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Abstract. Neural mass models are among the most popular mathematical models

of brain activity, since they enable the rapid simulation of large-scale networks

involving different neural types at a spatial scale compatible with electrophysiological

experiments (e.g., local field potentials). However, establishing neural mass model

(NMM) equations associated with specific neuronal network architectures can be

tedious and is an error-prone process, restricting their use to scientists who are familiar

with mathematics. In order to overcome this challenge, we have developed a user-

friendly software that enables a user to construct rapidly, under the form of a graph, a

neuronal network with its populations and connectivity patterns. The resulting graph

is then automatically translated into the corresponding set of differential equations,

which can be solved and displayed within the same software environment. The software

is proposed as open access, and should assist in offering the possibility for a wider

audience of scientists to develop NMM corresponding to their specific neuroscience

research questions.

Keywords : Neural mass models, Connectivity graphs, Local field potentials.

1. Introduction

Neural mass models (NMMs) are a popular class of models that simulate the electrical

activity of neuronal assemblies. NMMs are extensively used in neuroscience, since those

models reproduce electrophysiological signals recorded from healthy [1, 2, 3] or impaired

brains as in Alzheimer’s disease [4] or epilepsy [5, 6]. The main principle of a NMM is to

consider populations of neurons instead of individual neurons, connected by excitatory

and inhibitory projections between those populations [7, 8, 9]. Interestingly, NMMs are

able to reproduce realistic local field potential (LFP) signals recorded experimentally,
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NMMGenerator: An automatic neural mass model generator from population graphs 2

since their spatial scale of description is compatible with the sources originating LFPs.

Successful examples of NMMs application are evoked potentials [10, 11], epileptiform

activities [12] or cortical connectivity [13]. More recently, NMMs have been used to

understand the effect of deep brain stimulation on the activity of targeted regions [14] or

the effect of sleep regulation [15]. A significant advantage of NMMs is that they include

key physiological information: the connection between modeled populations corresponds

to actual neuronal synaptic connections, the firing rate (FR) to post-synaptic potential

(PSP) conversion uses a sigmoid function based on experimental data [16], and the PSP

to FR conversion uses a 2nd order low-pass filter transcribing the synaptic conversion

process and includes physiological time constants.

A state-space representation of a NMM can be derived from a graph representing

populations and connections among them, as shown in figure 1. This state-space

representation results in a set of ordinary differential equations (ODE). The main issue

with this representation is that the ODE set must be rewritten for each graph. More

precisely, if a population, or a link between sup-populations, or an external input is

added or removed, the ODE equation set of the neural mass model needs to be rewritten.

Therefore, it can be tedious to compute by hand the set of ODE equations associated

with NMM graphs. In addition, this step can be difficult for researchers not familiar

with mathematical or computer coding operations.

In this paper, we propose an innovative method that automatically generates the

NMM state-space ODE directly from a user-generated graph. The graph features

populations and associated projections (links) them, where populations can represent

one class or type of neuron (pyramidal / basket cell, or glutamatergic / GABAergic

for instance). The automatic conversion method was implemented in an open-source

software, enabling the streamlined design of NMM graphs. Our software then creates

a python class model from a NMM graph that can be directly used to run simulations.

The python class model can be used directly through the python interpreter or can be

used in a basic computation GUI (provided within the software), where the parameters

of the model (e.g., synaptic gains, time constants) can be modified and the model output

(LFPs, pulse densities and PSPs) can be displayed.

A software proposed by [17] was proposed to study coupling between two NMMs.

Contrary to our software, the complexity to incorporate physiological knowledge into

the model equations is not addressed. Indeed, the user needs to create directly block

diagrams, which is a step made automatically in our software using physiology-based

graphs. Furthermore, the software proposed by [17] requires Matlab and Simulink

knowledge, and are not free, which can refrain from the use of these tools by users

not familiar with mathematical or computer coding operations.

The software described here enables the generation of source-level (LFP) signals,

that therefore cannot be interpreted directly as EEG signals. Indeed, source-level signals

are summed (mixing problem) at the level of EEG electrodes, therefore obtained EEG

signals from the LFP signals generated with our software requires having a head model

at disposal (head and tissue geometries, conductivities, EEG sensor positions). Once
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NMMGenerator: An automatic neural mass model generator from population graphs 3

the head model is known, a lead-field matrix describing the contribution of each source

(neuronal population) to the signal recorded by each EEG sensor can be computed, and

used to project LFP signals onto EEG sensors, i.e. obtaining EEG signals.

