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A Note on the Phase Retrieval of Holomorphic

Functions

Rolando Perez III

Abstract. We prove that if f and g are holomorphic functions on an open connected
domain, with the same moduli on two intersecting segments, then f = g up to the
multiplication of a unimodular constant, provided the segments make an angle that is
an irrational multiple of π. We also prove that if f and g are functions in the Nevanlinna
class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g

up to the multiplication of a unimodular constant.

1 Introduction

The study of phase retrieval involves the recovery of a function f in some
function space from given data about the magnitude of f (phaseless informa-
tion) and other assumptions on f , where these other assumptions may be in
terms of some transform of f . Phase retrieval problems are widely studied
because of their physical applications in fields of science and engineering. The
most natural question asked on phase retrieval is about the uniqueness of the
solution. However, phase retrieval problems generally have large solution sets,
so additional assumptions related to the known data are usually added to re-
duce the solution set, or to consequently force the uniqueness of the solution.
We refer the reader to the survey articles by Grohs et. al. [7] and Klibanov
et. al. [12] for a more general perspective on the phase retrieval problem,
together with some examples and further references.

Phase retrieval problems have been formulated in both finite and infinite-
dimensional cases. In turn, they have been solved using a diverse array of
techniques, which include the use of tools from complex analysis. In some
cases, the problem shifts to the complex analytic scenario by holomorphic
extensions or by integral transforms. For instance, consider f and g to be
two band-limited L2 functions, then from the Paley-Wiener theorem, they
are entire functions of finite type. Complex analysis was the key tool used by
Akutowicz [1,2] (and a few years later independently by Walther [16] and Hof-
stetter [8]) to determine all band-limited functions g such that |g| = |f |. We
now enumerate some further work which used complex analytic tools. Grohs
et. al. [6] considered the recovery of a function in a modulation space from
phaseless Gabor measurements, where they considered the short-time Fourier
transform and used the Poisson-Jensen formula in their estimates. Wald-
spurger et. al. [15] solved a continuous case of the recovery of an L2 function

2010 Mathematics Subject Classification: 30D05, 30H10, 30H15, 94A12.
Keywords: phase retrieval, holomorphic functions.



2 R. Perez III

from the modulus of its wavelet transform by using Fourier transforms and
holomorphic extensions to the upper half-plane. Moreover, McDonald [13]
has extended the work of Akutowicz to cover entire functions of finite genus.
The solutions were characterized with the help of Hadamard factorization.
In [9], Jaming also used the Hadamard factorization to show that an entire
function of finite order can be reconstructed from its modulus on two lines,
where these lines intersect at an angle which is an irrational multiple of π.
Bodmann et. al. [4] then used this result with conformal mappings to show
that a polynomial of degree at most n−1 can be determined by its magnitude
at 4n−4 well-chosen points in the complex plane. More information on phase
retrieval problems from holomorphic measurements can be found in [7].

Our aim in this paper is to generalize some uniqueness results on the phase
retrieval of holomorphic functions on the unit disc. Indeed, in [10], we con-
sidered the phase retrieval problem: given f ∈ L2(R) such that its Fourier
transform satisfies an exponential decay condition, find all functions g ∈ L2(R)
such that |f | = |g| on R and with its Fourier transform satisfying the same
exponential decay condition as f . Using a Paley-Wiener theorem and a con-
formal map, the problem can be translated to the Hardy space on the unit
disc. By the inner-outer factorization, the explicit form of the solution was
obtained. One of our motivation stems from one of the coupled phase retrieval
problems from [10, Lemma 4.5], which states that for f and g in the Hardy
space on the unit disc with |f | = |g| on (−1, 1) and on some segment inside
the disc, g can be obtained uniquely from f . For our first result, we extend
this uniqueness result to holomorphic functions on open connected domains.

