
HAL Id: hal-02929348
https://hal.science/hal-02929348v2

Preprint submitted on 10 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SFBS: a Forward-Backward Splitting algorithm for
constrained tensor decomposition

Elaheh Sobhani, Pierre Comon, Christian Jutten, Massoud Babaie-Zadeh

To cite this version:
Elaheh Sobhani, Pierre Comon, Christian Jutten, Massoud Babaie-Zadeh. SFBS: a Forward-Backward
Splitting algorithm for constrained tensor decomposition. 2023. �hal-02929348v2�

https://hal.science/hal-02929348v2
https://hal.archives-ouvertes.fr

SFBS: A Forward-Backward Splitting algorithm for
constrained tensor decomposition

Elaheh Sobhania,b,1,∗, Pierre Comona, Christian Juttena,
Massoud Babaie-Zadehb

aGIPSA-Lab, UMR CNRS 5216, Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab,
38000 Grenoble, France

bDepartment of Electrical Engineering, Sharif University of Technology, Tehran
11365-11155, Iran

Abstract

Tensors (multi-way arrays) and constrained tensor decomposition are very

practical in various applications. The existing constrained decomposition al-

gorithms, which are based on Alternating Direction Method of Multipliers

(ADMM) or proximal methods, suffer either from a lack of complete convergence

guarantee or from the lack of expected accuracy. In this paper, we propose a

constrained decomposition algorithm, called SFBS, which stands for “Simple

Forward-Backward Splitting” and is based on a particular proximal method to

handle constraints. SFBS is theoretically and practically ahead compared to the

state-of-the-art, since (i) not only SFBS achieves state-of-the-art performances,

but also has a complete convergence guarantee, unlike ADMM-based algorithms;

(ii) SFBS is much more robust against additive noise and computationally less

expensive; (iii) unlike some existing algorithms, SFBS requires to adjust fewer

hyperparameters, which are easy to set according to the convergence condition.

Keywords: Tensor, constraint, Proximal, ADMM, Simplex, Non-negative.

∗Corresponding author
Email addresses: sobhani.es@gmail.com (Elaheh Sobhani),

pierre.comon@gipsa-lab.grenoble-inp.fr (Pierre Comon),
christian.jutten@gipsa-lab.grenoble-inp.fr (Christian Jutten), mbzadeh@sharif.edu
(Massoud Babaie-Zadeh)

1Portions of this research were done while the author was a dual degree Ph.D. student at
GIPSA-Lab and Sharif University of Technology

Preprint submitted to February 10, 2023

1. Introduction

Considering vectors and matrices as one-way and two-way arrays, respec-

tively, tensors may be viewed as multi-way arrays, which can have more than

two dimensions. In order to recover latent variables by means of tensors, data

tensors are typically decomposed into some multi-way arrays (vectors, matri-5

ces or tensors), which can be interpreted as the desired latent variables of the

problem. Canonical Polyadic (CP) decomposition [1], also referred to as CAN-

DECOMP or PARAFAC [2] in some communities, is one of the prevalent tensor

decompositions in the literature.

Tensors have appeared in many applications so far, such as Blind Source10

Separation (BSS) based on data cumulants [2], many tasks of machine learning

including classification [3], data fusion[4], topic modeling and the estimation of

parameters in mixture models [5, 6], to cite a few. According to the application,

it is preferred to add some constraints to the tensor decomposition that results

normally in much more accurate and reasonable solutions. Non-negativity, be-15

longing to simplex set, orthogonality and sparsity are some examples of key

constraints often introduced in applications such as medical image and signal

processing [7], probability estimation in topic modeling [6] and dictionary learn-

ing [8].

Some of tensor decomposition algorithms are generalizations of matrix de-20

compositions in the literature, for example Non-negative Tensor Factorization

(NTF) [7] is inspired from Non-negative Matrix Factorization (NMF), or the ten-

sor Power method [5] is dedicated to symmetric tensors and mimics the matrix

Power method aiming at calculating matrix eigenpairs. We will show experi-

mentally that the tensor Power method is not robust against additive noise, and25

is not reliable because it does not take properly into account the constraints.

On the other hand, some of the existing constrained tensor decomposition

algorithms are based on Alternating Optimization (AO) [3] or its special case,

Alternating Least Squares (ALS) [4], in which the data fidelity term is the

least square error. Although, an unconstrained tensor decomposition can be30

2

computed with ALS as the Nway software [9] does, this approach is very sen-

sitive to additive noise [3, Section VII-G]. Therefore, the implementation of

constrained algorithms is preferred to unconstrained ones; examples include

Alternating Optimization-Alternating Direction Method of Multipliers (AO-

ADMM) [10] (employing ADMM in each step of AO), Alternating Proximal35

Gradient (APG) [11], FastNTF-APG [12], or BC-VMFB [13] (employing a prox-

imal approach in each step of AO).

The convergence of AO in AO-ADMM is not guaranteed because the prox-

imal regularization is ignored [10], and also the convergence of ADMM for the

non-convex constraint `0 has not yet been proved [14]. Although it is proved that40

the algorithms based on proximal method [11, 12, 13] such as APG, FastNTF-

APG and BC-VMFB converge to a critical point of the problem even for non-

convex constraints, the performances of these kinds of algorithms have not yet

achieved that of AO-ADMM. Moreover, some methods such as BC-VMFB [13]

force the user to adjust several parameters having a strong impact on the result.45

Some other methods [15] in the same vein are customized for large dimension

tensor decompositions, a subject out of the scope of the present contribution.