2. Material and Methods

2.1. Generalities about NMMs

A NMM is a model accounting for a large number of neurons in a local brain network.

The NMM is then an average of individual neuronal states, corresponding to post-

synaptic potentials and firing rates of several populations (principal cells, excitatory or

inhibitory interneurons). NMMs feature two kind of conversions: the first one is a FR to

PSP conversion, called ”pulse-to-wave”. It is a linear transformation which is modeled

by a 2nd order low-pass filter, where the impulse response (Green’s function) is given

by:

hk =
Hk

τk
e
− t
τk , (1)

where H is the synaptic gain, τ is the time constant (its reciprocal is denoted λ) and

k is the considered population with its neurotransmitter type (e.g., glutamate, GABA).

Usually, this filter is represented as a set of two 1st-order ordinary differential equations

given by:

ẏka(t) = ykb(t)

ẏkb(t) = Hkλkx(t) − 2λkykb(t) − λ2kyka(t)
(2)

where x(t) is the input signal (a firing rate of another population) and yka(t) is the

output signal (the post-synaptic potentials).

The second one is a PSP to FR conversion which is called ”wave-to-pulse”,

converting the average membrane potential of a population into the average firing rate of

the same population which is the output of the population. This conversion is non-linear

and typically takes the form of a sigmoid function.

sigmk(v) =
2e0k

1 + erk(v0k−v)
, (3)

where e0k is half of the maximal population firing rate, v0k is the average membrane

potential for which e0k is reached, and rk is the slope. In the model, the interactions

between populations are modeled using connectivity constants named Ck, accounting

for the average number of synaptic contacts. In this paper, since an interconnection

is considered as unidirectional, the general format of connectivity constants is Cke−kr ,

where ke is the population emitting the FR, and kr is the population receiving the FR.

Noise can be added to the model to account for the average density of afferent action

potentials, and is considered as the external input of the neural mass model. This noise
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Figure 1. (a). Connectivity graph where only our population of interest (PopX) is

shown, with all population projecting towards it. Every population from Pop1 to PopN

is emitting towards PopX through a connectivity parameter Ci. (b). Corresponding

diagram that allows to compute FRX and PSPX of PopX.

is usually a Gaussian white noise (denoted pk(t)) which is excitatory. However, in our

implementation, let us mention that it could also be inhibitory.

2.2. Graph and block diagram representation of a population

Each population of a NMM can be seen as an independent graph or a block diagram.

A general example of such representations is shown in figure 1 where the population of

interest is the PopX. In Panel a, several populations Pop1-N are connected toward the

PopX through connectivity parameters C(1−N)−X which are considered as the weights

of connections. This graph is equivalent to the block diagram represented in panels b

to d. The populations Pop1-N send their FRs to the population PopX which are then

converted to PSPs with the ”pulse-to-wave” filter. Those PSPs are then multiplied by

connectivity constants before being summed up to give the total PSPX . Note that if

a synaptic contact is inhibitory, the corresponding PSP must be inverted (multiply by

-1) to account for the hyper-polarization of the membrane instead of a depolarization.

To be able to compute the PSPX, we need to convert the firing rate that are projected

to the PopX. Therefore, a set of ODEs (see eq. 2) must be created for each link that

exists between populations projecting toward the population PopX. So, for the PopX,

we obtain the following system of ODEs:
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Figure 2. (a). Jansen-Rit NMM with three populations (Principal cells, Excitatory

interneurons and inhibitory interneurnons). (b). Block diagram for the principal cells

population. (c). Block diagram for the excitatory interneurons population. (d). Block

diagram for the inhibitory interneurons population.

ẏ1a(t) = y1b(t)

ẏ1b(t) = C1−XH1λ1FR1 − 2λ1y1b(t) − λ21y1a(t)

ẏ2a(t) = y2b(t)

ẏ2b(t) = C2−XH2λ2FR2 − 2λ2y2b(t) − λ22y2a(t)

...