On the other hand, our next objective is to improve the result of Boche
et. al. [3, Theorem 3], which states that given functions f and g in the
Hardy space on the disc without singular inner part, if |f | = |g| on the unit
circle and on a smaller circle inside the unit circle, then g can be uniquely
determined from f . Moreover, they also showed by construction that the
Blaschke product associated with g can be uniquely recovered by its modulus
on a smaller circle inside the unit circle. For our other result, we extend this
uniqueness result to all functions in the Nevanlinna class, regardless of the
presence of the singular parts.

This work is organized as follows. Section 2 includes a quick review of
definitions and results related to spaces of holomorphic functions on the disc,
and the statements of our results. Section 3 is devoted to the proofs of our
results.

2 Preliminaries and Statement of Results

2.1 The Nevanlinna Class and the Hardy Space on the Disc

Let D be the unit disc and T := ∂D be its boundary. We denote by D(a, r)
the disc centered at a ∈ C with radius r > 0, rD = D(0, r) and rT = ∂D(0, r).
We denote by H∞(D) the space of bounded holomorphic functions on D. The
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Nevanlinna class is defined by

N =

{
ϕ ∈ Hol(D) : ϕ =

f

g
, f, g ∈ H∞(D)

}
.

Note that the radial limit given by ϕ∗(ζ) = limr→1 ϕ(rζ) exists almost every-
where in T and log |ϕ∗| ∈ L1(T). For ϕ ∈ N , ϕ has a factorization [5, Theorem
2.9] of the form

ϕ =
eiγBϕSν1Oϕ

Sν2
(1)

where eiγ ∈ T, Bϕ is the Blaschke product formed from the zeros of ϕ, Sν1
and Sν2 are singular inner functions, and Oϕ is the outer part of ϕ. Here, the
Blaschke product is defined for all z ∈ D as

Bϕ(z) = zk
∏

α∈Λ

α

|α|

α− z

1− ᾱz

where Λ is the set of nonzero zeros of ϕ counted with multiplicity, which satisfy
the Blaschke condition

∑
α∈Λ(1 − |α|) < ∞. The singular inner function is

given by

Sν(z) = exp

(∫

T

z + ζ

z − ζ
dν(ζ)

)
,

where ν is a finite positive singular measure on T. Finally, the outer part of
ϕ is given by

Oϕ(z) = exp

(
1

2π

∫

T

ζ + z

ζ − z
log |ϕ∗(ζ)| |dζ|

)
.

It is easy to see that for f ∈ N , if f(z0) = 0 then
f(z)

z − z0
∈ N . We also recall

the subclass of N called the Smirnov class, defined by

N+ =

{
ϕ ∈ Hol(D) : ϕ =

f

g
, f, g ∈ H∞(D), g is outer

}
.

Furthermore, the Generalized Maximum Principle [14, Section 3.3.1, (g)]
states that if ϕ ∈ N+ with radial limit ϕ∗ ∈ Lp(T), then ϕ belongs to clas-
sical Hardy space on the disc Hp(D), 1 ≤ p ≤ ∞. Note that every function
in Hp(D) has a factorization as in (1) with Sν2 = 1, and this factorization is
unique.

2.2 Statement of Results

We begin with a simple observation. Let ω,Ω be open connected sets such
that ω ⊂ Ω, let f, g ∈ Hol(Ω) and suppose that |f | = |g| on ω. Then, for
some c ∈ T, g = cf on Ω. Indeed, we can assume that |f | = |g| on a closed
disc D, hence f and g have the same zeros with the same multiplicities on
D. Consequently, F = f/g is a holomorphic function on D and |F | = 1.
Therefore 0 = ∆|F 2| = |F ′|2 on D and hence F = c for some c ∈ T.
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In the same spirit when ω is not open, we have shown in the paper [10,
Lemma 4.5] that if f, g ∈ H2(D) and

|f(z)| = |g(z)|, z ∈ (−1, 1) ∪ eiα(−1, 1)

where α /∈ πQ, then f and g are equal up to the multiplication of a unimodular
constant. For this result, uniqueness was established by showing that the
Blaschke products, singular inner parts, and outer parts of f and g are equal.
Our first result consists in showing that this is true for arbitrary holomorphic
functions in an open connected domain.

