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Anomaly detection (AD) in high-volume environmental data requires one to tackle3

a series of challenges associated with the typical low frequency of anomalous events,4

the broad-range of possible anomaly types and local non-stationary environmental con-5

ditions, suggesting the need for flexible statistical methods that are able to cope with6

unbalanced high-volume data problems. Here, we aimed to detect anomalies caused by7

technical errors in water-quality (turbidity and conductivity) data collected by auto-8

mated in-situ sensors deployed in contrasting riverine and estuarine environments. We9

first applied a range of Artificial Neural Networks (ANN) that differed in both learning10

method and hyper-parameter values, then calibrated models using a Bayesian multi-11

objective optimisation procedure, and selected and evaluated the "best" model for each12

water-quality variable, environment and anomaly type. We found that semi-supervised13

classification was better able to detect sudden spikes, sudden shifts and small sudden14

spikes whereas supervised classification had higher accuracy for predicting long-term15

anomalies associated with drifts and periods of otherwise unexplained high-variability.16

Introduction17

Monitoring the water quality of rivers is becoming increasingly relevant in the Anthropocene18

as the need for management strategies to safeguard water resources in human dominated19

landscapes accelerates. With the advent of new technologies, data on water properties can20

be obtained with high frequency in near-real time, which can facilitate fast and adaptive21

management strategies.1,2 However, the generation of high-volume, high-velocity data can22

create problems of quality control due to a combination of (1) technical issues with the23

water-quality sensors that result in technical anomalies, and (2) operational problems with24

traditional, often manual and periodic, methods of quality control that are no longer feasible.25

In order to improve the quality and utility of high-volumes of data, we therefore need to26

explore efficient methods to complement or replace traditional methods of quality control,27

including manual anomaly detection and correction and quality coding.3,4 Improving water-28
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quality monitoring will also require robust and flexible statistical methods that can handle29

data streaming, while also providing big data tools for data-driven decision making.5–730

The accurate detection of anomalies in high-frequency, high-volume water-quality data31

is additionally challenged by several factors. For example, the common low frequency of32

anomalies in water-quality time series constrains the ability to not only detect anomalies33

but also to evaluate the performance of detection methods.8,9 There is also a broad range of34

possible anomaly types, ranging from sudden changes in water-quality values to anomalously35

constant values maintained for long periods.10,11 In addition, the differentiation of technical36

anomalies, e.g. related to sensor malfunction or database failure, from the real deviation of37

the natural system from its typical behaviour is not always straightforward.1 This is because38

natural fluctuations in environmental conditions at a given site can influence the level of39

detectability of sensor-related anomalies from the normal signal: the greater the fluctuation,40

the harder the detection of technical errors. All of these issues can constrain the generality41

and robustness of detection methods under a broad set of environmental conditions.10,1242

A combination of methods may be required to address the challenges raised above. For43

instance, sudden spikes and shifts in values and impossible and/or out-of-sensor-range val-44

ues on single or just a few observation points can be easily differentiated from adjacent,45

non-anomalous values. Despite the extremely low frequency of such point-based anoma-46

lies in time-series data, rule-based, regression-based and feature-based methods may provide47

optimal performance in terms of their detection.1,11 Common anomalies in chemical and bio-48

chemical data from in-situ sensors also comprise multiple observations, such as sensor drift49

and periods of unusually high or low variability, which may indicate the need for sensor cal-50

ibration or maintenance.13 The detection of these multiple-points anomalies can be tackled51

by various methods,7,11 but remains challenging and often still requires user intervention.52

Several methods can be combined to extend the range of detected anomalies. Recent work53

by Leigh et al.11 showed that a combination of rule-, feature and regression-based methods54

facilitated the correct classification of impossible values, sudden isolated spikes and level55
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shifts, although drift and periods of high variability still tended to be associated with high56

rates of false positives.57

Considering the current global effort to produce real-time, high-frequency and long-58

term monitoring of aquatic ecosystems, and the limitations of existing quality control ap-59

proaches,1,4,13 there is a pressing need to explore new methods. Artificial Neural Networks60

(ANNs) are a promising alternative.6,7,14 One basic strength of ANNs in analysing high-61

frequency time-series data is that they do not require a priori knowledge of the underly-62

ing physical and environmental processes. ANNs have therefore been used tackle multiple63

problems of data streaming including predicting temporal patterns in both marine15,16 and64

freshwater systems.6,17,18 They have potential to detect anomalies and sudden changes that65

occur over short-time intervals in water-quality data,6,18,19 suggesting that they can be read-66

ily applied to optimise anomaly detection in complex and fluctuating environmental systems.67

Previous work on AD applied to water-quality variables compared ANNs to other machine68

learning methods and found that ANNs have comparable performance to other methods in69

terms of AD.12,18,20,21 However, authors also acknowledge that remains understudied the op-70

timisation techniques (especially on those machine learning methods whose learning process71

depends on a large number of hyper-parameters) that aim to improve detection capacity72

under real-world conditions.7,2073

The aim of this study is to test the ability of ANNs to detect technical anomalies in74

water-quality time-series data in contrasting riverine and estuarine environments. We were75

especially interested in testing the ability of ANNs to detect multiple-point anomalies, for76

example those that may result from sensor drift, given that methods previously examined77

were limited in their ability to accurately detect such context-dependent events. The studied78

variables are turbidity and conductivity collected at high-frequency by autonomous in-situ79

sensors. The monitored sites in subtropical Australia and temperate France provide con-80

trasting ranges of environmental conditions, particularly in terms of the studied variables81

and their magnitudes and dynamics. The comparison and evaluation of detection methods82
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in regions that vary in environmental conditions and across a common range of variables83

is essential to determine the methods’ broad suitability for anomaly detection.7 Given that84

the environmental fluctuations in each river (freshwater and estuarine sites) may influence85

the ability to detect the different types of anomalies, we calibrated ANNs using models86

that differed in learning method and hyper-parameter values. To do so, we implemented a87