ẏNa(t) = yNb(t)

ẏNb(t) = CN−XHNλNFRN − 2λNyNb(t) − λ2NyNa(t)

(4)

2.3. Graph and block diagrams representation of multi-population network

In the following, we use as an example the Jansen and Rit NMM [11], which is one

of the simplest NMM that we found in the literature. Figure 2 presents the graph

(panel (a)) associated with the Jansen-Rit NMM. Three populations are present in

this model: principal / pyramidal cells (P: Glutamatergic), excitatory interneurons (P’:

Glutamatergic) and inhibitory interneurons (GAs: GABA A,slow). The principal cells

population is connected to both excitatory and inhibitory interneurons (through CP−P ′

and CP−GAs respectively), which in return are connected to Principal cells (through

CP ′−P and CGAs−P ). An external input is added to the principal cells (p(t)).
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NMMGenerator: An automatic neural mass model generator from population graphs 6

The complete graph can be decomposed into three separate block diagrams, one

for each modeled population. Then, panel b stands for principal cells (P), panel c

stands for excitatory interneurons (P’), and panel d stands for inhibitory interneurons

(GAs). Note that there exists one ”wave-to-pulse” (sigmoid function) per population,

and one ”pulse-to-wave” (2nd order filter) per link toward the populations (external

input included). The number of ODE in the ODE set is defined the number of links

between populations (including the noise populations). However, some ”pulse-to-wave”

functions can be redundant, which is the case for hP(FRP) of the block diagram of Figure

2 (c) and 2 (d). Indeed, those two pulse-to-wave function are identical (HP and τP along

with their inputs FRP) from a mathematical point of view, since those two functions are

coming from the same population (pyramidal cells P). Then, their outputs are identical

and those two functions can be combined into a single pulse-to-wave function. It is then

possible to convert the entire graph with two methods: one 2nd order ODE per link

(without pulse-to-wave function combination), or one 2nd ODE per population (with

pulse-to-wave function combination), the external input counting as a population.

2.3.1. One 2nd order ODE per link. To derive the ODE set, each link must give a 2nd

order ODE according to eq. 2. Indeed, as apparent from the panels b-d in figure 2, each

link corresponds to a ”pulse-to-wave” function. We can then write:

ẏPa(t) = yPb(t)

ẏPb(t) = CP ′−PHPλPFRP ′ − 2λPyPb(t) − λ2PyPa(t)

ẏPc(t) = yPd(t)

ẏPd(t) = CGAs−PHPλPFRGAs − 2λPyPd(t) − λ2PyPc(t)

ẏP ′
a
(t) = yP ′

b
(t)

ẏP ′
b
(t) = CP−P ′HP ′λP ′FRP − 2λP ′yP ′

b
(t) − λ2P ′yP ′

a
(t)

ẏGAsa(t) = yGAsb(t)

ẏGAsb(t) = CP−GAsHGAsλGAsFRP − 2λGAsyGAsb(t) − λ2GAsyGAsa(t)

ẏNa(t) = yNb(t)

ẏNb(t) = HPλPp(t) − 2λPyNb(t) − λ2NyNa(t)

(5)

The PSPs equations are:

PSPP (t) = yNa(t) + yPa(t) − yPc(t) = LFP (t)

PSPP ′(t) = yP ′
a
(t)

PSPGAs(t) = yGAsa(t)

(6)

and the FRs equations are:

FRP (t) = sigmP (PSPP (t))

FRP ′(t) = sigmP ′(PSPP ′(t))

FRGAs(t) = sigmGAs(PSPGAs(t))

(7)

Page 6 of 17AUTHOR SUBMITTED MANUSCRIPT - JNE-103345.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



NMMGenerator: An automatic neural mass model generator from population graphs 7

2.3.2. One 2nd order ODE per population. To derive the set of ODEs, each ”pulse-to-

wave” results in a 2nd order ODE according to eq. 2. However, some ”pulse-to-wave”

functions are redundant. This is the case for the hP(FRP) in panels c-d in figure 2. More

generally, the ”pulse-to-wave” function can be placed right after the sigmoid function

(”wave-to-pulse”). This results in only one 2nd order ODE per population, plus another

one by external input (noise) added to the model. Therefore, the resulting set of ODEs

is:

ẏPa(t) = yPb(t)

ẏPb(t) = HPλP sigm (PSPP (t)) − 2λPyPb(t) − λ2PyPa(t)

ẏP ′
a
(t) = yP ′

b
(t)

ẏP ′
b
(t) = HP ′λP ′sigm (PSPP ′(t)) − 2λP ′yP ′

b
(t) − λ2P ′yP ′

a
(t)

ẏGAsa(t) = yGAsb(t)

ẏGAsb(t) = HGAsλGAssigm (PSPGAs(t)) − 2λGAsyGAsb(t) − λ2GAsyGAsa(t)

ẏNa(t) = yNb(t)