Theorem 2.1 Let Ω be an open connected domain. Let f, g ∈ Hol(Ω) and
suppose that

|f(z)| = |g(z)|, z ∈ I ∪ Iα, (2)

where I and Iα are segments inside Ω, Iα is the α-rotation of I about the

midpoint of I, and α /∈ πQ. Then g(z) = cf(z) for all z ∈ Ω and for some

c ∈ T.

Let us now see what is happening if segments are replaced by circles. To do
so, recall that if f and g are outer functions in N such that |f | = |g| almost
everywhere on T, then f is equal to g up to the multiplication of a unimodular
constant. Now, Boche et. al. [3, Theorem 3] solved a more general problem:
if f, g ∈ H1(D) have no singular parts (i.e. f = BfOf , g = BgOg) and
|f | = |g| almost everywhere on T and |f | = |g| on ρT for some 0 < ρ < 1,
then g is uniquely determined by f . The heart of their proof is the explicit
construction of the Blaschke product associated to g, as the equality of the
outer parts immediately follow. For our next result, with the same equalities
of the moduli on the aformentioned circles, we improve the result by Boche et.
al. by showing that uniqueness holds for all functions in N . We emphasize
that in this result, we may either have the presence or the absence of the
singular inner part.

Theorem 2.2 Let f, g ∈ N and let ρ ∈ (0, 1). If

|f(ζ)| = |g(ζ)|, a.e. ζ ∈ T and |f(z)| = |g(z)|, z ∈ ρT (3)

then g(z) = cf(z) for all z ∈ D and for some c ∈ T.

3 Proofs and Remarks

In this section, we present the proofs of our results, and some immediate
consequences of them.

3.1 Proof of Theorem 2.1

Observe that replacing f(z) by f(z0+rze
iβ) with z0, r, β appropriately chosen,

we may assume that
– (1 + ε)D ⊂ Ω for ε > 0,
– I = (−1, 1), Iα = eiα(−1, 1).
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Note that now f, g ∈ H2(D) so that we could apply [10, Lemma 4.5] and
obtain g = cf , for some c ∈ T. We will give an alternative simpler proof.

Note that, as the zeros of f and g are isolated, by choosing r small enough,
we can assume that they have at most one zero in (1 + ε)D which is at 0. We
can write

f(z) = zkeϕ(z) and g(z) = zleψ(z), z ∈ D (4)

where ϕ, ψ ∈ Hol((1 + ε)D) and k, l are nonnegative integers. As |f(x)| =
|g(x)| for x ∈ (−1, 1) we conclude that k = l.

It remains to show that the zero-free factors of f and g are equal up to a
unimodular constant. First, we note that (2) is equivalent to

Reϕ(t) = Reψ(t) and Reϕ(teiα) = Reψ(teiα), t ∈ (−1, 1).

Since ϕ, ψ ∈ Hol(D) ∩ C∞(D), Reϕ and Reψ are harmonic and

ϕ(z) =
∑

n≥0

|z|nϕ̂(n)einθ and ψ(z) =
∑

n≥0

|z|nψ̂(n)einθ (5)

for z = |z|eiθ ∈ D. It follows that

Reϕ(z) = Re ϕ̂(0) +
∑

n∈N

|z|n
ϕ̂(n)einθ + ϕ̂(n)e−inθ

2

and

Reψ(z) = Re ψ̂(0) +
∑

n∈N

|z|n
ψ̂(n)einθ + ψ̂(n)e−inθ

2
.