Bayesian optimisation method using a multi-objective approach (i.e. based on scores spe-88

cially suited to unbalanced classification problems), in order to find the combination of ANN89

hyper-parameters best suited for anomaly detection at each location. The performance of the90

calibrated ANNs in detecting different types of anomalies was also evaluated and compared91

to regression-based methods developed for and applied to similar data.1192

Materials and Methods93

Study sites94

The studied water-quality data derive from two freshwater rivers in north eastern Australia,95

the Pioneer River and Sandy Creek, and an estuarine river in south western France, the96

Ardour River estuary. Both study areas have seasonality in climate and therefore provide97

non-stationary environmental conditions of water properties throughout the year.98

The Australian study area is characterised by humid subtropical climate and strong99

seasonality: the wet season (typically occurring between December and April) has higher100

rainfall and air temperatures than the dry season which has lower rainfall and is associated101

with low to zero river flows.22 Pioneer River (PR) is in the Mackay Whitsunday region of102

northeast Australia, with a length of 120 km and a monitored catchment area of 1,466 km2,103

with the upper reaches flowing predominantly through National or State Parks and its middle104

and lower reaches flowing through land dominated by sugarcane farming. Sandy Creek (SC)105

is a low-lying coastal-plain stream, 72 km long with a monitored catchment area of 326 km2
106

and with a similar land-use and land-cover profile to that of the lower Pioneer River. Both107
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study sites are in the freshwater reaches of these rivers.108

In contrast, south-western France is characterised by an oceanic temperate climate, with109

drier and warmer conditions from April to October. The Adour River (AR) in the Aquitaine110

region of southwestern France is 330 km in length and has a catchment area of 16,880111

km2, with reaches flowing throughout a mosaic of agricultural and forested lands. The112

study site is in the lower estuary between Bayonne city and the river mouth about 3 km113

downstream. The tidal range varies from 1 to 4.5 m. Under the combined influence of rainfall114

and snowmelt during late spring, river flow is highly variable, with minima and maxima of115

about 80 and 3000 m3/s, respectively.23 Driven by such strong fluctuations in tidal range and116

river discharge, the estuary is classified as a highly variable, time-dependent salt-wedge.23117

Water-quality data118

Autonomous multi-parameter in-situ sensors have been installed at each site. At PR and SC,119

YSI EXO2 sondes with YSI Smart Sensors are housed in flow cells in water-quality monitoring120

stations on the rivers’ banks. At pre-defined time intervals (see bellow), monitoring systems121

transport water via a pumping system from the river up to the flow cell. Sensors are equipped122

with wipers to minimise biofouling and all equipment undergo regular maintenance and123

calibration, with sensors calibrated and equipment checked approximately every six weeks124

following manufacturer guidelines. At AR, a YSI 6920 sonde is installed 1 m below the125

water surface on a floating pier, providing direct measurement of water quality in the river.126

Data are retrieved during maintenance operations (sensor cleaning, memory erasing, battery127

replacement) approximately every eight weeks.128

At each site, the in-situ sensors record turbidity (NTU) and electrical conductivity (con-129

ductivity; µS/cm). The temporal resolution of data differs among rivers according to local130

variability in environmental conditions; measurements are taken every 60 and 90 minutes in131

PR and SC, respectively, and every 10 minutes in the AR. At PR and SC, measurements132

are sometimes also taken at more frequent intervals during high flow events. The data se-133
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quences are one year (12 March 2017 to 12 March 2018) and five months (11 March to134

13 August 2019) for the Australian and French sites, respectively, totalling 6280, 5402 and135

14,185 observations at PR, SC and AR, respectively.136

Water-quality parameters were strongly affected by the non-stationary flow regimes of137

each site (see Fig. 1). Turbidity is a visual property of water clarity with higher values138

indicating lower clarity. High turbidity often occurs during flood events, when rivers become139

loaded with sediment eroded from the catchment, and during local re-suspension events that140

can result from salt-wedge arrival, flow instability, or navigational and dredging activities.141

In contrast, low values tend to occur during low discharge periods, e.g. during the dry142

season, when the slow currents promote sediment deposition or, in estuarine environments,143

when low-turbidity marine waters have entered the system. These overall trends can become144

much more complex, and sometimes reversed, under the influence of specific local features.145

Conductivity reflects the concentration of ions in the water. The dominant effect is generally146

due to salts, such as sodium chloride, with marine waters typically having much higher147

conductivity than inland waters. Other dissolved ionic compounds such as nutrients also148

contribute to conductivity.149

In the Australian sites, the water regime is driven by rainfall patterns, generating strong150

positive or negative phases for either turbidity and conductivity values, coinciding with new151

and sudden inputs of fresh water or periods of low and zero flow (see upper and mid panels in152

Fig. 1). By contrast, AR is strongly conditioned by the interplay between river discharge and153

tide forcing. The basic trend is that during high-discharge events, the turbidity reaches high154

values corresponding to massive seaward fluxes of suspended sediments, and the conductivity155

is minimal because the marine waters are flushed out from the estuary (see lower panels in156

