfers, and complex phenomena such phase changes where snow
melts to water or water freezes into ice. Unfortunately, heat transfer
methods are limited because of their high computational cost and
memory-intensive volumetric representations.
Cordonnier et al. [2018] generated plausible snow cover over

mountain ranges by using an event-based stochastic simulation
operating on a layered model. The framework accounts for envi-
ronmental factors such as sunlight, temperature, and wind, but
is restricted to terrains of medium size (10 × 10 km2) to preserve
authoring and interactivity.

2.2 Procedural approaches
Procedural methods rely on phenomenological approaches to gener-
ate a plausible snow cover. Accessibility and occlusion are commonly
used to characterize the thickness of accumulated snow [Premože
et al. 1999]. A direct extension for large-scale terrains consists in link-
ing snow thickness to ambient occlusion, direct illumination [Foldes
and Benes 2007; Reynolds et al. 2015; Tokoi 2006] or wind-drift ap-
proximated by directional occlusion [Moriya and Takahashi 2010].
Chen et al. [2003] treat differently nearby objects (using a displace-
ment map) and more distant objects (with a volumetric texture map)
to accelerate the computations.
Inspired from granular material dynamics, height span maps

[Sumner et al. 1999] have been successfully used to model real-time
snow accumulation with the incorporation of phenomenologically-
inspired statistics [Festenberg and Gumhold 2011, 2009]. Grosbellet
et al. [2016] introduced a general framework for the generation of de-
tails in complex scenes, by approximating the interaction of objects
between them and the environment through scalar fields including
temperature and humidity, therefore allowing the generation of
snow cover and icicles on objects.
A general limitation of existing methods is that they only ac-

count for seasonal snow effects and do not model ice accumulation.
Moreover, they are limited to small or medium size landscapes. In
contrast, our multiresolution simulation method combined with a
procedural amplification method for generating details allows to
interactively generate large scenes, up to 100 × 100 km2.
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Fig. 2. Overview of our method: given an input terrain T , climate parameters such as average temperature and temperature gradient, user-prescribed control
regions for dampening an amplifying melting, our method generates a low resolution (≈ 120 m per cell) ice layer using a SIA simulation. This representation is
procedurally amplified to obtain a high resolution ice model (≈ 30 m per cell) featuring details such as icefalls, crevasses, and moraines.

3 OVERVIEW
A glacier is a body of dense ice, formed in places where the snow
accumulation is larger than the ablation. Recent accumulated snow
exerts pressure onto older layers of snow, causing it to compact
and eventually become glacier ice. This ice deforms due to gravity-
induced stresses, and therefore is constantly flowing downhill under
its own weight.
Glaciers can be classified into different categories according to

theirmorphology. Valley glaciers ormountain glaciers form onmany
mountain ranges and are constrained by the terrain topography:
they originate in upper mountain slopes and cirques (bowl-shaped
valley heads) and flow along the valley (Figure 3). Ice fields are larger
areas of interconnected glaciers that expand over mountain ridges,
only the higher peaks and ridges are exposed. In contrast, ice caps
and ice sheets completely submerge the underlying terrain, creating
a dome shape that spreads out from the center. Our work mainly
focuses on mountain glaciers and ice fields, although ice caps and
sheets can also be generated.

Crevasses

Accumulation 
zone

Bedrock

Tributary glacier
Cirque basin

Medial moraine

Equilibrium line Valley plainTongue

Lateral moraine

Ablation 
zone

Fig. 3. Symbolic representation of a glacier and some of its major features.

Our method computes the temporal evolution of an ice fieldH(t)
representing the glacier covering an otherwise static terrain T un-
der the influence of temperature and precipitation. Our method
combines two steps (Figure 2): a physically-based simulation for
computing the evolution of the glacier over time, whose output is
directly streamed to a procedural generation algorithm for synthe-
sizing the high-resolution ice layer amplified with detailed glacier
features such as crevasses, moraines, or ogives.

Simulation. Our framework uses a layered heightfield model: at
any time step, the scene consists of a discrete bedrock layer B and
a time-varying ice layerH(t) composed of n ×n cells. Starting from
an elevation map (real or synthetic) and optionally an initial ice
thickness layer H , the simulation computes the evolution of the
ice fieldH(t + δt) fromH(t) according to the control parameters
and using the SIA model (Section 4). We employ a multiresolution
method to accelerate computations and obtain a high-resolution ice
layer covering the terrain. The simulation is parallelized on graphics
hardware for interactive feedback (Section 5). At any time, the user
can pause, resume, restart, or adjust the simulation parameters.

Modeling glacier features. Simulating the interaction between ice
and flow to create complex features such as crevasses would be
computationally prohibitive. Therefore, we propose a procedural
approach to modeling detailed glacier features. From the simula-
tion data, i.e., the ice layer H of the simulation and other useful
information such as the direction of the ice flow or the shear stress,
we derive density maps for the different glacial features such as
crevasses, ogives, or moraines (Section 6). We then use these maps
to locate features and synthesize the final high-resolution landscape.

Control. From an authoring perspective, we offer two modes of
control. The user can modify the simulation parameters which have
very intuitive influence over the shape of glaciers. Specifically, it is
possible to modify the equilibrium line, which is the main parameter
influencing the shape of the glacier: the user can change it at any
time in the simulation, or specify a deviation map to create inter-
esting localized effects. The user may interactively edit the feature
density maps, which provides direct control over the final feature
placement.

4 GLACIER DYNAMICS
We now introduce some of the fundamental concepts required to
simulate the evolution of a glacier. For a deeper understanding, we
refer the reader to glaciology textbooks such as [Bennett and Glasser
2011; Cuffey and Paterson 2010].