In this paper, an algorithm for constrained tensor decomposition based on

ALS is proposed, in each step of which, a constrained minimization problem is

solved by means of a specific proximal approach called Forward-Backward Split-50

ting [16, 17]. We call this algorithm SFBS, which stands for “Simple Forward-

Backward Splitting”, as it is easier to understand and implement comparing

to state-of-the-art algorithms. The practical and theoretical contributions of

this paper are as follows: firstly, not only SFBS performs either better than

or as well as AO-ADMM [10], but also a complete convergence analysis exists55

for SFBS that can be applied even on non-convex and non-smooth constraints

such as cardinality [18], which is not the case for AO-ADMM. Secondly, SFBS

performs better than APG [11] in noisy cases and is computationally less expen-

sive, because the computation of a large number of coefficients is avoided, unlike

APG. Thirdly, contrary to BC-VMFB [13], SFBS does not require many critical60

settings of the parameters but just one, which is easy to set according to the

3

SFBS convergence condition. Fourthly, in spite of BC-VMFB, SFBS works with

variables in matrix form, hence, there is no need to vectorize loading matrices,

which brings an advantage in working with large dimension tensors. Fifthly,

compared with unconstrained algorithms such as the tensor Power method [5],65

not only the results of SFBS are much more reliable due to employing proper

constraints such as the membership to the simplex set, but also it benefits from

theoretical convergence guarantees. Further, SFBS is much more robust against

additive noise and is not dedicated to symmetric tensors, unlike the tensor Power

method.70

The paper is organized as follows. In Section 2, some preliminaries about

tensors, CP decomposition and proximal methods are reviewed. SFBS and its

convergence analysis are described in Section 3 and Appendix B, respectively.

Finally, Section 4 reports computer results.

Notation. Vectors, matrices and tensors are denoted with bold lowercases75

(e.g., a), bold uppercases (e.g., A) and bold calligraphic letters (e.g., T), re-

spectively. The tensor (outer) product is denoted by ⊗.

2. Preliminaries

2.1. Tensors and CP decomposition

Tensors can be considered as a multi-linear map from a vector space to80

another one [2], or simply as multi-way (multi-dimensional or multi-index) nu-

merical arrays [7]. The order of an array refers to the number of its ways [19].

Vectors and matrices are one-way and two-way arrays, respectively, but usually

a tensor is associated with an array with three or more ways [3].

A decomposable tensor of order N is a tensor product of N vectors [2], i.e.,

D = a(1)⊗a(2) . . .⊗a(N). According to [1], any tensor can be written as a

linear combination of a finite number of decomposable tensors,

T =

R∑
r=1

λrD(r), (1)

4

where T is a tensor of order N , and D(r) = a
(1)
r ⊗a(2)

r . . .⊗a(N)
r . In compact85

form, (1) can be represented as T = Jλ;A(1),A(2), . . . ,A(N)K, in which λ is a

coefficient vector of size R containing the values of λr and a
(1)
r ,a

(2)
r , . . .a

(N)
r are

the rth columns of N loading matrices A(1),A(2), . . . ,A(N), respectively. The N

matrices A(1),A(2), . . . ,A(N) are called mode-1, mode-2, . . . , mode-N loading

matrices, respectively, since their columns are responsible for the construction90

of the first, second, . . . , N th dimension of T [4].

For the sake of convenience, tensors are sometimes transformed into matri-

ces [2]. This transformation is called unfolding or flattering and can be done

in each mode. The resulting matrix in mode n, 1 ≤ n ≤ N , is called mode-n

unfolding [2] and is denoted by T (n).95

For each tensor, the minimum value of R for which (1) holds is called tensor

rank [2]. Therefore, the rank of a decomposable tensor is one. The decomposi-

tion described in (1) is called Polyadic decomposition [1] or also CANDECOMP

or PARAFAC [2]. Based on the number of unknowns in (1), the expected rank

of a tensor is defined as R◦ ,

⌈
D

1−N +
∑
i Ii

⌉
, where N is the order of the100

tensor of dimensions I1 × . . . × IN and D =
∏
i Ii. It has been shown in [20]

that R ≤ R◦ − 1 ensures almost surely the uniqueness of decomposition (1). If

this polyadic decomposition is unique, it can be called Canonical Polyadic (CP)

decomposition [2].

As in practice data stored in the form of a tensor are usually corrupted by105

noise, the best rank-R approximation must be estimated. Although low-rank

approximation is useful, generally it is ill-posed, since the set of tensors of rank

at most R is not closed [2]. Therefore, imposing some constraints (such as

non-negativity or the membership to the simplex set2) on loading matrices and

coefficient vectors is proposed in the literature to overcome this difficulty [4].110

2A simplex set is defined by: S , {x : x ≥ 0, ‖x‖1 = 1}, where the inequality is to

be understood entry-wise. This constraint corresponds to a sum-to-one also called column-

stochasticity. This is the case when the entries of the vector x are probabilities that sum to

one.

5

2.2. Proximity operator

The projection of a vector x ∈ RN onto a closed convex set S ⊂ RN is

a classical problem in signal processing and can be formulated as projS(x) =

argminy∈RN

{
iS(y) +

1

2
‖x− y‖22

}
[21], where iS is the indicator function de-

fined by:

iS(y) ,

 0 if y ∈ S

∞ if y 6∈ S
(2)

Let Γ0(RN) be the class of lower semi-continuous functions f : RN 7→

(−∞,+∞], with dom(f) 6= ∅3. Then iS belongs to Γ0(RN).

The definition of Proximity operator is obtained by replacing iS(y) in pro-

jection minimization with any arbitrary function in Γ0(RN) [23]:115

Definition 1 (Proximity operator [16]). For every x ∈ RN , the unique solution

of argminy∈RN f(y) +
1

2
‖x − y‖22 is defined as the proximity operator of the

function f ∈ Γ0(RN), and it is denoted by proxf (x). The term
1

2
‖x − y‖22 is

also called proximal regularization in the literature [11]. Thus, the proximity

operator of f is proxf : RN 7→ RN , and it is characterized by:

p = proxf (x)⇔ (x− p) ∈ ∂f(p), ∀(x,p) ∈ RN × RN ,

where ∂f(·) is the subgradient4 of f . Note that ∂f(p) is replaced by ∇f(p) for

differentiable f .

The above definition indicates that proxf (x) is a point that minimizes f and

simultaneously is as close as possible to x. Therefore, proxf (x) is also called

a proximal point of x with respect to f [17]. See Table 10.2 in [16] for a list of120

popular functions and their corresponding proximity operators.