ẏNb(t) = HPλPp(t) − 2λPyNb(t) − λ2NyNa(t)

(8)

The PSPs equations are:

PSPP (t) = yNb(t) + CP ′−PyP ′
a
(t) − CGAs−PyGAsa(t)

PSPP ′(t) = CP−P ′yPa(t)

PSPGAs(t) = CP−GasyPa(t)

(9)

and the FRs equations are:

FRP (t) = sigmP (PSPP (t))

FRP ′(t) = sigmP ′(PSPP ′(t))

FRGAs(t) = sigmGAs(PSPGAs(t))

(10)

2.4. The Neural Mass Model Generator software

The source code of the neural mass model generator (NMMGenerator) software is

available at https://gitlab.com/yocmax/nmm_generator. A Manual of the software

along with a demo video (available at https://gitlab.com/yocmax/nmm_generator/

blob/master/Demo_NMM_Generator.mp4) is provided with the software. A screenshot

of the GUI main window is displayed in figure 3 where the Wendling NMM has been

generated.

In the NMMGenerator software, the user builds in a user-friendly manner a graph

representing the neural mass model for which equations should be computed. To do

so, the user places on the graph three different items: populations, noises and links.

In order to account for the difference of parameter values for the three items, the user

needs to fill in particular values for each item, such as:
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Figure 3. Screenshot of the GUI main window. The Wendling NMM is being

displayed.

• a population: a name, 2e0n, v0n, rn, Hn and λn

• a link: Cna to nb

• a noise: a name, meann, stdn

Where n being are the names of the concerned population or noise, except for links

which have na for the emitter population or noise and nb for the receiver population.

The core of the software uses a list of items that have been added to the graph.

Each item used for the NMM generation is saved in that list. A class item has been

created to store every variables necessary for the NMM generation. Table 1 displays

variables stocked in the item class. This class has some particular variables to identify

the type of item (population, noise or link). The variables cellId e and cellId r enable

identifying the link between two populations, and also the directionality of that link (’e’

stands for emitter and ’r’ stands for receiver).

The items presented in the graph (populations, connections, noise) are sufficient to

generate the corresponding NMM set of equations. The list of items enables knowing

the number of different populations, the number of external noises as well as the number

of connections linking populations and noises together. The graph created by the user

can be saved under two file formats: a text file (.txt) that can be modified by hand,
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NMMGenerator: An automatic neural mass model generator from population graphs 9

Table 1. Item class, common to population, noise or link

name info

ID ID of the item

Type population, noise or link

Name Name of the item (automatic for link)

cellId e ID of source population or noise for a link

cellId r ID of target population for a link

color color of population or noise

e0x value for e0 of the sigmoid function

v0x value for v0 of the sigmoid function

rx value for r of the sigmoid function

Hx value for H of the transfer function

Tx value for T of the transfer function

Cx value for C of the connectivity

mean mean for the noise

std standard deviation for the noise

Noise pop related population for gain and time constant

and a binary file (.nmm). Those files can be loaded in the software later for further

modifications.

The NMMGenerator software is provided with a NMM Basic Simulator (NMMBS)

viewer GUI that provides the possibility to simulate in a user-friendly manner the

generated NMM.

The NMMBS GUI allows to load a NMM class model generated with the

NMMGenerator interface and to tune the various parameters corresponding with the

NMM (parameters for ”pulse-to-wave” transfer functions, ”wave-to-pulse” sigmoid

functions, connectivities and noises). The user can select the simulation duration along

with the sampling frequency, and may use a Butterworth band pass filter on the result

signals. In order to keep a logical link with the created graph, the color of signal plots

for each population is maintained.

3. Results

In this section, two popular NMMs have been built using our software. The first one

is the Jansen and Rit model [11], and the second one is the Wendling model [18]. The

corresponding graphs and their NMM python classes are provided in the gitlab folder.

Let us note that the source codes provided in this paper have been slightly modified

to increase readability. Since the provided source code is part of a python class, every

attribute or method belonging to that class should be referred to with a ’self’ keyword,

those have been removed from the paper, but do appear in the original source code.
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NMMGenerator: An automatic neural mass model generator from population graphs10

Figure 4. Screenshot of the NMM Basic Stimulator viewer GUI. Currently, the

Wendling NMM corresponds to the one in figure 3.