Glaciers form over regions where more snow is accumulated than
ablated (i.e. melted or sublimated) over a yearly cycle. Accumulated
snow is progressively compacted into glacial ice, which then deforms
under its own weight causing a slow downhill flow. The difference
between accumulation and ablation at a position p is called the mass
balance Ûm(p), and varies over the surface G of a glacier defining the
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accumulation zone GA = {p | Ûm(p) > 0}, the ablation zone GB =

{p | Ûm(p) < 0} and the equilibrium line altitude ELA = {p | Ûm(p) =
0}, respectively (Figure 4).

Equilibrium Line
(ELA)

sBedrock
b h

u

Accumulation Ablation

Fig. 4. Notations for the different regions of a glacier.

Gravity causes the ice to deform, creating shear stress. In re-
sponse, ice flows through three mechanisms [Bennett and Glasser
2011]: internal deformation, basal sliding, and bedrock deformation.
This flow can be modeled using the full Stokes equations for an
incompressible, viscous, and non-Newtonian fluid as follows:

∇ · u = 0
0 = −∇p + ∇ · τi j + ρд

Ûεi j = Aτn−1τi j

(1)

where u is the velocity, p the pressure, ρ the density of ice and д
the gravity acceleration. The first equation is the incompressibility
condition. The second one represents the balance of forces and its
left hand-side is equal to zero: ice is a very slow moving fluid and
inertia is negligible. The last equation is known as the Glen-Nye flow
law [Glen and Perutz 1955; Nye 1957] and models the non-linear
viscosity using a power law that relates the deviatoric stress tensor
τi j to the strain rate tensor Ûεi j , with τ = 1

2 [tr(τi j )
2 − tr(τi j 2)] the

second invariant of τi j . The constant A depends on the composition
and temperature of the ice; the exponent n is typically set to 3 for
most glaciers. Finally, note that there is no time derivative in this set
of equations: we do not need the previous momentum or velocity
to model the evolution of ice [Bueler 2016].

Solving the previous equations directly is both complex and com-
putationally expensive. The Shallow Ice Approximation (SIA) is a
particular zero-order model that neglects longitudinal and trans-
verse stresses, as well as vertical stress gradients. It was developed
for modeling ice sheets, where glacier thickness is much smaller
than lateral extent [Hutter 1983]. However, due to its simplicity
and efficiency, it is widely used even on complex mountainous ter-
rains [Headley et al. 2012; Kessler et al. 2006].

Following [Knap et al. 1996], and ignoring bedrock deformation,
the temporal evolution of the ice thickness using SIA can be ex-
pressed as:

∂h

∂t
= Ûm − ∇ · F = Ûm − ∇ · h (ūd + us ) (2)

F represents the ice flux or volume discharge, and depends on the
depth-averaged internal deformation velocity ūd and the basal slid-
ing velocity us . We denote the bedrock b, the ice surface s and the
ice thickness h = s − b (see Figure 4) as functions of space (Ω ⊂ R2

refers to the domain of the terrain) and time. To compute the defor-
mation velocity ūd , let us consider the shear stress τ at a certain
elevation z below the surface:

τ = ρд(s − z)∇s (3)

For the particular case of z = b, we obtain the basal shear stress
τb = ρдh∇s .

The relationship between the stress τ and the strain rate Ûε is
expressed by the Glen flow law: Ûε = Aτn where τn is defined as
τn = ∥τ ∥n · τ/∥τ ∥ as τ is a vector. By integrating Ûε vertically, we
can obtain the depth-averaged internal deformation velocity:

ūd =
2A

n + 2
hτnb = −Γd h

n+1∥∇s ∥n−1∇s Γd =
2A(ρд)n

n + 2
(4)

The term Γd is commonly used to group the constant terms.
When the ice bed is frozen, the sliding velocity us equals zero.

However, in glaciers such as those found in continental mountain
ranges, it has a non-negligible effect over the ice flow. Modeling
slide remains a challenging open problem in glaciology and different
formulations exist. One possibility is to model us as proportional to
some power p of the basal stress τb [Bindschadler 1983]:

us = −ksτ
p
b N

−1 (5)

where ks is a sliding coefficient, and N = τb − Pw is the effective
pressure: the difference between the ice pressure τb and the water
pressure Pw at the ice-bed interface. Using p = n and grouping
the constant terms into a factor Γs yields the formulation found
in [Headley et al. 2012]:

us = −Γsh
n−1∥∇s ∥n−1∇s (6)

Putting together equations 2, 4 and 6, we obtain the equation
describing the evolution of the glacier height over time:

∂h

∂t
= Ûm − ∇ · hn (Γdh

2 + Γs )∥∇s ∥
n−1∇s (7)

A glacier is said to be in steady state when it does neither advance
nor retreat, i.e., ∂h/∂t = 0.

5 GLACIER SIMULATION
Given initial bedrock and ice layers, and a function Ûm defined over
the simulation domain Ω, we aim at computing the evolution of
the glacier mass throughout time. First, we address the numerical
computations on a fixed grid resolution; and then present a mul-
tiresolution scheme that accelerates the algorithm by several orders
of magnitude while keeping errors small.

5.1 Numerical model
We need to solve Equation 2 to simulate the evolution of the ice
coverage. Contrary to fluid equations, there is no velocity term:
speed and direction of moving ice mass are derived from the ice
thickness and surface gradient. Thus, one common approach is to
rewrite it as a diffusion process:

∂h

∂t
= Ûm − ∇ · (D ∇s) (8)

where
D = Γdh

n+2∥∇s ∥n−1 + Γsh
n ∥∇s ∥n−1 (9)

and solve it using a staggered grid (see Figure 6), such that hi, j
denotes ice thickness at cell (i, j) center and hi+ 1

2 , j the interpolated
value for the midpoint of its right edge.
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Fig. 5. Evolution of the ice coverage on a terrain, starting from bare bedrock (top) or from a user-drawn ice cap (bottom). The steady state is reached after 630
years and 583 years, respectively.

i,j

i,j-½

i+1,ji-1,j

i,j-1
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i-½,j

Fig. 6. Staggered grid
indices.