Remark 1. Kurdyka-Lojasiewicz property (KL) [18]: The function

f : Rn 7→ R ∪ {+∞} has the Kurdyka-Lojasiewicz (KL) property at x∗ ∈

3 dom(f) denotes the domain of a function f , i.e., the set of feasible solutions if f(x) is to

be minimized [22].
4If f(x) > f(x)+〈v,x−x〉+o(|x− x̄|), then v is a subgradient of f at x, i.e., v ∈ ∂f [16].

6

dom(f) if there exist η ∈ (0,+∞], a neighborhood U of x∗ and a contin-

uous concave function ϕ : [0, η) 7→ R+ such that (i) ϕ(0) = 0, (ii) ϕ is125

differentiable on (0, η), (iii) ϕ′(y) ≥ 0 for all y ∈ (0, η), (iv) ϕ′(f(x) −

f(x∗))dist(0, ∂f(x)) ≥ 1 (the Kurdyka-Lojasiewicz inequality) holds for all

x ∈ U ∩ {x|f(x∗) < f(x) < f(x∗) + η}, where dist(.) denotes the distance func-

tion. In the rest of this paper, this property is referred to as “KL”, in short.

Many functions encountered in finite-dimensional applications and in particular130

many convex functions have KL property [18], while it is not trivial to check

the conditions in the KL definition [11]. Some examples of functions with KL

property are mentioned in Appendix B.1.

2.3. Forward-Backward Splitting

By following a proximal approach, an optimization containing a non-135

differentiable and/or non-convex function can be solved by means of a particular

algorithm called Forward-Backward Splitting as explained in Theorem 1, which

is mentioned in [16].

Theorem 1 (Forward-Backward Splitting [16]). Suppose f : RN 7→ R ∪ {+∞}

is a proper5lower semi-continuous function, which has the KL property and is

bounded from below. If f can be split into two parts as f = h+g, where g is lower

semi-continuous and h : RN 7→ R is a finite-valued, differentiable function with

a β-Lipschitz continuous gradient, i.e., ∃β such that ‖∇h(x)−∇h(y)‖2 ≤ β‖x−

y‖2, then it can be shown [25] that the minimizer of f satisfies the following

fixed point equation:

x = proxγg(x− γ∇h(x)), (3)

where γ ∈ (0,+∞).

Equation (3) suggests an iterative approach, called the Forward-Backward

5A function f : RN 7→ [−∞,+∞] has effective domain dom(f) = {ν | f(ν) < ∞}, and is

called proper if the set dom(f) is non empty [24, Chapter 1].

7

Algorithm 1 Forward-Backward Splitting [25, 16, Algorithm 10.5]

Input: The function f = h+ g as defined in Theorem 1, β, x0 ∈ RN

Output: The minimizer of f

1: Fix ε0 ∈ (0,min{1, 1

β
})

2: for k = 0, 1, 2, . . . do

3: γk ∈ [ε0,
2

β
− ε0]

4: yk = xk − γk∇h(xk)

5: αk ∈ [ε0, 1]

6: xk+1 = xk + αk(proxγkg(yk)− xk)

7: end for

Splitting algorithm [16]:

xk+1 = proxγg(xk − γk∇h(xk)), (4)

where the values of γk should be chosen in a suitable bounded interval.140

Several variations of implementing Forward-Backward Splitting exist and are

reported in [16]. Two of them are restated here (Algorithm 1 and Algorithm 2)

to which we will refer in the rest of this paper. Although Algorithm 2 is more

user-friendly than Algorithm 1 in terms of the number of required parameters

to be set, the computational complexity of Algorithm 1 is smaller than that of145

Algorithm 2 due to the fact that some coefficients, like tk and λk in lines 5 and

6 of Algorithm 2, are not calculated.

In many applications (including our proposed method, SFBS, in Section 3),

the function g is an indicator function of a particular set (S), iS, and its proximity

operator is a projection onto that set [16, Table 10.2]. If the desired set is non-150

convex, the projection onto it may not result in a unique point. It has been

proved [18] that in spite of the multi-valued projection, the convergence property

of Theorem 1 is not affected. Note that this interesting conclusion is valid only

if the assumptions of Theorem 1 are satisfied, the most important being the KL

property satisfied by h+ iS.155

8

Algorithm 2 Beck-Teboulle proximal gradient algorithm [16, Algorithm 10.7]

based on FISTA [26]

Input: The function f = h+ g as defined in Theorem 1, β, x0 ∈ RN

Output: The minimizer of f

1: Set z0 = x0 and t0 = 1

2: for k = 0, 1, 2, . . . do

3: yk = zk − β−1∇h(zk)

4: xk+1 = proxβ−1g(yk)

5: tk+1 =
1 +

√
4t2k + 1

2

6: λk = 1 +
tk − 1

tk+1

7: zk+1 = xk + λk(xk+1 − xk)

8: end for

3. Proposed: Simple Forward-Backward Splitting (SFBS)

Consider the N -th order tensor T ∈ RI1×I2×...IN of rank R. Assume that

T = Jλ;A(1),A(2), . . . ,A(N)K, where λ ∈ RR and A(n) ∈ RIn×R. When all en-

tries of an arrayB are constrained to belong to a set E, the associated constraint

and the corresponding indicator function are denoted by CE(B) and iE(B), re-

spectively. This notation may apply for instance to λ and to A(n), and either

to the non-negative orthant N or to the simplex set S. A general problem of the

constrained CP decomposition of T can be formulated as follows:

min
λ,A(n)

1

2
‖T − Jλ;A(1),A(2), . . . ,A(N)K‖2F (5)

s.t. CE(λ),CE(A(n)), 1 ≤ n ≤ N,

where CE(λ),CE(A(n)) are, respectively, the constraints on the vector λ and on

matrices A(n)6.

6Note that each array (λ,A(n), 1 ≤ n ≤ N) may have its own constraint, hence its

corresponding set E may be different from other arrays.

9

Remark 2. The considered constraints in this paper are the non-negativity

(E = N) and the membership in the simplex set (E = S). To be more precise, for160

all arrays, i.e., λ and all factor matrices A(n), in the simulations of Section 4.1.1

(Fig. 1) and Section 4.1.2 (Fig. 2), E is N and S, respectively. In addition, E = S

in the experiment of Section 4.2.