Fig. 1). During moderate discharge events, the tidal influence becomes dominant and drives157

tidal fluctuations of conductivity and turbidity inside the estuary: at high tide, the estuary158

is filled by salty (high conductivity) and clearer (low turbidity) marine waters while the159

reverse behaviour is observed at low tide. This pattern is further affected by strong vertical160
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gradients, the salty marine waters being heavier than fresh riverine waters, which induces161

complex time-dependent dynamics at the tidal scale.23162

We focused on turbidity and conductivity data, two common water quality-variables163

measured in the majority of monitoring programs worldwide and commonly used as proxies164

of nutrient and/or sediment pollution in rivers, estuaries and marine environments.24 As a165

global problem, sediment pollution also causes major economic issues related drinking water166

and dredging.25 In addition, turbidity and conductivity are typically more stable in rivers167

through time than other properties such as dissolved oxygen and water temperature, which168

fluctuate daily as well as seasonally.169

Definitions and types of anomalies170

Environmental sensors generating high-frequency data sets are usually subject to technical171

anomalies that can derive from fouling of sensors, sensor calibration shifts, power supply172

problems or unforeseen environmental conditions that adversely affect the sensor equip-173

ment.1,26 In general, such technical anomalies strongly depart from the expected pattern of174

the non-anomalous observations.10 In addition, strong inter- and intra-seasonal variations175

in environmental conditions from site to site may create local differences in the occurrence176

and types of anomalies, which can constrain their transferability to other sites.27 We thus177

need to develop methods for detecting these technical anomalies, that can overcome these178

challenges,1,11,27 particularly in the context of data streaming.179

The present analysis focuses on technical anomaly detection (AD) in water-quality time180

series collected by in-situ sensors. Types of such anomalies have been described1,11 and181

previous work has indicated the need to explore new statistical methods to better detect the182

full suite of these types, notably those occurring over multiple, continuous observations (for183

example as a result of sensor drift), given that such anomalies commonly occur in water-184

quality time series yet are not as successfully detected as other types of anomalies (e.g.185

single-point anomalies, out-of-range values).11186

8



Following the framework provided by,11 a range of technical anomalies in the time-series187

was first identified by local water-quality experts (i.e. for SC and PR by11 and for AR by188

DS). For each site and variable (i.e. turbidity and conductivity), the identified anomalies189

were labelled along with their types based on anomaly classes defined by.11 In the present190

work, we first focused on anomaly types of Class 1 defined as a single observation generating191

sudden changes in value from the previous observation. Class 1 anomalies were also consid-192

ered a high priority in terms of detection, given that (true) sudden changes in turbidity and193

conductivity may be used as early warning signals of water quality by local environmental194

agencies and that they can strongly influence water-quality assessments and consequent man-195

agement decisions. We additionally focused on Class 3 anomalies, which include technical196

anomalies such as long-term calibration offsets and changes comprised of multiple dependent197

observations. Class 3 was considered lower priority than Class 1 and may require a posteriori198

user intervention (i.e. after data collection rather than in real time) to confirm observations199

as anomalous. Specifically, using the nomenclature introduced by,11 we based our analyses of200

AD on those types of Class 1 anomalies defined as (a) large sudden spikes (type A), sudden201

shifts (type D), small sudden spikes (type J), and Class 3 anomalies defined as drift (type202

H), high variability (type E) and untrustworthy data not defined by other types (type L).203

For more information about definitions of each anomaly type and class see.11204

The present analysis does not focus on AD of those types associated with impossible,205

out-of-sensor-range and missing values (Class 2) given that they can be easily detected by206

automated, hard-coded classification rules.11 For each site, we therefore removed all Class207

2 anomalies from the data prior to analysis. The filtered data were then log-transformed208

to remove exponential data variance (see Fig. 1) to produce the time-series used for the209

presented analysis.210
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Learning methods and data processing211

One of the most challenging issues for AD in time-series data is that most data are usually212

"normal" or non-anomalous, while anomalous values are rare.8,9 One of the most common213

discriminating approaches to solve such a problem is to compare the similarity between214

two sequences of time-dependent variables, specifically between the sequence of observed215

and predicted values.11,28 When the anomalous values are pre-labelled, we can apply semi-216

supervised classification based on training the learning process with the non-anomalous data,217

fitting models with prediction errors and predicting anomalous events as those observed218

values falling outside prediction intervals.11,28 Supervised classification feeds the learning219

process with both a sequence of labelled values for AD (including both anomalous and non-220

anomalous values, tagged accordingly). The learning process can then generate a sequence221

of probabilities which can be binary-classified as anomalous or non-anomalous according to222

a predefined threshold parameter.223

For each water-quality variable and site, time-series data were partitioned according to224

each learning process (i.e. semi-supervised or supervised classification). For semi-supervised225

classification, we retained the "normal" values (i.e. we discarded the anomalous values) and226

divided the time-series into four contiguous sequences of equal size: namely, two adjacent227

sequences of values for training and two other adjacent sequences for validation (for details,228

see Figure S1 in SI). Each pair of contiguous sequences for training or validation comprised229

one sequence for prediction (predictor variable) followed by an adjacent sequence for the out-230

come (outcome variable), respectively. For supervised classification, the sequence of values231

(including both anomalous and "normal" values) for prediction and the sequence of labelled232

values for AD were each divided into two adjacent sequences of equal length, for training233

and validation (for details, see Figure S1 in SI). Thus, predictor and outcome variables were234

composed of one sequence for training followed by an adjacent sequence for validation, re-235

spectively. Given the proportionally low number of anomalies in our data set, we did not236

use a "test" data set during the optimisation process.237
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Water quality in each of the studied sites undergoes intra- and interannual variation238

associated with local, seasonal and annual cycles and stochastic environmental events. We239

therefore incorporated within our analysis a "sliding window" or moving sequence of values240

of a defined length along the time series. For each site, the sliding window was defined241

according to the temporal resolution of data, and was 60, 90 and 10 minutes for PR, SC and242

AR, respectively (see above). For both predictor and outcome variables, we constructed n×p243

matrices with various time spans, defining the temporal resolution of time-series data and244

covering meaningful and regular environmental processes occurring in rivers (e.g. 24 h, 12 h, 6245

h). For example, the matrices of n×1 reflected the time span of 60, 90 and 10 minutes for PR,246