Since the diffusivity or flux is com-
puted at the edges of the grid, SIA sim-
ulations can suffer from mass conserva-
tion problems on mountainous terrain be-
cause steep gradients can create an outgo-
ing flux on the upstream cell larger than
the amount of ice inside it. Clamping the
resulting negative ice thicknesses to 0
would create mass, and the simulation
would become numerically unstable after
a few iterations due to the hn+2 term in
Equation 9.

To solve this, Jarosch et al. [2013] proposed using a second-order
MUSCL scheme, a finite volume method that yields accurate and sta-
ble solutions even with large gradients or discontinuities [van Leer
1979]. The key concept is to use the slope-limited reconstruction
of the cell states and compute the diffusion term at the cell edges.
We detail the computation of the diffusion term on the right edge,
Di+ 1

2 , j , as done by [Jarosch et al. 2013] except they did not use a
sliding velocity term (i.e. Γs = 0). The diffusion on the other edges
is computed analogously.
First, we extrapolate two ice thickness values at the cell right

edge i + 1
2 , denoted with superscripts as i + 1

2
− and i + 1

2
+:

hi+ 1
2
−, j = hi, j +

1
2
ϕ(ri, j )(hi+1, j − hi, j )

hi+ 1
2
+, j = hi+1, j −

1
2
ϕ(ri+1, j )(hi+2, j − hi+1, j )

(10)

where the slope

ri, j =
hi, j − hi−1, j
hi+1, j − hi, j

is limited by a function ϕ(r ) that prevents oscillations near shocks
or discontinuities. In particular, we used the superbee limiter by
Roe [1986]: ϕ(r ) = max(0,min(2r , 1),min(r , 2)).
We compute the two flux values Di+ 1

2
−, j and Di+ 1

2
+, j by using

Equation 9 with hi+ 1
2
−, j and hi+ 1

2
+, j respectively. Finally, the flux

on this cell edge is obtained as:

Di+ 1
2 , j =


Dmin
i+ 1

2 , j
if si+1, j ≤ si, j and hi+ 1

2
−, j ≤ hi+ 1

2
+, j

Dmax
i+ 1

2 , j
if si+1, j ≤ si, j and hi+ 1

2
−, j > hi+ 1

2
+, j

Dmax
i+ 1

2 , j
if si+1, j > si, j and hi+ 1

2
−, j ≤ hi+ 1

2
+, j

Dmin
i+ 1

2 , j
if si+1, j > si, j and hi+ 1

2
−, j > hi+ 1

2
+, j

(11)

where:
Dmin
i+ 1

2 , j
= min

(
Di+ 1

2
−, j , Di+ 1

2
+, j

)
Dmax
i+ 1

2 , j
= max

(
Di+ 1

2
−, j , Di+ 1

2
+, j

)
The same equations are used to compute the diffusivity on the

other edges of the cell. Finally, Equation 2 is solved using forward
Euler integration with the following adaptive time step:

∆t =
1

2(n + 1)
min

(
∆x2,∆y2)

max
(
Di+ 1

2 , j ,Di− 1
2 , j ,Di, j+ 1

2
,Di, j− 1

2

) (12)

Using the previous integration scheme directly leads to square-
shaped glaciers on cone-shaped peaks, as shown in Figure 7.

4-Diag Combination

4-Axis

Fig. 7. Alternating between
an axis-aligned and diagonal
4-neighborhood.

The reason is that we are only us-
ing a 4-neighborhood on a regu-
lar grid to compute slope and ice
diffusion. An 8-neighborhood or a
higher-order method could be used
instead. However, for the sake of
efficient interactive modeling, we
observed that we could obtain a
correct round glacier without addi-
tional computational cost by alter-
nating between two neighborhood
stencils at every simulation step:
the 4-neighborhood axis-aligned

and the same rotated by 45 degrees (using the diagonal cells).
Finally, an interesting observation is that the steady-state of a

glacier depends entirely on the bedrock morphology and the accu-
mulation function Ûm. Figure 5 shows two cases of temporal evo-
lutions on the same terrain and different initial conditions: bare
bedrock and user-drawn ice cap. The first case shows that the glacier
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starts forming in accumulation zones, and then progressively con-
verges to a steady-state featuring connected basins. In the second
case, the shape and slopes of the glacier evolve and stabilize during
the first years, adapting to the valleys, excess ice is then ablated,
forcing some glacier tongues to retreat or disappear and producing
the same final steady-state as the first case.

5.2 Multiresolution
Simulating the ice diffusion process is complex and time-demanding.
Moreover, the time step∆t for the forward integration scheme (Equa-
tion 12) is proportional to the grid cell area. Since most of the glacier
body has a smooth surface, a coarse resolution simulation produces
a good approximation of the high-resolution glacier cover; we ad-
just excess or lacking ice by the same simulation after upsampling.
Therefore, we use a multiresolution approach that accelerates com-
putation by several orders of magnitude. While this scheme can be
interpreted as half of a V-cycle of a multigrid method, we are not
necessarily solving Equation 2 for its steady-state, as we might be
interested in an intermediate step of the glacier evolution.

First, we downsample the given terrain bedrock B several times
B = B0,B1, . . . ,Bn until the largest grid dimension in Bn has
about 250 cells. We simulate the glacier evolution in Bn until a
steady-state ice layerHn is reached or the user stops the simulation,
with ϵn = ∂h/∂t . Then, we iteratively upsample the ice layer and
apply a correction step until we reach the original resolution H0.
To computeH i−1 fromH i , we use bilinear interpolation to up-

sample the ice surface Si = Bi +H i and compute H i−1 as:

H i−1 = (Si−1 − Bi−1) · Mi−1

Mi−1 is an ice presence map bilinearly interpolated from the binary
mapMi = H i > 0. Note that we need to introduceM to prevent
ice from being created at ice-free locations p from H i such that
bi−1(p) < bi (p).