A common strategy is to solve (5) via ALS and adding the indicator function

of the constraint set to the cost function [10]. To be more precise, at the nth

step of ALS for solving (5), we have7:

min
A(n)

1

2

∥∥T − JA(1), . . . ,A(n), . . . ,A(N)K
∥∥2
F

+ iE(A(n)), (6)

where iE(A(n)) is an indicator function as defined in (2). Define W , (A(N) �

. . .�A(n+1)�A(n−1)� . . .�A(1))T , where � is the Khatri-Rao product. Then

by the mode-n unfolding of (6), we have:

min
A(n)

1

2
‖T (n) −A(n)W ‖2F + iE(A(n)). (7)

Observe that iE(A(n)) is lower semi-continuous [22, Definition 1.5] for E = N

or E = S. Furthermore, 1
2‖T

(n) −A(n)W ‖2F is finite-valued, differentiable and165

β-Lipschitz continuous gradient, where β = ‖WW T ‖σ denotes the spectral

norm8 of the matrix WW T (calculated in Appendix A). Since WW T is a

symmetric matrix, its singular values are the squared of those of W . More-

over, the cost function in (7) is proper, lower semi-continuous with the KL

property [18] (proved in Appendix B). Consequently, based on Theorem 1, the170

minimizer of (7) is A(n) = proxγi
E
(A(n)){A

(n) − γ(A(n)WW T −WT (n)T)}.

Since the proximity operator of γiE(A(n)) is the projection onto CE(A(n)), we

have A(n) = projCE(A(n)){A
(n) − γ(A(n)WW T −WT (n)T)}.

Putting all together, this results in our proposed algorithm, which we call

Simple Forward-Backward Splitting (SFBS). Since SFBS requires fewer param-175

7The vector λ is omitted in (6), since it can be calculated by normalizing loading matrices

(A(n)). Otherwise, the vector λ as one of the unknown variables can be optimized in one of

the steps of ALS.
8The spectral norm of a matrix is equal to its maximum singular value.

10

Algorithm 3 Proposed: Simple Forward-Backward Splitting (SFBS)

Input: T , CE(A(n)), initial A
(n)
0 , n ∈ [1, . . . , N], e

Output: Estimated A(n), n ∈ [1, . . . , N]

1: repeat

2: for n = 1, 2, . . . , N do

3: W = (A(N) � . . .�A(n+1) �A(n−1) � . . .�A(1))T

4: β = {max(singular value(W))}2, set γ = e
β and choose αg.

5: for g = 0, 1, 2, . . . do

6: Y = A(n)
g − γ(A(n)

g (WW T)− T (n)W T)

7: A
(n)
g+1 = A(n)

g + αg(projCE(A(n))(Y)−A(n)
g)

8: end for

9: end for

10: until some termination criterion

eters to be calculated9 than the methods based on Algorithm 2 like APG, and

is also easier to understand and implement, it is qualified as Simple. SFBS

is described in Algorithm 3, which is a customized version of Algorithm 1 for

constrained CP decomposition.

Remark 3. The projection onto the non-negative orthant N is done with the180

max operator, thereby the line 7 of Algorithm 3 would be A
(n)
g+1 = A(n)

g +

αg(max(Y , 0)−A(n)
g).

Remark 4. A detailed description of SFBS imposing joint constraints CS(λ)

and CS(A(n)) is provided in Algorithm 4, in line 13 and 16 of which the method

proposed in [27] is employed to project a vector onto a simplex set. In Al-185

gorithm 4, the simplex constraint is applied to every column of every matrix

A(n), n ∈ [1, . . . , N − 1], and only to the vectorization of matrix A
(N)
λ =

A(N)Diag(λ), where Diag(λ) is a diagonal matrix containing λ on its diago-

9Algorithm 1 has more parameters to be set by the user, however Algorithm 2 has more

parameters to be calculated like tk, λk, as mentioned here.

11

nal. It can then be proved easily that vector λ and every column of loading

matrices estimated by Algorithm 4 indeed lie in the simplex set.190

4. Simulation

In this section, SFBS is compared to AO-ADMM [10], APG [11], FastNTF-

APG [12] and BC-VMFB [13]10 and Nway, a software for CP decomposition

via least squares, from a well-known tensor toolbox [9]. Algorithms are either

tested on artificially generated tensors or on an estimated tensor (third order195

moments) of a real text data set.

One should note some technical points about our practical implementations.

First, in order to compute the Lipschitz constant (line 4 (resp. line 9) of Algo-

rithm 3 (resp. Algorithm 4)), one can employ [norm(W)]2 command in MATLAB,

where W is the matrix composed of constant loading matrices and is defined200

in line 3 (resp. line 5 and 7) of Algorithm 3 (resp. Algorithm 4). Second,

one could employ Corcondia [30] to obtain an estimation of the rank R, which

is a required input for all algorithms considered in this section. However, in

synthetic scenarios, the real rank is known. Working with real text data set,

some points about rank selection are noted in Section 4.2. Lastly, we fix the205

value of γk =
e

β
in Algorithm 3 and Algorithm 4 for all iterations over k with

e = [1.4, 1.9], which is experimentally observed to be proper. In addition, by

setting αg to 1, we remove the effect of linear combination of obtained points

in two successive iterations (See line 7 of Algorithm 3).

In order to fairly compare the performances of algorithms, all the algorithms210

are required to iterate until either they reach a maximum predefined number

of iterations (denoted by iterations max-number) or the variation of relative

10We would like to thank the corresponding authors of FastNTF-APG [12] and

BC-VMFB [13], Guoxu Zhou and Caroline Chaux, respectively, who sent us the MATLAB

codes of their methods. The MATLAB codes of AO-ADMM [10] and APG [11] are made

available by the authors at [28] and [29], respectively. Therefore, the original codes of authors

have been used to obtain the results reported in all figures of this section.