SC and AR, respectively, whereas the matrices covering time spans of 24 hours were defined247

by matrices of n× 24, n× 16 and n× 96 for PR, SC and AR, respectively. The differences248

in matrix n× columns of each site is a consequence of their differences in the temporal249

resolutions defined above. For more information about the code and functions to allow data250

processing and matrix construction, see https://github.com/benoit-liquet/AD_ANN.251

Metrics for model performance and evaluation252

To evaluate and compare the classification performance of AD, we calculated the four cate-253

gories of the confusion matrix (i.e. true and false positives and true and false negatives; TP ,254

FP , TN , FN , respectively) based on the discrimination threshold value t (typically 0.5; see255

below for detail on the threshold values we used). From these, we calculated accuracy (Acc),256

sensitivity (sn) and specificity (sp), and positive and negative predictive values (PPV and257

NPV , respectively), which allowed us to compare results directly with those of Leigh et al.11258

Acc =
TP + TN

TP + FP + TN + FN
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sn =
TP

TP + FN

sp =
TN

TN + FP

PPV =
TP

TP + FP

NPV =
TN

TN + FN

Acc, sn, sp, NPV and PPV range between 0 and 1. sn assesses the probability of259

determining TP correctly, whereas sp of determining TN correctly. Acc assesses the ability260

to differentiate TP and TN correctly. Finally, PPV and NPV define the proportion of261

anomalous versus "normal" observations, specifically the negative and positive predictive262

values, respectively. When dealing with unbalanced classification problems (i.e. when there263

are far fewer anomalous than non-anomalous observations), many evaluation metrics are264

biased towards the majority class, maximising TN classification while minimising TP classi-265

fication.29,30 We therefore also calculated evaluation metrics specially formulated to provide266

and optimal classification for both positive and negative values in unbalanced data sets.30267

The first was balanced accuracy (b.Acc), which is defined as the arithmetic mean between268

the sn and sp values:269
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b.Acc =
TP/(TP + FN) + TN/(TN + FP )

2

The second and third were the F1 and the Matthews Correlation Coefficient (MCC),270

defined as:271

f1 =
2× TP/(TP + FP )× TN/(TN + FP )

TP/(TP + FP ) + TN/(TN + FP )

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (FP + TN)× (TN + FN)

Specifically, f1 is the harmonic mean between the sn and PPV , ranging between 1 (i.e.272

perfect precision and recall) and 0. MCC ranges between -1 (i.e. total disagreement between273

predictions and observations), 0 (i.e. random prediction) and +1 (i.e. perfect prediction and274

balanced ratios of the four confusion matrix categories).275

Artificial Neural Networks and their implementation in time-series276

AD277

Artificial Neural Networks (ANN) are machine learning methods, in which neurons (the basic278

unit of the learning process) are typically aggregated in layers that generate connections279

between input and output data. The typical structure of an ANN comprises input, hidden280

and output layers, usually connected sequentially. The input layer contains the observed281

data as variables (input neurons) and the output layer the predicted values (output or target282

neurons).31 The input and output layers are connected by hidden layers, and the relationships283

between the neurons are set by non-linear activation functions. For building and checking284
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the performance of different types of model structure (i.e. the network structure typically285

associated with the number of layers and neurons), the ANN must be trained, by which the286

weights associated with connections between neurons are optimised using various methods287

and training algorithms.288

A special case of ANNs adapted to time series applications are Recurrent Neural Net-289

works (RNN), which can be considered a special case of Auto-Regressive Integrated Mov-290

ing Average (ARIMA) and non-linear autoregressive moving average (NARMA) models.32291

RNN architecture mimics the cyclical connectivity of neurons, making them well suited for292

the analysis and prediction of non-stationary time series.33–35 Long Short-Term Memory293

(LSTM) networks are a re-design of the RNNs capable of learning long-term correlations in294

a sequence.36 LSTMs are structured in network units known as memory blocks composed295

of self-connected memory cells and three multiplicative units, namely the "input", "output"296

and "forget gates" connected to all cells within each memory block.34 Unlike RNNs, LSTM297

avoids the "vanishing gradients problem", that is when the error signal is used to train,298

meaning that the network exponentially decreases the further one goes backwards in the299

network, by means of the gates of the network units.37 As a result, LSTMs allow the model300

to be trained successfully using backpropagation through time, which is key for accounting301

for long-term dependent time-series sequences. Although we applied LSTM in subsequent302

analyses, we use the more generic term ANN from this point onwards.303

In this study, ANNs were computed and fitted with "Keras", a model-level library which304

provides high-level building for programming for developing deep-learning models. "Keras"305

allows the implementation of a wide variety of neural-network building blocks (e.g. layers,306

activation functions, optimisers) and supports the latest and most effective advances in deep307

network training (including recurrent neural networks).38 "Keras" is a high-level wrapper of308

"TensorFlow" and helps to provide a simplified way of building neural networks from stan-309

dard types of layers while facilitating a reproducible platform for developing deep learning310

approaches in computational environmental sciences.39 "Keras" is written in "Python" and311
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the "Keras" package provides an "R" interface to the deep-learning native functions.40312

In each model run, we compiled a model with a pre-defined set of hyper-parameters (see313

below), in which the internal model parameters were iteratively updated throughout the314

training steps (epochs; for definitions of ANNs hyper-parameters, see Text S1 in SI). During315

each model run, iterations were computed until the error from the model was minimised or316

reached a pre-defined value. In order to assess the performance of the learning process, we317

used a pre-defined set of standard metrics of "Keras" commonly used for classification and318

regression problems. Specifically, for both training and validation data sets, we calculated the319

loss function for semi-supervised classification and the mean-square error and the accuracy for320

supervised classification. For each model run, we accounted for over-fitting using learning321

curves which showed how error changes as the training set size increases.37 To do so, we322

compared the shape and dynamics of the learning curves of the training and validation data,323

which can be used to diagnose the bias and variance of the learning process. For instance,324

the "training learning curve" is calculated from the training data and provided information325