Low resolution Upsampling ice Upsampling surface
b
h

Hole

Fig. 8. Upsampling the ice thickness layer from a lower resolution (left) by
directly interpolating the ice thickness layer H (middle), and by interpolat-
ing the ice surface S (right). The outlined square illustrates an example of a
local minimum filled after the upsampling process.

The correction step serves to stabilize and adjust the ice layer
H i−1 to the more detailed geometry of the bedrock Bi−1. We run
the simulation algorithm starting with H i−1 until ϵi−1 = kϵi , with
k being a proportionality factor. Doubling the resolution not only
quadruples the number of cells but also reduces the maximum time
step ∆t by a factor of four (Equation 12). However, only a few
iterations are needed until ∂h/∂t ≤ ϵi−1.

We observed that a great amount of time in the correction simula-
tion steps was spent filling holes in to the new geometry. Therefore,
we propagate the ice surface elevation to neighboring positions that
are local minima of Si−1, and to ice-empty cells between an ice
cell with a higher surface and a rock wall, as shown in Figure 8.

Although this strategy might be adding mass to the glacier, the num-
ber of affected cells is very small in practice compared to the overall
number of ice cells, and additional incorrect mass is eventually han-
dled by the correction step. Our hole filling approximation leads to
up to 6 times speed-ups on the correction step time, depending on
the relief of the terrain.

6 MODELING GLACIAL FEATURES
Glaciers include a vast variety of small-scale and mesoscale land-
forms that are not readily captured by the glacier simulation it-
self: crevasses, moraines, bergschrunds, seracs, and icefalls. Our ap-
proach consists of procedurally generating those features according
to the simulated data (such as stress, flow direction, flow acceler-
ation, temperature) and to the terrain data (elevation, slope). For
every type of feature, we compute a probability map defining their
presence and density (Figure 9). The final high-resolution icefield
is generated from those density maps by bombing textured relief
models (see Section 7).

Moraines

IcefallTransverseLongitudinal Margin

Ogives Rimayes Seracs

Fig. 9. Presence maps for various glacier features (in red) computed from
the ice thickness (in blue) and simulation data.

6.1 Crevasses
Crevasses are fractures on the surface of a glacier, opening from
some centimeters up to a few meters wide, and reaching depths
up to 50 m. Since pressure increases with depth under the glacier
surface, the uppermost part of a glacier mass behaves as a layered
solid material, whereas deeper inside, once pressures are larger than
50 kPa, it starts behaving as a viscous plastic flow. Consequently,
accelerations of this underlying moving mass, sudden changes in
slope, or obstacles in the bedrock can cause the top layers to fracture.
For every different type of crevasse (see Figure 10 and details in

the subsequent paragraphs), we compute a probability map over the
glacier surface based on its physical properties and observations
made by glaciologists. These maps are used to stochastically place
and model crevasses over the ice field.

The underlying crevasse formation processes take place at much
smaller timescales than the full glacier simulation. Moreover, mod-
eling crevasses remains an active research direction in glaciology,
with prototypes based on fracture mechanics or continuum damage
mechanics [Colgan et al. 2016]. Therefore, we rely on a set of proce-
dural placement rules inspired by observations according to glacier
type and appearance.
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Fig. 10. Different types of crevasses (adapted from [Clowes and Comfort
1987]): transverse crevasses are perpendicular to the direction of the flow,
marginal crevasses include old crevasses bent in direction of the ice flow and
recently formed ones, and longitudinal crevasses appear when the valley
becomes wider and ice widens to fill it.
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Fig. 11. Notations for
crevasse generation.

Transverse crevasses are the most
commonly found type. They form
across glaciers, perpendicular to the di-
rection of flow, due to tensile stresses
when the ice accelerates or the slope
steepens. The margins of the glacier
body are usually free of this type of
crevasse. Let ∇û denote the directional
derivative in the flow direction û =

u/∥u∥. We compute a probability map PT across the ice surface by
factoring in the flow acceleration ∇ûu(p), the bedrock slope changes
in the flow direction ∇2

ûb(p), the ice surface slope angle α(p), and
the distance to the closest margin d(p) (Figure 11):

PT (p) =
(
fa (∇ûu(p)) + fb (∇

2
ûb(p)) + fs (α(p))

)
· fd (d(p))

if τ (x) > 50 kPa, and PT (p) = 0 otherwise. The different fi are
functions that map the different domains of each magnitude to the
unit range. In our implementation, we used cubic functions.
Longitudinal crevasses form when the valley widens and the

ice slows down, due to compressive stresses in the flow direction
and expansive in the perpendicular direction. The fracture is parallel
to the flow direction.

We compute their probability of longitudinal crevasses PL across
the ablation area of the glacier Ûm(p) < 0, where ice is slowing
in the flow direction ∇ûu(p) < 0, accelerating perpendicularly
∇û⊥u(p) > 0 and the valley width increases down flow. The prob-
ability is proportional to both the flow deceleration and parallel
acceleration. Finally, since these crevasses occur more frequently
near the end of glaciers, we use the flow distance l between the
point p and the glacier limit to gradually reduce the probability
according to l(p). This distance is computed along with the flow,
and differs from the Euclidean distance:

PL(p) =
(
fa (−∇ûu(p)) + fp (∇û⊥u(p))

)
· fe (l(p))

Marginal crevasses form due to shear stress in the ice close to
the glacier margins, as it moves slower than the ice at the glacier
center due to friction with the bedrock walls. They open at oblique
angles with the flow direction, at approximately 45 degrees.
We place these crevasses below the equilibrium line, on nearly

flat areas with low stress, close to the glacier margins. The proba-
bility decreases at the center of the glacier, and is proportional to
the variation of stress towards the walls, i.e. perpendicular to flow

direction:
PC(p) = ft (∇û⊥τ (p)) · (1 − fd (d(p)))

if Ûm(p) < 0, α(p) < 10 and τ (p) < 50 kPa, otherwise PC(p) = 0.