3.1. Jansen Rit model

The graph included in the software for the Jansen and Rit NMM is presented in figure

5 (a), and corresponds to the graph from [11]. ODE equations for this graph have been

given as an example in the Methods section 2.3.1 when one ODE per link is generated

and in section 2.3.2 when one ODE per population is generated. The corresponding

Python ODE derivative function generated by the software for the two methods are

provided below.

• One ODE per link (corresponding with the ODE equation set from eq. 5):

dydt [0] = y[1]

dydt [1] = PTW(+ C_P_to_Pp*sigm_P (+y[8]+y[2]-y[4]), y[0], y[1], H_P , T_P)

dydt [2] = y[3]

dydt [3] = PTW(+ C_Pp_to_P*sigm_Pp (+y[0]), y[2], y[3], H_Pp , T_Pp)

dydt [4] = y[5]

dydt [5] = PTW(+ C_GAs_to_P*sigm_GAs (+y[6]), y[4], y[5], H_GAs , T_GAs)

dydt [6] = y[7]

dydt [7] = PTW(+ C_P_to_GAs*sigm_P (+y[8]+y[2]-y[4]), y[6], y[7], H_P , T_P)

dydt [8] = y[9]

dydt [9] = PTW(noise_var_N , y[8], y[9], H_P , T_P)
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NMMGenerator: An automatic neural mass model generator from population graphs11

Figure 5. Two graphs made in the software: (a) the Jensen and Rit NMM and (b)

the Wendling NMM.

ODE 0 and 1 correspond to the link from P to Pp, ODE 2 and 3 correspond to the

link from Pp to P, ODE 4 and 5 correspond to the link from GAs to P, ODE 6 and

7 correspond to the link from P to GAs, and ODE 8 and 9 correspond to the link

from N to P in Figure 5(a).

• One ODE per population (corresponding with the ODE equation set from eq. 8):

dydt [0] = y[1]

dydt [1] = PTW(+ sigm_P (+y[6]+ C_Pp_to_P*y[2]- C_GAs_to_P*y[4]), y[0],

y[1], H_P , T_P)

dydt [2] = y[3]

dydt [3] = PTW(+ sigm_Pp (+ C_P_to_Pp*y[0]), y[2], y[3], H_Pp , T_Pp)

dydt [4] = y[5]

dydt [5] = PTW(+ sigm_GAs (+ C_P_to_GAs*y[0]), y[4], y[5], H_GAs , T_GAs)

dydt [6] = y[7]

ODE 0 and 1 correspond to the PSP generated by population P, ODE 2 and 3

correspond to the PSP generated by population Pp, ODE 4 and 5 correspond to

the PSP generated by population GAs, and ODE 6 and 7 correspond to the PSP

generated by the noise N in Figure 5(a).

Where the PTW function computes the second 1st-order ODE of the ”pulse to

wave”function as

def PTW(y0 ,y1 ,y2 ,G,T):

return (G*T*y0 - 2*T*y2 - T*T*y1)

Page 11 of 17 AUTHOR SUBMITTED MANUSCRIPT - JNE-103345.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



NMMGenerator: An automatic neural mass model generator from population graphs12

with y0 is the input signal of the transfer function, y1 and y2 are the 1st order ODE

states, G the transfer function gain, and T the transfer function time constant λ. For

example, for the second 1st order ODE of eq. 5, the PTW function automatically computes

ẏPb(t) from CP ′−P (C_P_to_Pp), HP (H_P) , λP (T_P) , FRP ′ (sigm_P(y[8]+y[2]-y[4])+)

, yPb(t) (y[0]) , yPa(t) (y[1]).

The Sigm_x function computes the ”wave-to-pulse” sigmoid function according to

the corresponding population parameters. For example, the sigmoid function for the P

population is :

def sigm_P(v):

return e0_P /(1+np.exp(r_P*(v0_P -v)))

3.2. Wendling model

The graph included in the software for the Wendling NMM is presented in figure 5 (b),

and corresponds to the graph from [18]. The corresponding Python ODE derivative

function generated by the software for the two methods are given below.