on the learning process, whereas the "validation learning curve" is calculated from the hold-326

out data and gives information on the model generality. For details of the dynamics of327

the learning curves for either semi-supervised and supervised classification with our data328

sets, see Supporting Information (SI). SI contains the code and R functions to allow the329

implementation of ANNs using "Keras" in the "R" statistical language.41330

Optimisation of hyper-parameters and their influence on AD perfor-331

mance332

ANNs include a broad suite of hyper-parameters that affect the ability to learn patterns333

from the data and the performance of model predictions. Before training, we selected ten334

hyper-parameters that affect (i) the network structure and (ii) the training algorithm; see SI335

for details on hyper-parameter definitions. Furthermore, we defined two additional hyper-336

parameters related to (iii) the "sliding window" defined by n × p matrices delimited at337
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regular temporal intervals (see above) and (iv) the "threshold classification" as a measure338

of the discrimination threshold value to compute the four categories of the confusion matrix339

(see above). For each hyper-parameter we then defined a range of values (see details in SI)340

that affect the performance of ANNs. The range of values depended on the type of the341

hyper-parameter and varied from a continuous searching space (for those hyper-parameters342

characterised by double precision, such as the learning rate) and discrete values (for those343

defined by integer values, such as number of layers or units, and functions or algorithms,344

such as the optimisation algorithm). In the case of the "sliding window" we decided to use345

discrete values, defining the temporal resolution of the recorded time-series sequence and346

covering meaningful and regular environmental processes occurring in rivers (e.g. 24 h, 12347

h, 6 h). For more information about this issue, see SI.348

Given the large number of possible models to be tested with all the combinations of349

hyper-parameter values, we tuned the ANN models using a Bayesian optimisation method,350

which is a common class of optimisation methods, especially in deep-learning networks.42 The351

Bayesian optimisation method works by constructing a posterior distribution of functions352

(assuming a Gaussian process) associated with the variability of each hyper-parameter, which353

best describes the "objective function", defined as the "cost" associated with the optimisation354

problem. With each iteration of the algorithm, the posterior distribution improves and355

the algorithm becomes more accurate in those regions of the parameter space with higher356

likelihood to maximise or minimise the objective function.42 The Bayesian statistical model357

comprises two components: (i) a Bayesian statistical model for modelling the objective358

function, and (ii) an acquisition function for deciding where to sample next. In our case, we359

applied the mlrMBO toolbox implemented in the R statistical language. Compared with360

other black-box benchmark optimisers, the mlrMBO toolbox performs well for expensive361

optimisation scenarios for single- and multi-objective optimisation tasks, with continuous or362

mixed parameter spaces.43363

Our aim for the optimisation procedure was to find combinations of hyper-parameters364
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that resulted in the best performance for AD classification (see above). The optimisation365

procedure followed two steps, firstly generating a random search space and secondly focusing366

on search shrinks, based on the results generated during the random search. First, we started367

the algorithm by generating a random design (n = 250), which included a varying number of368

hyperparameters with the aim to generate enough variability to detect the most promising369

values. In our case we generated iterations by varying randomly the parameter combinations370

of the 12 hyper-parameters. After computing the model and the optimisation scores of each371

iteration, we secondly focused on search shrinks of the search space following a Bayesian372

optimisation method with n = 250 iterations based on maximising performance metrics or373

objective functions. In our case, we followed a multi-objective Bayesian optimisation method374

based on maximising, in each k iteration run, the value of b.Acc, f1 and MCC scores,375

defined above. Such an approach allowed us to maximise the different and complementary376

properties summarised by each score for unbalanced classification. Following the multi-377

objective Bayesian method, the optimisation resulted in a total of n = 500 iterations (i.e.378

n = 250 for random search and n = 250 for Bayesian optimisation) for each combination of379

water-quality variables, sites and learning procedures.380

To examine the effects of hyper-parameters predictor variables (hyper-parameters) on381

the dependent variables (performance metrics), we applied methods for causal inference382

using random forests.44 Specifically, we determined the statistical importance of each hyper-383

parameter as a predictor on the dependent variables or optimisation scores (e.g. b.Acc, f1 or384

MCC) by calculating the "Variable Importance" (V I). V I reflects the model performance385

across the entire range of predictor and response variables, converted into a set of ordinal386

ranks. V I can be further used to test how the model response changes as the value of387

any of the predictor variables is changed, meaning that V I is similar to a standard "one-388

parameter-at-a-time" sensitivity analysis.45 For each hyper-parameter, we computed V I to389

measure the relative importance (or dependence, or contribution) of such hyper-parameter390

predictor variables in terms of their effect on optimisation scores. In our case, we computed391
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the out-of-bag error, which is an error estimation technique used to evaluate the accuracy of392

a random forest after permuting each predictor variable. We used the R statistical language393

and the "randomForest" library.46394

For each water-quality variable and site, we retained the "best" model as that which395

maximised the optimisation scores. Specifically, for the complete set of candidate models,396

we averaged the value of b.Acc, f1 or MCC and we retained the "best" model as that397

maximising the averaged optimisation scores. We compared the shape and dynamics of the398

learning curves from the "best" models (a) to diagnose whether or not the training and399

validation data sets were sufficiently representative (i.e. one data set could capture the400

statistical characteristics relative to other data sets) and (b) to test the behaviour of the401

learning process (i.e. underfit, overfit, good fit).402

Results403

Hyper-parameters optimisation for AD404

The learning rate for AD stabilised early in the optimisation of ANN models, with few405

improvements on the performance beyond n = 200 model iterations (although see the ANN406

model for conductivity at SC). For semi-supervised classification, the costs of computing407

ranged from 0.312 h for turbidity in SC and 3.53 h for turbidity in AR, whereas for supervised408

classification the cost ranged from 1.11 h for conductivity in PR and 99.5 h turbidity in409