6.2 Rimayes
A rimaye, also known as bergshrund, is a particular type of crevasse
that forms on the upper part of a cirque, at the interface between the
moving body of the glacier and stagnant ice attached to the steep
headwall (see Figure 12). Because they formed due to the downward
flow of the glacier body, the opening is parallel to the walls and
forming a right angle with the glacier flow direction.

Bedrock
u

Headwall

Gap

Rimaye

Fig. 12. Symbolic repre-
sentation of a rimaye.

Contrary to other types of crevasses
that are stochastically distributed over
their presence region, we constrain ri-
maye models to locations p satisfying
the following conditions: (1) p is lo-
cated in the accumulation zone: Ûm(p) >
0, (2) the surface slope angle is steep:
α(p) > 30, (3) the basal stress is in an
intermediate range between static and
flowing ice: 30 kPa < τ (p) < 60 kPa,
(4) at least 3 of the 8 cell neighbors are

located upstream and are also steep, (5) at least 2 of the 8 cell neigh-
bors have a slope lower than a given threshold, 30 degrees in our
implementation.

6.3 Moraines
Moraines are the accumulation of rocks, debris, and sediments trans-
ported by the glacier that emerge to the surface. It is possible to
differentiate between different types of moraines: lateral moraines
appear at the borders of the glacier, medial moraines form at the
interface between two glacier flows that meet in a valley and travel
side by side, and terminal moraines form at the limit of a glacier as
the ice melts and deposits the transported materials.

To place medial moraines, we need to identify the different tribu-
tary flows in a glacier and detect where they meet. Moraines only
appear in the ablation zone since fresh ice is continuously produced
on top of the accumulation zone, covering debris.

Glacier basins Sub-flows

Fig. 13. Segmentation of glacier basins (left) and identified flows on one of
the areas (right).

First, we segment and separate the different glacier drainage
basins, i.e., every subset of the ice surface that reaches the same
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glacier limit. Existing drainage basin computation algorithms [Barnes
et al. 2014] were designed for watersheds and are therefore not
adapted to ice flow. Our method can be outlined as follows: starting
from the lowest unlabeled point on the ice surface, we assign a new
ice basin index to this point and propagate it to all higher glacier
neighbors until no more points can be reached. By iterating this
process, we separate all the different ice basins (see Figure 13, left).
Next, we subdivide each glacier basin into different flows (Fig-

ure 13, right). This is more challenging as we cannot rely on a
flooding strategy as before: two tributary flows may have originated
from the same upper area - for example, a glaciated mountain top
flowing towards two valleys that merge downstream - or a flow
might divide and meet again downstream creating a moraine from
there, so we want to identify both branches.

To effectively separate the different flows in a basin, we compute
the morphological skeleton SG of the binary mask representing
the glacier in ablation zone plus the glacier under a plastic flowing
regime: { Ûm(p) < 0} ∨ {τ (p) > 50 kPa}. Unlike river networks,
the surface elevation of a glacier is not necessarily monotonically
decreasing downstream so we cannot build the tributaries tree from
the skeleton elevation. We define the main glacier sub-flow as the
longest minimal path in SG between its lowest node (near the glacier
tongue) and any other node in SG . Then, we iteratively classify
tributary glaciers as the longest minimal path between an unvisited
node in SG and the set of visited nodes that form the current glacier
network. This process stops when a maximum number of sub-flows
is reached (10 in our experiments), or when the longest possible
sub-flow is smaller than a threshold (3 − 5 km in our scenes).

Glacier skeleton

Junction 

Moraine path

Junction 

Closest 
upstream
bedrock 

SG

Sub-flow
width

Fig. 14. Subdivision of the intersecting area of two glacier flows: split is
proportional to the ratio between sub-flow widths at tributary points.

Once the tributary glaciers and their corresponding junction
points are identified (see Figure 14), we recursively visit these junc-
tions in a bottom to top order, i.e. starting from the one closest to
the glacier tongue. We locate the upstream rock wall that is closest
to the junction point, and split the downflow glacier surface into
two parts such that the respective widths are proportional to the
widths of each tributary before merging. These widths are estimated
as twice the minimum distance between the upstream rock wall
point and the skeleton of each sub-flow. Finally, a medial moraine
is placed at each interface between different sub-flows.

6.4 Seracs and icefalls
Seracs are fractured blocks of ice, formed at the intersection of
several crevasses or abrupt discontinuities and steep slopes over the
surface of the glacier such as cliffs or icefalls.

We define a probability map proportional to the number of neigh-
bors of a cell that present ice discontinuities in the stacked grid
representation. In particular, there is a discontinuity between a cell
p and its neighbor n if S(p) < B(n). Icefalls are defined as the ice
surface regions with slope and basal stress τ above a given threshold
(we use 15 degrees for the slope, and 100 kPa for basal stress).

6.5 Ogives

Flow axis

Icefall 
λ

Fig. 16. Symbolic
representation of
ogives.