• One ODE per link: ODE equations for the Wendling graph with One ODE per link

are:

ẏPa(t) = yPb(t)

ẏPb(t) = CP ′−PHPλPFRP ′ − 2λPyPb(t) − λ2PyPa(t)

ẏPc(t) = yPd(t)

ẏPd(t) = CGAs−PHPλPFRGAs − 2λPyPd(t) − λ2PyPc(t)

ẏPe(t) = yPf (t)

ẏPf (t) = CGAf−PHPλPFRGAf − 2λPyPf (t) − λ2PyPe(t)

ẏP ′
a
(t) = yP ′

b
(t)

ẏP ′
b
(t) = CP−P ′HP ′λP ′FRP − 2λP ′yP ′

b
(t) − λ2P ′yP ′

a
(t)

ẏGAsa(t) = yGAsb(t)

ẏGAsb(t) = CP−GAsHGAsλGAsFRP − 2λGAsyGAsb(t) − λ2GAsyGAsa(t)

ẏGAfa(t) = yGAfb(t)

ẏGAfb(t) = CP−GAfHGAfλGAfFRP − 2λGAfyGAfb(t) − λ2GAfyGAfa(t)

ẏGAfc(t) = yGAfd(t)

ẏGAfd(t) = CGas−GAfHGAfλGAfFRGas − 2λGAfyGAfd(t) − λ2GAfyGAfc(t)

ẏNa(t) = yNb(t)

ẏNb(t) = HPλPp(t) − 2λPyNb(t) − λ2NyNa(t)

(11)
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NMMGenerator: An automatic neural mass model generator from population graphs13

The PSPs equations are:

PSPP (t) = yNa(t) + yPa(t) − yPc(t) − yPe(t) = LFP (t)

PSPP ′(t) = yP ′
a
(t)

PSPGAs(t) = yGAsa(t)

PSPGAf (t) = yGAfa(t) − yGAfc(t)

(12)

and the FRs equations are:

FRP (t) = sigmP (PSPP (t))

FRP ′(t) = sigmP ′(PSPP ′(t))

FRGAs(t) = sigmGAs(PSPGAs(t))

FRGAf (t) = sigmGAf (PSPGAf (t))

(13)

dydt [0] = y[1]

dydt [1] = PTW(+ C_P_to_Pp*sigm_P (+y[14]+y[2]-y[4]-y[10]), y[0], y[1], H_P , T_P)

dydt [2] = y[3]

dydt [3] = PTW(+ C_Pp_to_P*sigm_Pp (+y[0]), y[2], y[3], H_Pp , T_Pp)

dydt [4] = y[5]

dydt [5] = PTW(+ C_GAs_to_P*sigm_GAs (+y[6]), y[4], y[5], H_GAs , T_GAs)

dydt [6] = y[7]

dydt [7] = PTW(+ C_P_to_GAs*sigm_P (+y[14]+y[2]-y[4]-y[10]), y[6], y[7], H_P , T_P)

dydt [8] = y[9]

dydt [9] = PTW(+ C_GAs_to_GAf*sigm_GAs (+y[6]), y[8], y[9], H_GAs , T_GAs)

dydt [10] = y[11]

dydt [11] = PTW(+ C_GAf_to_P*sigm_GAf(-y[8]+y[12]), y[10], y[11], H_GAf , T_GAf)

dydt [12] = y[13]

dydt [13] = PTW(+ C_P_to_GAf* sigm_P (+y[14]+y[2]-y[4]-y[10]), y[12],

y[13], H_P , T_P)

dydt [14] = y[15]

dydt [15] = PTW(noise_var_N , y[14], y[15], H_P , T_P)

ODE 0 and 1 correspond to the link from P to Pp, ODE 2 and 3 correspond to the

link from Pp to P, ODE 4 and 5 correspond to the link from GAs to P, ODE 6 and

7 correspond to the link from P to GAs, ODE 8 and 9 correspond to the link from

GAs to GAf, ODE 10 and 11 correspond to the link from GAf to P, ODE 12 and

13 correspond to the link from P to GAf, and ODE 14 and 15 correspond to the

link from N to P in Figure 5(b).

• One ODE per population: ODE equations for the Wendling graph with One ODE
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NMMGenerator: An automatic neural mass model generator from population graphs14

per population are:

ẏPa(t) = yPb(t)

ẏPb(t) = HPλP sigm (PSPP (t)) − 2λPyPb(t) − λ2PyPa(t)

ẏP ′
a
(t) = yP ′

b
(t)

ẏP ′
b
(t) = HP ′λP ′sigm (PSPP ′(t)) − 2λP ′yP ′

b
(t) − λ2P ′yP ′

a
(t)

ẏGAsa(t) = yGAsb(t)

ẏGAsb(t) = HGAsλGAssigm (PSPGAs(t)) − 2λGAsyGAsb(t) − λ2GAsyGAsa(t)

ẏGAfa(t) = yGAfb(t)