AR after n = 500 model iterations (see Table S2 in SI). Comparing learning methods,410

supervised classification had better performance and generated consistently higher values for411

b.Acc, f1 or MCC, showing a similar and consistent pattern of the accumulative curve along412

the optimisation process (Fig. 2). Compared to supervised classification, semi-supervised413

classification required a larger number of model iterations for maximising any of the three414

performance metrics, notably for turbidity in SC and AR.415

Considering the whole suite of model iterations, we found a consistent pattern with re-416
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spect to V I of those hyper-parameters affecting optimisation scores. Overall, the "Learning417

hyper-parameters" had higher V I values than "Model hyper-parameters" for model perfor-418

mance (see Tables S2 to S4 in SI). In addition, th.class had higher V I in semi-supervised419

classification, whereas s.win had minor V U for both supervised and semi-supervised clas-420

sification. Specifically, the hyper-parameters with higher V I for b.Acc, f1 and MCC, re-421

spectively, were th.class (78.2, 78.4 and 76.5, respectively; V I values averaged across sites,422

learning methods and water-quality variables), dropout (46.2, 47.8 and 49.0), b.size (43.5,423

48.4 and 51.8), momen (31.8, 34.3 and 36.2), l.rate (31.3, 33.2 and 35.6). Comparing learn-424

ing methods, we found that V I of hyper-parameters differed depending on the combination425

of types of anomalies and water-quality variables. For instance, semi-supervised classifi-426

cation had higher V I values for th.class, dropout, momen and l.rate, whereas supervised427

classification for b.size and activ. Comparing sites, th.class had the highest V I values in428

semi-supervised classification for conductivity in PR, dropout and l.rate in semi-supervised429

classification for turbidity in SC, b.size for supervised classification for turbidity in PR,430

momen for semi-supervised classification for turbidity in AR and activ for supervised classi-431

fication for turbidity in AR. For details of the V I of those hyper-parameters independently432

affecting b.Acc, f1 and MCC, see Tables S3 to S5 in SI.433

After hyper-parameter optimisation, the "best" models also had performed well in terms434

of b.Acc, f1 andMCC scores, for all water-quality variables and learning methods; Table 1);435

for details of hyper-parameters and values of the best models, see SI. However semi-supervised436

classification had less balanced predictions (i.e. lower values for b.Acc, f1 score and MCC)437

than supervised classification, meaning that anomaly cases (positives) were proportionally438

less-correctly predicted than "normal" cases (negatives). Specifically, semi-supervised classi-439

fication had lower rates of TP that we classified as true (sn = 0.652; values averaged across440

sites and water-quality variables) and lower proportions of positives and negatives that were441

true (PPV = 0.512), and that generated a moderately balanced detection rate for either442

TP and TN results (b.Acc = 0.757, f1 = 0.490 and MCC = 0.665). By contrast, supervised443
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classification provided a higher and balanced detection rate for both TP and TN (b.Acc =444

0.822, f1 = 0.622 and MCC = 0.762), and thus anomaly cases (positives) were as predicted445

correctly as "normal" cases (negatives). In contrast, supervised classification had higher446

detection rates of TP (sn = 0.704) and higher rates of correct classification of TP and TN447

(PPV = 0.643). For detailed information about the performance of each model, see Table448

1.449

For "best" models, we additionally checked that our training and validation data sets were450

sufficiently representative, based on the learning process of either training or validation data.451

Overall, we found strong variation for each water-quality variable, site and learning method,452

suggesting that the presence of certain types of anomalies were not always consistent between453

training and validation data sets. Both for semi-supervised and supervised classification, we454

found that the validation data were easier to predict than training data (i.e. the "training455

learning curve" had poorer performance than the "validation learning curve"), suggesting456

that the validation data had lower complexity of anomaly types; for details of learning curves,457

see Fig. S2 to S5 in SI. For supervised classification, we additionally found that the validation458

data were unable to produce a good fit (i.e. both training and validation learning curves were459

almost flat), probably as a combination of the low number of anomaly cases (conductivity460

in PR; see Fig. 1 and Fig. S8 in SI) and the presence of a long-term anomaly event at the461

end of the data (turbidity in AR; see Fig. 1 and Fig. S9 in SI); the latter pattern did not462

happen when fitting semi-supervised classification in both data sets, for which the learning463

process produced a good fit for both training and validation processes. Overall, we did not464

detect over-fitting of the training data, a result confirmed by the relatively medium-to-low465

values of dropout (i.e. <0.5) in most of the "best" models (see Tables S2 to S4 in SI for466

details of the values of hyper-parameters of the "best" models).467
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AD among types, learning methods and sites468

Anomaly types of Class 1 were present, but at low abundances, in all water-quality data sets,469

comprising, on average, 0.137% of cases (Table 2). By contrast, the majority of anomalies470

were classified as Class 3, which provided 11.6% of cases (Table 2). Anomalies of Class 3471

were context-dependent with respect to each site and water-quality variable. Specifically,472

SC had two anomalous periods of high-variability (type E) occurring during the first four473

months of monitoring (see Fig. 1). PR had two drift sequences (type H) for turbidity and474

one period of untrustworthy data (type L) and one drift sequence (type H) for conductivity475

during the first period of monitoring. Finally, AR had a long-drift sequence (type H) at the476

end of the monitoring period.477

Comparing the performance of each "best" model with respect to detecting of the differ-478

ent types of anomalies, we found, on average, that semi-supervised classification had higher479

capacity for detecting Class 1 anomalies (45.7% vs 23.6% for semi-supervised and supervised480

classification, respectively; averaged values across sites and water-quality variables), whereas481

supervised classification had proportionally higher capacity for detecting Class 3 anomalies482

(72.6% vs 68.8% respectively) (Table 3). However, such differences between learning meth-483

ods were particularly context-dependent and based on the different combinations of types484

of anomalies at each site. Semi-supervised classification better detected large-sudden spikes485