Ogives, also called Forbes bands, are alternat-
ing arc-shaped wave crests and valleys on
the ice surface that visually form light and
dark bands. Always forming below icefalls,
although not all icefalls produce ogives, they
propagate down the glacier until they even-
tually fade out or reach the glacier limit [Cuf-
fey and Paterson 2010]. The period between
two consecutive bands λ corresponds to the
distance the glacier progresses in a year (Fig-
ure 16).
We use the ice falls map (Section 6.4) to

estimate ogives location. An ogive forms if
the base of an icefall is wide enough (> 100 m in our implementation)
and if the icefall flow direction is aligned with that of the glacier
beneath it. We use the geodesic distance to the base of the icefall l(p)
to parametrize the band pattern, and combine it with the distance
to the ogive medial axis d(p) to warp it backward to obtain arc-
shaped patterns. Their effect progressively disappears as ogives
travel downflow.

Ogives that form on a glacier sub-flow do not affect other parallel
flows separated by moraines: therefore we use the segmentation
used for placingmedial moraines (Section 6.3) to limit the side extent
of ogives.

7 RESULTS
We implemented our glacier simulation in a compute shader em-
bedded in a C++ and OpenGL application, allowing interactive
simulation and authoring of glaciers. The user may pause, resume
or restart the simulation at any moment, modify the physical param-
eters (equilibrium line, accumulation rates) at any time and observe
how the glacier grows or retreats, and interact with brush tools al-
lowing to sculpt the bedrock layer, add or remove ice locally or edit
the control maps (see accompanying video). The feature placement
was implemented in Python using OpenCV and SciPy. Features maps
were used to define the materials, textures and displacement maps,
which in turn were streamed to E-on Vue® software to produce the
photorealistic renderings (Figures 1, 5, 15, 17, 21, 22, 23, 24). Features
were instantiated using a texture bombing approach to change the
albedo of crevasses, rimayes and ogives, carve the surface elevation
(moraines, crevasses), add noise onto the surface (seracs, icefalls),
or change the material (moraines).
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Pyrenees Chartreuse

CanyonEcrins

Ruapehu

St Helens

Smokies

Sweden

Fig. 15. Glaciers simulated over a variety of reliefs: close-ups show the bare terrain (top) and with the ice sheet generated by our simulation (bottom).

In our context, texture bombing consists of stamping features onto
a map (depth, albedo) using alpha blending masks for delimiting the
footprint of the features. Texture stamps used for bombing crevasses
were generated manually from real pictures, other glacier features
procedurally. Our objective was to achieve reasonable rendering
quality and demonstrate the plausibility of our placement maps.

Industrial production quality andmore physically accuratemodeling
would require application and artists’ intervention.

Our implementation can be found at the following repository:
https://github.com/oargudo/glaciers.

https://github.com/oargudo/glaciers
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Table 1. Comparison of execution time and relative error according to the
initial resolution. ts denotes the computation time to reach steady state
for the simulation on the starting, while tup denotes the time of upsam-
pling steps. Root Mean Square Error (RMSE) and Volume difference were
computed with respect to the ice layer obtained from the 20 m simulation.

Res. Grid Years ts(s) tup(s) RMSE Volume

120 m 2502 631 17 103 2.38 m +1.2%
60 m 5002 629 287 62 1.69 m −0.6%
40 m 7502 632 1530 55 0.95 m −0.3%
20 m 15002 635 26722 − − −

Difference120m 20m2 min 7.4 h

-50m   +50m

Fig. 17. Comparison between the glacier computed with a coarse grid (120 m
cells) and refined using ourmultiresolution approach, and the glacier directly
computed on a precise grid (20 m cells). The right image shows the ice
thickness difference between the multiresolution and precise grids.

7.1 Performance and validation
Known as computationally intensive, glacier simulations are usually
restricted to small domains with limited grid sizes. Our interac-
tive multiresolution approach accelerates computations by several
orders of magnitude and generates high-resolution ice thickness
data at the expense of negligible approximations, compared to a
direct brute force implementation (see Figure 17). This allows both
to process large terrains and use higher grid resolutions.

Table 1 reports the timings and errors for different initial resolu-
tions (final resolution is always 20 m) and demonstrates the effec-
tiveness of the multiresolution approach. From a given initial cell
resolution, we simulated the ice evolution until reaching a steady-
state such that ∂h/∂t ≤ ϵn = 1 mm. For the successive correction
steps during upsampling, we relaxed the steady-state condition to
ϵi = rn/r i ·ϵn , where rn refers to the low-resolution cell size (120 m
in our experiments) and r i to the upsampled size. This linear factor
serves as a trade-off between expensive correction steps if we keep
ϵi = ϵn , and poor accuracy if ϵi is scaled quadratically like the
number of cells. Moreover, we always simulate at least one year of
evolution during the correction step.
As expected, the error decreases when using higher resolutions,

but at a much slower rate than the computation time increases. Fig-
ure 17 shows a comparison between the ice cover obtained using our
multiresolution simulation, and a direct brute force high-resolution
simulation. While the ice covers slightly differ, the error remains
small (≈ 1%) and the multiresolution performs orders of magnitude
faster (×220).

Table 2 reports the performance of the simulations presented
throughout the paper, indicating the time ts until steady state is
reached in the initial resolution grid, as well as the time tup required
for the upsampling and correction steps. In all cases, we used 2 or 3
upsampling steps. Recall that the simulation time step ∆t depends
on cell resolution, as well as the maximum ice diffusivity over the
terrain, which in turn depends on the ice thickness. Moreover, the
number of years required to reach a steady-state depends on its
terrain morphology and the glaciology parameters. Therefore, we
also indicate the number of years simulated until steadiness, the
maximum ice thickness of the glacier, and the total ice volume, as
they are related to execution times.

While the steadiness thresholds defined above seemed reasonable
for most tested scenes, cases arose where the simulation did not
show any apparent changes before the stop criteria where met as
well as cases were some parts of the glacier were still advancing. In
an interactive editing session, however, the user may intervene and
stop or keep running the simulation as desired. We noticed that for
vast landscapes, some glacier parts may have reached steady-state
while others are still advancing, which suggests that a spatially-
adaptive simulation scheme could be worth investigating as future
work to accelerate simulations.