Thus (2) and (4) together with the sums above imply that Reϕ(t) = Reψ(t)
for t ∈ (−1, 1), if and only if

Re ϕ̂(n) = Re ψ̂(n), n ∈ N,

and Reϕ(teiα) = Reψ(teiα) if and only if

Re ϕ̂(0) = Reψ̂(0) and Re (ϕ̂(n)einα) = Re (ψ̂(n)einα)

for all n ∈ N. In other words





Re
(
ϕ̂(n)− ψ̂(n)

)
=

〈
ϕ̂(n)− ψ̂(n), 1

〉
C

= 0,

Re
((
ϕ̂(n)− ψ̂(n)

)
einα

)
=

〈
ϕ̂(n)− ψ̂(n), e−inα

〉
C

= 0,
(6)

for all n ∈ N. Since α /∈ πQ, {1, e−inα} is a basis for C when n 6= 0 so by (6),

we have ϕ̂(n) = ψ̂(n). On the other hand, as Re ϕ̂(0) = Re ψ̂(0) there exists

λ ∈ R such that ψ̂(0) = ϕ̂(0) + iλ. It follows from (5) that ψ = ϕ + iλ thus
g(z) = eiλf(z) for all z ∈ D ⊂ Ω. As Ω is connected and f, g ∈ Hol(Ω), this
implies that g(z) = eiλf(z) also holds on Ω.
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3.2 Proof of Theorem 2.2

We begin with a simple observation. If z0 ∈ ρT is a zero of f , we write
f(z) = (z − z0)

kf̃(z) and g(z) = (z − z0)
j g̃(z) with nonnegative integers j, k

and f̃ , g̃ ∈ N nonvanishing at z0. Then |f | = |g| on ρT reads

|(z − z0)
kf̃(z)| = |(z − z0)

j g̃(z)|, z ∈ ρT

and this implies that k = j. Therefore, f and g have the same zeros on ρT
with the same multiplicities. We may thus write f = Pf1 and g = Pg1 with
P a polynomial which has all the zeros in ρT and f1, g1 ∈ N nonvanishing on
ρT. Then |f1| = |g1| on ρT ∪ T. In other words, we may assume that f and
g do not vanish on ρT.

Let {a1, . . . , an} and {b1, . . . , bm} be the zeros of f and g on ρD respectively,
counted with multiplicities. For all z ∈ C, write

Pf (z) =

n∏

i=1

ρ(z − ai)

ρ2 − āiz
and Pg(z) =

m∏

i=1

ρ(z − bi)

ρ2 − b̄iz
.

Notice first that if z ∈ ρT, |Pf (z)| = |Pg(z)| = 1. Further
f

Pf
and

g

Pg
do not

vanish in ρD. By the Poisson-Jensen formula, for all z ∈ ρD we have

log

∣∣∣∣
f(z)

Pf (z)

∣∣∣∣ =
1

2π

∫ π

−π

Re

(
ρeiθ + z

ρeiθ − z

)
log |f(ρeiθ)| dθ

=
1

2π

∫ π

−π

Re

(
ρeiθ + z

ρeiθ − z

)
log |g(ρeiθ)| dθ

= log

∣∣∣∣
g(z)

Pg(z)

∣∣∣∣.

But then

∣∣∣∣
g(z)

Pg(z)

∣∣∣∣ =
∣∣∣∣
f(z)

Pf (z)

∣∣∣∣ for all z ∈ ρD. Thus we get that there is some

c̃ ∈ T such that
g(z)

Pg(z)
= c̃

f(z)

Pf (z)
for all z ∈ ρD. Finally, as an identity

between holomorphic functions on D, this is valid for all z ∈ D. In particular,

taking z = reiθ and r −→ 1, we get
g(z)

Pg(z)
= c̃

f(z)

Pf (z)
for almost every z ∈ T.

By (3), we have

∣∣∣∣
1

Pf

∣∣∣∣ =
∣∣∣∣
1

Pg

∣∣∣∣ on T as well. Hence, by the following lemma,

we get
1

Pf
=

c

Pg
for some c ∈ T, which implies g = cc̃f .