12

Algorithm 4 SFBS for simplex constraint

Input: T , CS(A(n)), initial A
(n)
0 , n ∈ [1, . . . , N], λR0 , e

Output: Estimated A(n), n ∈ [1, . . . , N], λ

1: A
(N)
λ,0 = A

(N)
0 Diag(λ0), where Diag(λ0) is a diagonal matrix containing λ0

on its diagonal.

2: repeat

3: for n = 1, 2, . . . , N do

4: if n < N then

5: W = (A
(N)
λ � . . .�A(n+1) �A(n−1) � . . .�A(1))T

6: else

7: W = (A(N−1) � . . .�A(n+1) �A(n−1) � . . .�A(1))T

8: end if

9: β = {max(singular value(W))}2 and set γ = e
β .

10: for g = 0, 1, 2, . . . do

11: if n < N then

12: Y = A(n)
g − γ(A(n)

g (WW T)− T (n)W T)

13: A
(n)
g+1(:, r) = projCS

(Y (:, r)), 1 ≤ r ≤ R

14: else

15: Y = A(N)
λ,g
− γ(A(N)

λ,g
(WW T)− T (n)W T)

16: A
(N)

λ,g+1 = vec−1(projCS
(vec(Y))), where vec is the vectoriza-

tion operator

17: end if

18: end for

19: end for

20: λr = ‖A(N)
λ (:, r)‖1, A(N)(:, r) =

A
(N)
λ (:, r)

λr
, 1 ≤ r ≤ R

21: until some termination criterion

13

objective value between two successive iterations is less than a desired small

value, namely ζ. If the objective value in iteration k is denoted by Ψ(k), which

is the difference between the input tensor and the estimated tensor, the criterion215

to stop iterations is ∆Ψ(k) =

∣∣∣∣Ψ(k)−Ψ(k − 1)

Ψ(k)

∣∣∣∣ ≤ ζ. In addition, the reported

result of each experiment is averaged over several realizations of the tensors,

and for each realization, all the methods are initialized by an identical set of

initializations, which are generated randomly, to choose the best initialization

point. Therefore, it is possible that the best result for each method is not220

achieved for the same initialization point, but nonetheless, the comparison is

fair, since the set of initializations is the same for all the considered methods. In

the sequel, the number of realizations of tensors and the number of initialization

points are mentioned by average number and initialization number, respectively.

All computer experiments reported in this section have been executed on a225

laptop with a 3.1 GHz Intel Core i5 processor, 16 GB of RAM running macOS

Mojave and MATLAB 2019a.

4.1. Synthetic data

According to the considered constraints, loading matrices and a coefficient

vector are generated randomly (uniform distribution in the interval [0, 1]). Then,

the noiseless tensor T o is computed via (1). In order to work in a noisy context,

a noise tensor, Tn, with i.i.d. entries of Gaussian distribution with zero mean

and unit variance, of the same size as T o, is weighted by the parameter σ and

added to T o. As Tn has unit variance11, then the variance of σTn is σ2. One can

adjust σ such that a desired Signal to Noise Ratio (SNR) is reached according

to the relation:

SNR = 10 log10

1
M

∑
i,j,k T o(i, j, k)2

1
M

∑
i,j,k σ

2Tn(i, j, k)2
,

where M is the total number of elements in tensors T o or Tn.

Denote by T the tensor to be decomposed, T = T o + σTn. After decom-230

posing T , the estimation of T o can be calculated using (1), as a rank-R ap-

11The variance of a multi-way array is defined as the sum of the variances of its entries.

14

proximation, which we call T̂ . The relative reconstruction error is computed as

ε(T̂) =
‖T̂ − T o‖2F
‖T o‖2F

, which will be reported as it is, not in the form of percent-

age12. In addition, the error of estimating loading factors is reported according

to Remark 5. Different simulations of this section may differ from each other in235

terms of SNR or constraints imposed on the arrays. However, in all simulations,

ζ = 10−8 and the loop of line 5 (resp. line 10) is repeated five times for each

mode in Algorithm 3 (resp. Algorithm 4).

Remark 5. It is hard to assess the relative error made on loading matrices, be-

cause of the scaling and the permutation ambiguities of tensor decomposition [2].240

So as to overcome these ambiguities, exact errors using, e.g., Hungarian [31] is

reported. However, if the error on each loading factor is reported separately, it

would be an optimistic measure, since implicitly a specific (not common) per-

mutation is permitted for each loading matrix. In order to have a more reliable

performance index, the error based on the matrix X is reported, which consists of245

all loading factors together. In other words, the difference between X and X̂ is

reported, where XT =
[
A(1),A(2), . . . ,A(N)

]T
, X̂

T
=

[
Â(1), Â(2), . . . , Â(N)

]T
and Â(n) is the estimation of A(n) with the scaling and the permutation am-

biguities. Nevertheless, there are other ways to report the performance such

as CorrIndex measure described in [32], which computationally costs less than250

Hungarian in case of large size tensors.

4.1.1. Non-negativity constraint

Figure 1.a shows ε in decomposing a noiseless tensor of size 10× 10× 10, of

rank R = 6 with initialization number, average number, iterations max-number

and the parameter in line 4 of Algorithm 3, e, equal to 10, 10, 5000 and 1.9,255

respectively (cf. see Section 4.1 for the definition of these parameters). BC-

VMFB results in a relative error around 1, which means 100%. Although we

consulted the corresponding author of BC-VMFB, we found it hard to adjust

12For example, if we report ε(T̂) = 1.5, it should not be interpreted as 1.5%, but as 150%.