Procedural Our simulation

ELA

f (b)

b

Fig. 18. Comparison of our method to a procedural approach.

Figure 18 compares our method to a procedural approach defin-
ing the ice thickness as h(p) = f (b(p)) · д(α(p)), where f (b(p)) is a
two-step linear function with a maximum reached for b(p) = ELA,
andд(α(p)) ∈ [0, 1] linearly reduces ice thickness to 0 as the bedrock
slope increases and reaches a α ≥ 60 degree limit. Procedural
method characterizing the ice thickness only according to the posi-
tion, elevation, and slope fail to capture the downflow of ice tongues
constrained by valley walls.
From a visual perspective, our method is capable of generating

realistically looking glaciers on a variety of terrains, as illustrated
in Figure 15. Depending on the choice of parameters, we can obtain
mountain glaciers (Ecrins, Pyrenees, Smokies), ice fields (Chartreuse,
Sweden), or ice caps (Ruapehu). The procedural rules for feature
placement were improved after some iterations with an expert on
glaciers, to generate placement maps as consistent as possible with
reality. Figure 24 shows a side-by-side comparison of several glacier
forms and modeled features.

7.2 Control
From an authoring perspective we offer two forms of user control:
simulation parameters and ice and terrain sculpting. Glaciologists
adjust the models to real glaciers by finding an appropriate set
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of values corresponding to the different physical parameters and
constants required in the simulation, especially the mass balance
function Ûm which describes where and how much snow is accumu-
lated or melted, and the constants Γs and Γd that regulate the sliding
and deformation speeds of the ice mass. We take advantage of this
by introducing simple and intuitive controls over the simulation.

2350m 2500m 2650m

Fig. 19. Influence of the ELA values over the final glacier shape: slight
modifications drastically change the glacier extents in the valleys.

The parameter with the most noticeable impact is the equilibrium
line altitude ELA that determines the elevation above which snow
accumulates and creates glaciers. Control of this parameter can be
achieved by setting a constant value or providing a control map
that allows the deviation from this value. Slight changes to the
equilibrium line produce substantial effects on the final glacier shape
as depicted in Figure 19. The control map can be either provided
by the user or computed from yearly sunlight irradiance onto the
terrain (Figure 20). Studies in glaciology estimate deviations due to
orientation in the order of 70 to 320m [Evans and Cox 2005], so we
used similar ranges.

N

Constant ELA 2500 ELA 2500 ± 300 m

Fig. 20. Using a sunlight map to locally deviate the ELA. Glaciers on north
faces appear thicker and longer, whereas fewer glaciers start from south
faces.

The mass balance function Ûm also has a significant impact, as it de-
termines how far a glacier extends below equilibrium line. Although
this function can be very complex to account for all the phenomena
that cause accumulation and ablation, we selected the approach
in [Oerlemans 1986] and defined a two-step linear function:

Ûm(p) =
{

β · (s(p) − e(p)) if s(p) > e(p)
γ · (s(p) − e(p)) if s(p) < e(p)

where the constants β and γ are the accumulation and ablation
rate gradients, above and below ELA, respectively. This follows the
intuition that more snow accumulates at higher altitudes whereas
ice melts at lower altitudes.

The glacier extent principally depends on the ratio between these
two slopes. Strong accumulation leads to longer glacier tongues
extending below the accumulation area, whereas strong ablation

produces glaciers quickly melting and disappearing after leaving the
accumulation area. Scaling both parameters by the same constant
produces similar glacier coverages, simply with a greater overall
mass of ice (see Figure 21). It is also possible to define local variations
of β using a precipitation map P(p) to scale the accumulation rate
β(p) = β · P(p), as illustrated in Figure 22.

β = 1, γ = 1 β = 1, γ = 2

β = 2, γ = 1 β = 2, γ = 2

Fig. 21. Effects of accumulation and ablation ratios β and γ : higher values of
accumulation lead to longer glacier tongues, whereas strong ablation values
lead to smaller glaciers by speeding-up melting. Values in mm ·year−1 ·m−1.

Fig. 22. Influence of accumulation maps: left and middle linear ramps repre-
sent conditions where snow fronts enter from either the north or the south.
The right map was painted as a sketch to modify the accumulation locally
on each massif, confirming the authoring ability of our method.

Finally, regarding the constants for ice speed, we fixed their
value following [Headley et al. 2012] as Γs = 3.27 y−1m−1 and
Γd = 7.26 · 10−5 y−1m−3 that correspond to alpine-like glaciers.
Polar or cold glaciers can also be simulated by adjusting these con-
stants and reducing the sliding contribution. We provide intuitive
control over these parameters with a simple scalar that properly
scales the constants from cold to temperate glacier. Figure 23 shows
a comparison of two simulations with the same parameters except
that only one velocity component is used in each case. Cold glaciers
(deformation only) produce more voluminous ice masses that also
advance more slowly, whereas temperate glaciers (sliding only) are
more affected by steep relief and create thinner but longer flows.
Most of the examples shown through the paper did not require

user intervention or edition. However, we developed brush tools
to control and modify the bedrock layer, the ice layer, and both
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Only deformation Only basal slide

Fig. 23. Simulating only the deformation or the sliding components of ice
velocity influences the overall ice volume and velocity of the glacier.

the ELA and accumulation maps directly on the terrain while the
simulation is running. Recall that the steady-state of a glacier does
not depend on the initial or current amount of ice (Figure 5), but only
on the relief morphology and the glaciology constants. Therefore,
the impact of the ice tool progressively disappears throughout time.