ẏGAfb(t) = HGAfλGAfsigm (PSPGAf (t)) − 2λGAfyGAfb(t) − λ2GAfyGAfa(t)

ẏNa(t) = yNb(t)

ẏNb(t) = HPλPp(t) − 2λPyNb(t) − λ2NyNa(t)

(14)

The PSPs equations are:

PSPP (t) = yNb(t) + CP ′−PyP ′
a
(t) − CGAs−PyGAsa(t) − CGAf−PyGAfa(t)

PSPP ′(t) = CP−P ′yPa(t)

PSPGAs(t) = CP−GasyPa(t)

PSPGAf (t) = CP−GafyPa(t) − CGas−GafyGAsa(t)

(15)

and the FRs equations are:

FRP (t) = sigmP (PSPP (t))

FRP ′(t) = sigmP ′(PSPP ′(t))

FRGAs(t) = sigmGAs(PSPGAs(t))

FRGAf (t) = sigmGAf (PSPGAf (t))

(16)

dydt [0] = y[1]

dydt [1] = PTW(+ sigm_P (+y[8]+ C_Pp_to_P*y[2]- C_GAs_to_P*y[4]-

C_GAf_to_P*y[6]), y[0], y[1], H_P , T_P)

dydt [2] = y[3]

dydt [3] = PTW(+ sigm_Pp (+ C_P_to_Pp*y[0]), y[2], y[3], H_Pp , T_Pp)

dydt [4] = y[5]

dydt [5] = PTW(+ sigm_GAs (+ C_P_to_GAs*y[0]), y[4], y[5], H_GAs , T_GAs)

dydt [6] = y[7]

dydt [7] = PTW(+ sigm_GAf(-C_GAs_to_GAf*y[4]+ C_P_to_GAf*y[0]), y[6],

y[7], H_GAf , T_GAf)

dydt [8] = y[9]

dydt [9] = PTW(noise_var_N , y[8], y[9], H_P , T_P)

ODE 0 and 1 correspond to the PSP generated by population P, ODE 2 and 3

correspond to the PSP generated by population Pp, ODE 4 and 5 correspond

to the PSP generated by population GAs, ODE 6 and 7 correspond to the PSP

generated by population GAf, and ODE 8 and 9 correspond to the PSP generated

by the noise N in Figure 5(b).
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Figure 6. Results obtained with the Wendling NMM generated using our software.

The 6 typical activity patterns are represented, and reproduce faithfully the patterns

of the original Wendling NMM that can be found in Figure 3 in [18].

As an example, Figure 6 displays results of the Wendling NMM generated from

the graph in Figure 5(b). Six qualitatively different activity patterns are presented

from top to bottom: normal background activity, sporadic spikes, sustained discharge

of spikes, slow rhythmic activity, low-voltage rapid activity and slow quasi-sinusoidal

activity. Those can be compared with the use of the original model as in Fig 3 of the

original paper [18], confirming that the model automatically generated from the graph

created using our software accurately matches the output of the Wendling NMM.

4. Discussion and concluding remarks

Here, we have described a software that enables a user to automatically build a python

class model of a NMM, based on a graph generated using a user-friendly interface.

The graph is built out from items that can either be neural populations or links

between neural populations. A neural population can represent either a type of neuron

(e.g., pyramidal or basket cells), or the type of neurotransmitter used by the neuronal

population (e.g., glutamatergic or GABAergic). To our knowledge, this software is the

first of its kind to translate automatically a neural network model, constructed under the
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NMMGenerator: An automatic neural mass model generator from population graphs16

form of a graph, directly into a set of differential equations that can be solved directly

within the same software environment. The software is proposed for free and open-

source, through a GitLab link where the source code can be found along with a software

manual and a demonstration video where the Wendling NMM is built. In addition,

save files of the Jansen and Rit NMM and the Wendling NMM are also provided along

with the software. A dedicated part of the software enables running simulations of the

generated NMM, where NMM parameters can be modified and result signals (LFPs,

post-synaptic potentials and firing rates) can be displayed.

Among the limitations of our approach, let us cite that this software is only adapted

for running simulations at the mesoscopic level, since the basic level of description is

the neural population level. Therefore, running cellular-scale simulations cannot be

performed using our framework, but could be developed using a similar methodology.

Another possible issue is the tuning of the connectivity parameters within a model: while

the post-synaptic response and firing rate functions are well defined and constrained

based on neurophysiology, exploring the parameter space of connectivity parameters can

be challenging. One possible strategy consists in initiating the network with connectivity

values on the order of magnitude of those in the Jansen and Rit or Wendling model,

before varying specific connectivity parameters.