15

10-4 10-2 100 102

time(sec)

10-20

10-15

10-10

10-5

100

R
el

at
iv

e
re

co
n

st
ru

ct
io

n
 e

rr
o

r
(0

)

SFBS
AoADMM
APG
Nway
BCVMFB
FastNTF

(a)

10-4 10-2 100 102

time(sec)

10-15

10-10

10-5

100

E
xa

ct
 e

rr
o

r
o

f
"X

"
b

y
H

u
n

g
ar

ia
n

SFBS
AoADMM
APG
Nway

(b)

10-4 10-2 100 102

time(sec)

0.2

0.3

0.4

0.5

R
el

at
iv

e
re

co
n

st
ru

ct
io

n
 e

rr
o

r
(0

)

SFBS
AoADMM
APG
Nway
BCVMFB
FastNTF

(c)

10-4 10-2 100 102

time(sec)

0.4

0.42

0.44

0.46

0.48

0.5

E
xa

ct
 e

rr
o

r
o

f
"X

"
b

y
H

u
n

g
ar

ia
n

SFBS
AoADMM
APG
Nway

(d)

Figure 1: The performance of decomposing a tensor of dimension 10 × 10 × 10, of rank

R = 6 under the non-negativity constraint over all loading factors. For noiseless data, ζ,

average number, initialization number, iterations max-number and the parameter in line 4

of Algorithm 3, e, are set to 10−8, 10, 10, 5000 and 1.9, respectively. (a): The relative

reconstruction error (ε) with noiseless data. (b): Comparison of the estimation of matrix X

in the same experiment as Fig. 1.a.

For noisy data, SNR, ζ, average number, initialization number, iterations max-number and

the parameter in line 4 of Algorithm 3, e, are set to 10 dB, 10−8, 200, 20, 1000 and 1.9,

respectively. (c): The relative reconstruction error (ε) with noisy data. (d): Comparison of

the estimation of matrix X in the same experiment as Fig. 1.c.

16

several parameters of BC-VMFB. In addition, FastNTF-APG performs worse

than APG, since it tries to decompose a low-rank approximation of the desired260

tensor. Although most of the methods achieve reasonable performances, APG

and SFBS converge rather faster. In Fig. 1.b, the gap between X and X̂ via

Hungarian are reported13 for the same experiment of Fig. 1.a, which can be

interpreted in the same way as Fig. 1.a.

Figure 1.c indicates ε of a similar tensor as in Fig. 1.a in a noisy case with265

SNR, average number, initialization number, iterations max-number and the

parameter in line 4 of Algorithm 3, e, equal to 10 dB, 200, 20, 1000 and 1.9,

respectively. Although Nway carries out well in a noiseless case, its performance

is not acceptable in the noisy situation. The result of FastNTF-APG is better

than APG in a noisy scenario, as it replaces the noisy tensor with its low rank270

approximation, which helps to filter the noise out. Moreover, SFBS and AO-

ADMM outperform other methods, therefore, the only algorithm that performs

properly and better than others in both noiseless and noisy situations is SFBS.

However, the average number of performed iterations for SFBS in this simulation

is 550, while this value for AO-ADMM is equal to iterations max-number = 1000,275

which shows that SFBS converges faster.

In Fig. 1.d, the gap between X and X̂ via Hungarian is reported. Although

according to ε in Fig. 1.c, both AO-ADMM and SFBS outperform the others,

in estimating loading factors, SFBS performs better than AO-ADMM. In spite

of objective value, the error of estimating loading matrices can be ascending280

as it happens in Fig. 1.d, because the algorithms stop iterations based on the

reconstruction error values, not on the loading matrix error values.

4.1.2. Simplex constraint

In this section, SFBS is only compared with AO-ADMM under the simplex

constraint based on the Remark 4, since firstly, the implementation is directly285

investigated by the authors of AO-ADMM in [10]. Secondly, according to the

13The relative error of all the other loading factors shows almost the same results.

17

results of Section 4.1.1, AO-ADMM has the closest performance to that of SFBS.

Figure 2.a shows ε of the noiseless tensor of size 10× 10× 10, of rank R = 3

with initialization number, average number, iterations max-number and the pa-

rameter in line 9 of Algorithm 4, e, equal to 10, 10, 20000 and 1.5, respectively,290

under the membership to the simplex set constraint. In addition, Fig. 2.b re-

portes the gap between X and X̂ via Hungarian. By comparing Fig. 2.a and

Fig. 1.a, it can be inferred that the membership to the simplex set is a more diffi-

cult constraint than non-negativity to be achieved, since the maximum required

iterations for the simplex set is more than what is set for the non-negativity. As295

it can be seen in Fig. 2.a and Fig. 2.b, both SFBS and AO-ADMM achieve the

same level of relative error, however SFBS converges slightly faster. To be more

precise, the average number of performed iterations for SFBS in this simulation

is 323, while this value for AO-ADMM is 798, which again shows that SFBS

converges faster.300

Figure 2.c indicates ε of a similar tensor as in Fig. 2.c in a noisy case with

SNR, initialization number, average number, the parameter in line 9 of Algo-

rithm 4, e, and iterations max-number equal to 10 dB, 20, 200, 1.9 and 1000,

respectively. Figure 2.d represents the corresponding gap between X and X̂

via Hungarian, and shows that SFBS performs better than AO-ADMM and305

converges slightly faster.

4.2. Real data

In this section, our experiments on a part of a well-known text data set,

namely 20 Newsgroups, which consists of 11314 posts on 20 topics available

online [33], are described. Let L be the number of words in a given document,310

x` the observed words, ` ∈ L = {1, 2, . . . , L}, and h, the topic of this doc-

ument, encoded into a discrete variable taking K possible integer values, say

from H = {1, 2, . . . ,K} with probability ϕ(k) = Prob(h = k). All words be-

long to a known encoded dictionary Ω = {u1, . . . ,uD} of cardinality D. In

other words, one can consider a mapping γe (generally not injective) from L315

into {1, 2, . . . , D} such that x` = uγe(`). In the context of text mining, D is the

18

10-4 10-2 100 102

time(sec)

10-20

10-15

10-10

10-5

100

R
el

at
iv

e
re

co
n

st
ru

ct
io

n
 e

rr
o

r
(0

)

SFBS
AoADMM

(a)

10-4 10-2 100 102

time(sec)

10-15

10-10

10-5

100

E
xa

ct
 e

rr
o

r
o

f
"X

"
b

y
H

u
n

g
ar

ia
n

SFBS
AoADMM

(b)

10-3 10-2 10-1 100

time(sec)

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

R
el

at
iv

e
re

co
n

st
ru

ct
io

n
 e

rr
o

r
(0

)

SFBS
AoADMM

(c)

10-4 10-2 100

time(sec)

0.25

0.3

0.35

0.4

0.45

E
xa

ct
 e

rr
o

r
o

f
"X

"
b

y
H

u
n

g
ar

ia
n

SFBS
AoADMM

(d)

Figure 2: The performance of decomposing a tensor of dimension 10× 10× 10, of rank R = 3

under the membership to the simplex set constraint over all loading factors and coefficient

vector. For noiseless data, ζ, average number, initialization number, iterations max-number

and the parameter in line 9 of Algorithm 4, e, are set to 10−8, 10, 10, 20000 and 1.5, respec-

tively. (a): The relative reconstruction error (ε) with noiseless data. (b): Comparison of the

estimation of matrix X in the same experiment as Fig. 2.a.