7.3 Limitations
One of the biggest limitations of the SIA model for glaciers is that
it represents the bedrock and ice layers as continuous derivable
functions. This implies that overhanging blocks of ice, like seracs,
are impossible to obtain through the simulation. Although our pro-
cedural amplification locates where such features occur, we used
a high-resolution layered model combined with textures for our
renders, thus our scenes do not show overhangs. The complex ge-
ometry of crevasses and seracs would be better captured by placing
three-dimensional models; for example, procedurally defined im-
plicit surfaces allowing for blending and carving operations. How-
ever, modeling individual feature geometries was out of the scope
of this paper.

We restricted our work to valley glaciers and ice fields and did not
investigate the simulation of ice shelves that are ice sheets spreading
into the ocean, forming floating ice platforms still attached to the
grounded ice. Simulating ice shelves would require accounting for
the interactions between the ocean water and ice, which was beyond
our target scope.

8 CONCLUSION
In this paper, we proposed a hybrid technique combining a novel
multiresolution SIA with procedural methods for generating high-
resolution glaciers featuring realistic details such asmoraines, ogives,
icefalls, and crevasses. To the best of our knowledge, we are the first
to introduce a fully interactive glacier simulation system compati-
ble with existing terrain generation frameworks and pipelines. Our
work opens several avenues for future research.

Although our system allows for simulating the formation and the
evolution of glaciers throughout time, the considered time scales are
not large enough to model bedrock erosion that produces specific
landforms such as hanging valleys. Combining the ice flow simula-
tion with erosion would be an interesting research direction worth
investigating.

In this work, we focused on a subset of glacier features connected
with the ice flow. Retracing glaciers usually create a frontal moraine
from the accumulation of transported debris on its limit, which acts

as a dam retaining the water melting, forming a lake. Modeling
such frontal moraines and lakes could be a direct extension of this
work: our simulation could record geomorphological parameters to
determine how far glaciers advanced and where to generate lakes.

Glacier features are instantiated at a given time step according to
parameters of the mass of ice. In reality, crevasses are in constant
movement: as the glacier flows, new crevasses open whereas others
close due to compression stress, some break apart into seracs that
fall along cliffs or icefalls, eventually triggering avalanches. Sim-
ulating the complex ice dynamics would require accurate spatial
and temporal scales (less than one meter, less than one hour), and
therefore remains a challenging realistic animation problem.
Finally, from a rendering perspective, interesting challenges in-

clude modeling the complex shape of crevasses and seracs, or cap-
turing the changing material properties of ice depending on its level
of compactness.
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Accumulation / Ablation zones Hanging glacier, seracs
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Fig. 24. Side by side comparison of different modeled features. Our procedural placement combined with texture bombing can successfully reproduce a
vast variety of small-scale glacier features. Picture credits: Alaska NPS pictures shared as public domain (https://www.flickr.com/alaskanps), Jürg Alean and
Michael Hambrey pictures used with permission (https://www.swisseduc.ch/glaciers), Jordi Camins picture used with permission (http://www.gelicehielo.com),
Céline Mounier picture shared as CC-BY (https://www.flickr.com/celinemyriam/7787161490).
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Table 2. Execution parameters, timings and results for the different glaciers simulated, grid size in meters (m).

Figure: terrain km ELA (m) β γ Coarse grid Years ts (s) years/s Fine grid tup(s) Max h (m) Ice km3

15: Chartreuse 50 1400 ± 50 3 1 250 (200) 946 76 12.4 1250 (40) 152 341.5 14.0
15: Canyon 30 2000 ± 150 2 1 250 (120) 1407 145 9.7 1500 (20) 366 264.5 27.0
15: Ecrins 84 2600 ± 100 1 1 350 (240) 671 109 6.1 2800 (30) 2032 417.9 54.0
15: Pyrenees 30 2500 ± 150 2 1 250 (120) 416 25 16.6 1500 (20) 218 258.6 6.7
15: Ruapehu 30 2000 ± 150 4 2 250 (120) 323 23 13.8 1500 (20) 242 186.1 3.2
15: Smokies 30 1400 1 1 250 (120) 902 19 46 1500 (20) 52 190.9 3.3
15: St Helens 20 2000 ± 100 5 1 250 (80) 256 21 12 1000 (20) 74 115.3 1.2
15: Sweden 60 1400 5 1 200 (300) 3209 94 34 2400 (25) 815 556.4 81.0
19: left 30 2350 1 1 250 (120) 777 40 19.3 1500 (20) 192 223.8 11.0
19: middle 30 2500 1 1 250 (120) 621 7 92.7 1500 (20) 36 143.5 3.6
19: right 30 2650 1 1 250 (120) 794 3 240.8 1500 (20) 16 105.8 0.6
20: left 30 2500 2 1 250 (120) 631 17 36.1 1500 (20) 107 179.8 6.3
20: right 30 2500 ± 300 2 1 250 (120) 659 29 22.8 1500 (20) 184 187.9 7.1
21: top-left 30 2500 1 1 250 (120) 621 7 92.7 1500 (20) 36 143.5 3.6
21: top-right 30 2500 1 2 250 (120) 454 4 126.1 1500 (20) 29 119.5 2.7
21: bottom-left 30 2500 2 1 250 (120) 631 17 36.1 1500 (20) 107 179.8 6.3
21: bottom-right 30 2500 2 2 250 (120) 607 14 44.7 1500 (20) 83 173.8 4.7
22: left 30 2500 2 1 250 (120) 667 24 27.4 1500 (20) 126.8 185.2 6.2
22: middle 30 2500 2 1 250 (120) 642 22 28.9 1500 (20) 148.8 188.9 6.3
22: right 30 2500 2 1 250 (120) 544 21 25.8 1500 (20) 111.3 181.7 4.7
23: left 30 2500 1 1 250 (120) 1359 19 71.2 1500 (20) 85 203.7 9.2
23: right 30 2500 1 1 250 (120) 639 6 99.8 1500 (20) 30 148.9 3.6
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