Since the software is provided on GitLab, issues can be reported to improve the

software with new features or bug corrections. This software can be an appropriate

tool for scientists who are not necessarily familiar with mathematical or computer

coding manipulations, or as a tutorial tool to present the neural mass approach to

neuroscientists. Furthermore, it enables testing rapidly and in a simple manner various

graphs with different populations and types of connectivity architectures, and then

testing hypotheses on possible pathophysiological mechanisms that would impact neural

dynamics at the population level.
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[3] Peng Wang and Thomas R Knösche. A realistic neural mass model of the cortex with laminar-

specific connections and synaptic plasticity–evaluation with auditory habituation. PloS one,

8(10):e77876, 2013.

[4] Basabdatta Sen Bhattacharya, Damien Coyle, and Liam P Maguire. A thalamo–cortico–thalamic

neural mass model to study alpha rhythms in alzheimer’s disease. Neural networks, 24(6):631–

645, 2011.

Page 16 of 17AUTHOR SUBMITTED MANUSCRIPT - JNE-103345.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



NMMGenerator: An automatic neural mass model generator from population graphs17

[5] Marc Goodfellow, Kaspar Schindler, and Gerold Baier. Self-organised transients in a neural mass

model of epileptogenic tissue dynamics. NeuroImage, 59(3):2644–2660, 2012.

[6] Alejo J Nevado-Holgado, Frank Marten, Mark P Richardson, and John R Terry. Characterising

the dynamics of eeg waveforms as the path through parameter space of a neural mass model:

application to epilepsy seizure evolution. Neuroimage, 59(3):2374–2392, 2012.

[7] FH Lopes da Silva, A Hoeks, H Smits, and LH Zetterberg. Model of brain rhythmic activity.

Biological Cybernetics, 15(1):27–37, 1974.

[8] FH Lopes Da Silva, A Van Rotterdam, P Barts, E Van Heusden, and W Burr. Models of neuronal

populations: the basic mechanisms of rhythmicity. In Progress in brain research, volume 45,

pages 281–308. Elsevier, 1976.

[9] 3A van Rotterdam, FH Lopes Da Silva, J Van den Ende, MA Viergever, and AJ Hermans. A

model of the spatial-temporal characteristics of the alpha rhythm. Bulletin of mathematical

biology, 44(2):283–305, 1982.

[10] Ben H Jansen, George Zouridakis, and Michael E Brandt. A neurophysiologically-based

mathematical model of flash visual evoked potentials. Biological cybernetics, 68(3):275–283,

1993.

[11] Ben H Jansen and Vincent G Rit. Electroencephalogram and visual evoked potential generation in

a mathematical model of coupled cortical columns. Biological cybernetics, 73(4):357–366, 1995.

[12] Fabrice Wendling, Jean-Jacques Bellanger, Fabrice Bartolomei, and Patrick Chauvel. Relevance

of nonlinear lumped-parameter models in the analysis of depth-eeg epileptic signals. Biological

cybernetics, 83(4):367–378, 2000.

[13] Olivier David and Karl J Friston. A neural mass model for meg/eeg: coupling and neuronal

dynamics. NeuroImage, 20(3):1743–1755, 2003.

[14] Faten Mina, Pascal Benquet, Anca Pasnicu, Arnaud Biraben, and Fabrice Wendling. Modulation

of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent

effects. Frontiers in computational neuroscience, 7:94, 2013.

[15] Michael Schellenberger Costa, Jan Born, Jens Christian Claussen, and Thomas Martinetz.

Modeling the effect of sleep regulation on a neural mass model. Journal of computational

neuroscience, 41(1):15–28, 2016.

[16] Frank H Eeckman and Walter J Freeman. Asymmetric sigmoid non-linearity in the rat olfactory

system. Brain Research, 557(1-2):13–21, 1991.

[17] Mojtaba Chehelcheraghi, Cees van Leeuwen, Erik Steur, and Chie Nakatani. A neural mass model

of cross frequency coupling. PloS one, 12(4), 2017.

[18] F Wendling, F Bartolomei, JJ Bellanger, and P Chauvel. Epileptic fast activity can be explained

by a model of impaired gabaergic dendritic inhibition. European Journal of Neuroscience,

15(9):1499–1508, 2002.

Page 17 of 17 AUTHOR SUBMITTED MANUSCRIPT - JNE-103345.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