(type A) for turbidity in AR, and small sudden spikes (J) for turbidity in PR and AR.486

Supervised classification, by contrast, had better performance for detecting drift (type H).487

Both semi-supervised and supervised classification performed well for detecting high vari-488

ability (E) and untrustworthy anomalies for turbidity in SC and PR and conductivity in PR.489

Sudden shifts (type D) for turbidity in SC and drift (H) for conductivity in PR were not490

detected by any learning method.491
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Discussion492

In this work we found that Artificial Neural Networks (ANN) provided good classification493

for AD in high-frequency water-quality data given their ability to deal flexibly with the494

challenges associated with local environmental variability. We tested the capacity of ANNs495

for AD under a broad range of variables, anomaly types and real-world conditions. Our496

data come from separate monitoring programs in different parts of the world and under497

contrasting environmental systems (i.e. estuarine, freshwater), so our work presents and498

opportunity to test the robustness and performance of ANNs for AD. We used turbidity499

and conductivity data, which are commonly measured by water management agencies and500

monitoring programs, providing an avenue to test other water quality and quantity variables501

in the future, which may lead to an overall increase in the performance of water-quality502

monitoring systems. Results of the AD showed that semi-supervised classification was able503

to cope better with short-term anomalies associated with a single observation or time point504

than supervised classification, which showed improved performance for detecting anomalies505

dependent on multiple context-dependent observations.506

Previous work has shown that regression time-series methods are useful for AD in sta-507

tionary and non-stationary time-series data sets,,47,48 but the detection of certain anomaly508

types, such as sensor drift and periods of anomalously high variability, remain challenging.509

ANNs are a versatile method that can train models using different learning methods, and as510

shown by our study, can provide the flexibility required to detect a broad suite of anomaly511

types, including improved performance for detecting extended periods of untrustworthy data.512

In our case, we applied regression-based and semi-supervised ANNs similarly for AD; that513

is, models first predict data sequences based on "normal" cases and then classify as anoma-514

lous cases those departing from a given threshold value. Despite the good performance of515

ANNs for AD, our findings demonstrate that ANNs could have limitations regardless of516

the underlying statistical method used and their applicability in near-real time AD. In our517

study, c. 100 model iterations, which were necessary to obtain acceptable model perfor-518
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mances, required three orders of magnitude of computing time longer than regression-based519

ARIMA. Compared to these regression-based time-series methods, the Bayesian optimisation520

of hyper-parameter values allowed us to optimise classification of anomalies, at the expense521

of increased computing costs for hyper-parameter optimisation.522

For the Australian sites, we found that the performance of semi-supervised ANNs (pro-523

posed here) and regression-based ARIMA (proposed by11) were equivalent in terms of correct524

classification, notably by providing high false-detection rates (falses) of both anomalies (pos-525

itives) and "normal" cases (negatives): semi-supervised classification had higher rates of FP526

and FN which resulted in low values of sn and PPV . We also found that supervised ANNs527

considerably minimised false detection rates (i.e. low values of FP and FN and maximised528

sn and PPV values), when compared with the regression-based models and semi-supervised529

ANNs. Semi-supervised ANNs and regression-based ARIMA generated higher rates of false530

alarms (i.e. both FP and FN), which overestimate anomalous events, than supervised ANNs.531

We did not detect over-training in the "best" models, but after checking the shape and532

dynamics of the learning curves we found that the training and validation data sets had533

inconsistent numbers and presence of anomaly types. For instance, the validation data set534

in turbidity in AR had a long-term anomaly event which is not present in the training data535

(see Fig. 1). As a result, there is inconsistency between training and validation data sets536

in the performance, typically the validation data had higher performance than the training537

data (see Figs S2 to S5 in SI). The difference in complexity was mainly a consequence of538

the presence of Class 3 anomalies in the data sets, usually occurring as single long-term539

anomalous events in each time series. Cross-validation could solve this problem, but it540

is also true that multiple partitioning of the data sets could have divided the time-series541

into multiple smaller independent time-series sequences with inconsistent representation of542

anomaly types among data sets. Multiple partitioning of the time-series sequence could be543

especially critical during the optimisation process, notably on those hyper-parameters tuning544

the size of the sub-samples processed during the learning process (i.e. b.size and momen,545
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and also for s.win). All the above issues were a consequence of the proportionally lower546

abundance of anomalous events compared to "normal" events in the data sets, a phenomenon547

that makes the detection of anomalies challenging.548

We found that semi-supervised ANNs were especially suited to AD of short-term anoma-549

lous events (i.e. sudden spikes, sudden shifts and small sudden spikes defined as Class 1550

anomalies, following the terminology of11). Although semi-supervised and supervised ANNs551

were comparable regarding their ability to detect long-term anomalous events (i.e. drift552

and periods of high-variability or Class 3 anomalies), the latter had better performance in553

terms of correct AD (see above). At least for AD of long-term events, our results with554

ANNs thus outperformed those of regression-based ARIMA,11 which is an important step555

forward for AD in water-quality data given such anomalies have consistently proved chal-556

lenging to detect by other automated AD methods. This is because such anomalous, often557

very context-dependent events can behave similarly to natural, non-stationary water-quality558

events such that they are only detected manually by a trained eye very familiar with the559

local conditions. Our novel use of ANNs and Bayesian optimisation for hyper-parameter560

selection therefore holds much promise for AD in high-frequency water-quality data from a561

broad range of environments and ecosystems, including rivers, estuaries and marine waters.562

Although our study is based on the analysis of data from three sites only, it provides563

a methodological framework for AD in high-frequency water-quality data collected from564

sites with contrasting non-stationary environmental processes.49,50 We found that the non-565

stationary environmental conditions of each site played a substantial role in both (i) deter-566

mining the types of anomalies present and (ii) increasing the uncertainty around the accurate567

detection of anomalies. The water-quality variables analysed here are affected by long-term568

environmental processes occurring at each site (i.e. seasonal precipitation patterns in both569