For noisy data, SNR, ζ, average number, initialization number, iterations max-number and

the parameter in line 9 of Algorithm 4, e, are set to 10 dB, 10−8, 200, 20, 1000 and 1.5,

respectively. (c): The relative reconstruction error (ε) with noisy data. (d): Comparison of

the estimation of matrix X in the same experiment as Fig. 2.c.

19

number of words and K the number of topics. The conditional probability of

each word ud of the dictionary Ω, given a particular topic, h = k, is denoted by

fk(d) = Prob(x = ud|h = k).

In the sequel, the second order moment, Pm
def
= Ex{xp ⊗ xq}, and third320

order moments, Tm
def
= Ex{xp⊗xq ⊗xr}, will be needed, where Pm is a D×D

symmetric matrix and Tm is a D ×D ×D symmetric tensor. x` is encoded to

ud, and as in [5], ud is chosen as the columns of the D × D identity matrix.

Because of this choice for ud and some other simplifying assumptions mentioned

in [5], these moments exhibit the relations Pm =
∑K
k=1 ϕk ak ⊗ ak and Tm =325 ∑K

k=1 ϕk ak ⊗ ak ⊗ ak, where ak constructs the kth column of a matrix, say

matrix A. Observe that third order moments have an exact CP decomposition

of the form Tm = Jϕ;A,A,AK.

By doing14 some pre-processing steps15 on a corpus (i.e., a bunch of docu-

ments) and by keeping the words with more than 20% of the term-document330

frequency (i.e., the frequency of each word in the corpus), a dictionary of size

14×14 (D = 14 words) is obtained. Then, by decomposing the estimated Pm and

Tm, a pair of estimated probabilities (ϕ14,A14×14) is acquired. Since the tensor

Power method [5] cannot handle K > D, we set the input rank R = K = 14.

In the sequel, it is shown experimentally, even with this unfavorable value16,335

constrained CP decompositions, such as SFBS, performs better.

Although in this corpus, the number of documents for all the topics is almost

the same (which means that ϕ is expected to have a distribution close to the

uniform one), the estimated ϕ by the tensor Power method [5], i.e., ϕ̂Power, is

not only non-uniform, but also is not a probability distribution at all, since it

14We used “nltk”, “Gensim” and an implemented example available online [34].
15Some steps include removing stop words, punctuations and unnecessary characters, etc.
16Constrained CP decomposition results are much better for 14 < K ≤ 20 due to the fact

that 20 topics exist in the considered data set.

20

does not lie in the probability simplex (i.e., sum to one):

ϕ̂Power = [0.00, 0.02, 0.14, 0.03, 0.08, 0.26, 0.39,

0.35, 0.65,302.89, 1.01, 0.87, 8.30, 0.95]T .

As it can be observed in ϕ̂Power, its tenth element, which is in bold, dominates

the others, which could be the consequence of rounding errors. Even if one

projects ϕ̂Power to the simplex set to obtain ϕ̂Power-proj, it would be meaningless

according to the fact that “ϕ is expected to have a distribution close to the

uniform”, but we have: ϕ̂Power-proj =
[
0, 0, 0, 0, 0, 0, 0, 0, 0,1, 0, 0, 0, 0

]T
. On the

other hand, the estimated ϕ by SFBS, i.e., ϕ̂SFBS, is as follows:

ϕ̂SFBS = [0.10, 0.08, 0.09, 0.09, 0.10, 0.04, 0.02,

0.05, 0.06, 0.01, 0.06, 0.09, 0.08, 0.12]T ,

which is closer to uniform distribution than ϕ̂Power-proj. This again proves that

applying constrained tensor decomposition is more reliable than unconstrained

one.

In order to compare the performances on this real text data set, the ground340

truth values of ϕ and A are needed. To do this, we select a portion of 20 News-

group data set (four topics, namely “computer graphics”, “baseball”, “cryp-

tography” and “Christianity”), and by keeping the words with term-frequency

between 20% and 50%, a dictionary with D = 17 words and a corpus containing

1690 documents are obtained. To calculate the ground truth values of ϕ, we345

divide the number of documents belonging to each topic by 1690. To calculate

the ground truth of A, we divide the occurrences of each word in the documents

belonging to a topic by the total number of words in those documents.

By setting the input rank of all the algorithms to K = 4, ϕ̂4 and Â
17×4

are

estimated and compared to the ground truth values. The performances are re-350

ported in Table 1, which shows that tensor Power method and Projected Power

method in estimating ϕ perform much worse than constrained algorithms; how-

21

Table 1: Performances of estimating ϕ and A. This experiment is carried out using 20

Newsgroups data set.

Algorithm Error of ϕ̂ Error of Â

Power method 0.855 0.449

Projected Power method 0.942 0.449

Simplex SFBS 0.629 0.467

Simplex AO-ADMM 0.579 0.479

ever, the estimation of A is a bit better17. In addition, constrained algorithms,

such as SFBS, perform properly in both estimating ϕ and A.

4.3. Discussion355

Concerning constrained algorithms, the convergence of AO employed in AO-

ADMM [10] is not guaranteed because of ignoring the proximal regularization,

and, for the non-convex constraint `0, the convergence of ADMM has not yet

been proved, whereas the convergence of SFBS is proved in Appendix B.