Lemma 3.1 Let F and G be meromorphic on C without poles on T ∪ ρT
for 0 < ρ 6= 1. Suppose

|F (ζ)| = |G(ζ)| and |F (ρζ)| = |G(ρζ)|, ζ ∈ T. (7)

Then F and G have the same zeros and poles in C \ {0}, with the same

multiplicities. In particular, if F and G are rational functions that satisfy

(7), then G = cF outside the poles with c ∈ T.
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Proof Let F be meromorphic on C and z0 ∈ C. Write F (z) = (z−z0)kF̃ (z)
and for some k ∈ Z with F̃ (z0) 6= 0. Define the multiplicity k := mF (z0),
where k > 0 if z0 is a zero of F , and k < 0 if z0 is a pole of F . In particular, for
meromorphic functions F1, F2 on C, we have mF1F2

= mF1
+mF2

, mF1/F2
=

mF1
−mF2

and if F1 = F2 in the neighborhood of a pole z0, then mF1
= mF2

.
First, note that if ρ > 1, we replace F and G by f(z/ρ) and g(z/ρ), and

replace ρ by 1/ρ < 1. We thus assume that ρ < 1. Observe that (7) is
equivalent to

F (z)F

(
1

z̄

)
= G(z)G

(
1

z̄

)
, z ∈ T

and

F (z)F

(
ρ2

z̄

)
= G(z)G

(
ρ2

z̄

)
, z ∈ ρT.

As an identity between meromorphic functions in C, these equations are also
valid for z ∈ C not a pole of any of the functions involved. As poles are
isolated, we have for z 6= 0,

mF (z) +mF

(
1

z̄

)
= mG(z) +mG

(
1

z̄

)
(8)

and

mF (z) +mF

(
ρ2

z̄

)
= mG(z) +mG

(
ρ2

z̄

)
. (9)

Now, (8) gives

mF (z)−mG(z) = mG

(
1

z̄

)
−mF

(
1

z̄

)
= mF (ρ

2z)−mG(ρ
2z)

with (9) applied to 1/z̄, for z ∈ C\{0}. If z0 6= 0 is such thatmF (z0) 6= mG(z0)
then

0 6= mF (z0)−mG(z0) = mF (ρ
2z0)−mG(ρ

2z0) = · · ·

= mF (ρ
2kz0)−mG(ρ

2kz0) = mF/G(ρ
2kz0)

for all k ∈ N. But then F/G is meromorphic and either has ρ2kz0 as a zero
(mF/G(ρ

2kz0) > 0) or as a pole (mF/G(ρ
2kz0) < 0) for every k. Letting

k −→ ∞ we have ρ2kz0 −→ 0. As z0 6= 0, this contradicts the fact that zeros
and poles of F/G are isolated. Hence, F and G have the same nonzero zeros
and poles with the same multiplicities.

Furthermore, if F and G are rational functions, then they have same zeros
and poles in C \ {0}, thus there exists c ∈ T and m ∈ Z such that G = czmF .
But then (7) implies that

— on one hand |F (ρeit)| = |c|ρm|F (ρeit)| for all t thus |c|ρm = 1.
— on the other hand |F (eit)| = |c||F (eit)| thus |c| = 1.
As ρ < 1 this implies m = 0 and then G = cF .
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Corollary 3.2 Let F,G be two meromorphic functions in C with no pole

at 0 such that

|F (ζ)| = |G(ζ)| and |F (ρζ)| = |G(ρζ)|, ζ ∈ T, 0 < ρ 6= 1.

Then there exists c ∈ T such that G = cF .

Proof As seen in the previous proof, we can assume that ρ < 1.
The previous lemma then shows that F and G have the same nonzero

poles in C. Note that there is at most a finite number of such poles in a
neighborhood of D. We can factor them out and write F = F̃ /P , G = G̃/P

with F̃ , G̃ having no pole in a neighborhood of D and P a polynomial. But
then F̃ , G̃ ∈ N and |F̃ | = |G̃| on T ∪ ρT. The previous theorem shows that

there exists c ∈ T such that G̃ = cF̃ thus G = cF on D and thus on C.
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