Australian and French sites), as well as regular and short-term events (e.g. cyclone floods in570

Australian sites and tidal regimes in the French site). Both short- and long-term environmen-571

tal processes may interact and this could affected the AD performance. For Australian sites,572
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the detection of sudden spikes and shifts (i.e. short-term anomalies) and of drifts or periods573

with high variability (i.e. long-term anomalies) were rarely masked by natural environmental574

processes (i.e. seasonal rainfall patterns or cyclone floods), and that resulted in the optimal575

classification of short- and long-term anomalous events by using either semi-supervised and576

supervised classification, respectively (Table 3). At the French site, by contrast, strong tidal577

regimes occurred alongside medium-to-high seasonal discharge events, and that conditioned578

and limited the accuracy of detecting both short- and long-term anomalies (Table 3).579

In this work, we calibrated ANNs models using Bayesian optimisation of hyper-parameter580

values, by means of multi-objective optimisation. Although optimisation methodology is581

well-established for the detection of anomalies in water-quality data,7 multi-objective op-582

timisation procedures have rarely been applied for AD in time-series analysis for either583

prediction or detection anomalies using ANNs methods; but see Perelman et al.19 for an584

application of detecting anomalies using a single-objective optimisation. The application of585

multi-objective methodology allow us to get a balanced performance of models for detect-586

ing anomalies in a broad set of environmental conditions. Notwithstanding the potential587

utility of ANNs for AD demonstrated above, there is substantial room for improvement in588

the performance under real-world conditions.12 First, we found that the ability for AD is589

context-dependent, meaning that accuracy is conditioned on the spatio-temporal environ-590

mental variability of the data set available. Anomalies are rare events, meaning that we591

need large data sets spanning the entire environmental variability of each locality to ensure592

their inclusion in a data set.11 Second, we performed our detections based on the analysis of593

independent environmental variables (i.e. turbidity or conductivity), but the application of594

ANNs with multivariate time-series could enable us to account for the temporal correlation of595

multiple variables monitored at the same time.19,24,51 Finally, methodological improvements596

provide additional avenues to increase the performance of ANNs in AD, such as Bayesian597

RNNs,52,53 which allow quantification of the uncertainty and the use of ensemble averag-598

ing for ANNs, combining unsupervised and supervised classification54 or the combination of599
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ANNs with other methodologies.6,55600

The study of AD in high-frequency data has numerous applications in environmental601

and health monitoring, and fault and fraud detection, where there is a need to provide602

near-real time solutions and optimal performance for monitoring and to ensure the quality603

of data streaming. We have demonstrated that ANNs are a flexible method for providing604

optimal performance for AD, given they are able to cope with both long- and short-term605

non-stationary processes that condition high-frequency data. However, ANNs and their606

hyper-parameter optimisation have been understudied in the context of AD in water-quality.607

Given the promising results from our study, we therefore recommend further investigation608

and development of such methods to improve the accurate detection of a broad suite using609

machine learning or deep-learning methods of anomalies detection under a wide range of610

environmental conditions.7 Environmental data are intrinsically variable though time and611

space and thus our approach is transferable for AD in complex spatio-temporal applications612

and ecosystems. Our findings will therefore be of relevance to water scientists and man-613

agers throughout the world in order to broaden the applicability of ANNs for efficient water614

monitoring.615
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Figure 1: Observed trends for each water-quality variable and site, including the type of
anomaly. Shapes correspond to the different data values (i.e. circles for "normal" values and
triangles for anomalous values) and colours to the different anomaly types. Anomaly types
were classified by local water-quality experts. For instance, Class 1 anomalies are defined
as large sudden spikes (type A), sudden shifts (type D), small sudden spikes (type J), and
Class 3 anomalies as drift (type H), high variability (type E) and untrustworthy data not
defined by other types (type L).
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Figure 2: Cumulative optimisation scores for hyper-parameter optimisation along k model
iterations. Each panel showed the procedure of multi-objective optimisation procedure of (a)
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iteration run. The optimisation begins searching with 250 random iterations, and then with
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Table 2: Number of anomalous events according to each type (columns), site and water-
quality variable (rows). The anomaly types shown here were classified by local water-quality
experts, and their classification is detailed in the Material and methods and in Leigh et al.11
For abbreviations of sites, variables and training see Figure 2.

Site Var A D J H E L
SC Tur 4 1 0 0 914 0
PR Tur 1 3 5 0 0 718
PR Cond 2 2 0 397 0 80
AR Tur 11 0 26 1574 0 0

2

Table 3: Performance of the "best" model for AD by anomaly type. For each site and
water-quality variable, values represent the percentage of data values detected relative to
the total number of respective anomalies labelled in the data set (see Table 3 for details).
For abbreviations of sites, variables and training see Figure 2 and of anomaly types see
Table 2.

Site Var Train A D J H E L
1 SC Tur ArAD 1.000 0.000 - - 0.094 -
2 SC Tur smSup 0.750 0.000 - - 0.975 -
3 SC Tur Sup 0.750 0.000 - - 0.986 -
4 PR Tur ArAD 1.000 1.000 1.000 - - 0.010
5 PR Tur smSup 0.000 0.333 0.800 - - 0.925
6 PR Tur Sup 0.000 0.333 0.000 - - 0.942
7 PR Cond ArAD 1.000 1.000 - 0.000 - 0.362
8 PR Cond smSup 0.500 0.500 - 0.000 - 1.000
9 PR Cond Sup 0.500 0.500 - 0.000 - 0.975
10 AR Tur ArAD 1.000 - 0.846 0.003 - -
11 AR Tur smSup 1.000 - 0.231 0.541 - -
12 AR Tur Sup 0.000 - 0.038 0.728 - -
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