SFBS performs better than APG in noisy cases (cf. Fig. 1.d), while it is360

also computationally less expensive (because the calculation of coefficients is

avoided), unlike APG. Moreover, BC-VMFB [13] force the user to adjust sev-

eral parameters that have an important impact on the result, while the only

parameter of SFBS is e, which appears in line 4 of Algorithm 3 or line 9 in

Algorithm 4, for which we provided a proper range ([1.5, 1.9]) based on our365

experiments.

Concerning unconstrained algorithms, SFBS is much more robust against

additive noise than Nway [9] or the tensor Power method [5]. Moreover, the

tensor Power method and its variants does not have any convergence guarantee

for an odd-order tensor (including the tensor of third order moments), whereas370

17This is probably due to the L2 normalization of the columns of Â and storing them as

the estimation of ϕ (cf. [5]). However, the non-normalized ϕ̂ may suffer from rounding errors.

22

the convergence of SFBS is proved in Appendix B. More importantly, another

critical drawback of the tensor Power method in face of real text data sets is the

dominant estimated element (i.e., a very large element in ϕ, which drops out

ϕ from the simplex set), and this problem cannot be solved with a projection

onto the simplex set, as the Projected Power method does.375

5. Conclusion and perspectives

In this paper, constrained tensor decompositions based on proximal ap-

proaches are investigated. It is discussed that the state-of-the-art algorithms

either (i) suffer from a lack of complete convergence guarantee (e.g., AO-

ADMM18 [10]) or (ii) suffer from a poor performance against additive noise380

(e.g., APG [11]), or (iii) force the user to adjust several parameters (e.g., BC-

VMFB [13]), or (iv) are unable to decompose all kinds of tensors (e.g., the tensor

Power method [5] is limited to symmetric tensors whose ranks are smaller than

their dimensions).

Our constrained tensor decomposition, SFBS, is based on Forward-Backward385

Splitting, and performs either better than or as well as AO-ADMM [10]. Fur-

thermore, there exists a complete convergence proof for SFBS, which is not the

case for AO-ADMM. SFBS performs also better than APG [11] in noisy cases

and computationally costs less than APG, because the calculation of coefficients

tk and λk is avoided, unlike APG. In spite of BC-VMFB [13], SFBS requires to390

adjust only one parameter (the parameter in line 4 of Algorithm 3, e), which is

easy to set according to the convergence condition.

Compared to unconstrained algorithms such as the tensor Power method [5],

not only SFBS performs better and is much more robust against additive noise,

but also enjoys theoretical convergence guarantees. Moreover, it is ensured that395

the probabilities estimated by SFBS always lie in the probability simplex, unlike

18The convergence of AO in AO-ADMM is not guaranteed due to ignoring the proximal

regularization. Moreover, the convergence analysis of ADMM for the non-convex constraint

`0 has not yet been proved.

23

the tensor Power method. However, unconstrained algorithms converge much

faster than iterative algorithms including SFBS.

Working with large dimension tensors is a big challenge, as most iterative

constrained algorithms are very time consuming, hence, intractable in practice.400

CPRAND [35] is an unconstrained CP decomposition, which is suitable for large

dimensions, since it employs the sample Khatri-Rao function, sketching data for

the calculation of Khatri-Rao products. Therefore, a future extension of SFBS

would be to use the sample Khatri-Rao function of CPRAND in each iteration

of SFBS.405

Appendix A. Lipschitz constant

Let h(A(n)) ,
1

2
‖T (n) − A(n)W ‖2F , where W = (A(N) � . . . � A(n+1) �

A(n−1) � . . .�A(1))T . We show that h(A(n)) is β-Lipschitz gradient by calcu-

lating the corresponding Lipschitz constant of ∇A(n)h(A(n)), as follows:

‖∇A(n)h(X)−∇A(n)h(Y)‖F ≤ β‖X − Y ‖F ⇒

‖(X − Y)WW T ‖F ≤ β‖X − Y ‖F ⇒ β = max
‖(X − Y)WW T ‖F
‖X − Y ‖F

.

Note that the definition of “spectral norm” of a matrix is [22]: ‖A‖σ ,

max‖X‖F 6=0
‖AX‖F
‖X‖F

, which is equal to the maximum singular value of A with

X as a matrix. Therefore, we have: β = ‖WW T ‖σ.

Appendix B. Convergence analysis410

Since SFBS utilizes AO (to be exact, ALS), the convergence analysis of SFBS

is firstly studied for AO in Appendix B.1, and then, the convergence guarantee

of each step of AO is investigated in Appendix B.2.

Appendix B.1. The convergence of AO with Proximal Minimization

We refer the overall convergence of SFBS to the analysis performed in [36],

namely, Proximal Alternating Linearized Minimization (PALM), which is suit-

able for the algorithm based on Proximal Forward-Backward. Let us rewrite (5)

24

in an unconstrained manner as follows:

Ψ(λ;A(1),A(2), . . . ,A(N)) = fd(λ;A(1),A(2), . . . ,A(N))+

N∑
n=1

rE(A(n))+rE(λ),

(B.1)

where rE(.) or rE(λ) could be indicator functions or `p norm, depending on the415

constraints on A(n) and λ, and fd(.) is the differentiable quadratic fidelity term,

i.e., fd(λ;A(1),A(2), . . . ,A(N)) =
1

2
‖T − Jλ;A(1),A(2), . . . ,A(N)K‖2F .

In the sequel, we shall explain how SFBS satisfies the required assumptions

of PALM by considering (B.1). Some classes of functions that satisfy the KL

property are summarized in [11, Section 2.2], among which semi-algebraic func-420

tions are practical in the following explanation. Here, we suffice to mention

some critical properties of semi-algebraic functions:

1- The sum of semi-algebraic functions is semi-algebraic.

2- The sum of a polynomial and a semi-algebraic function is semi-algebraic.

3- The indicator functions of a polyhedral set (such as a non-negative set425

and the probability simplex) is semi-algebraic.

4- Not only `1, `2, `∞ norms are semi-algebraic, but also the sum of `0 pseudo-

norm and a polynomial is semi-algebraic [18, Example 5.4].

Listed below are the PALM assumptions [36] along with our own justifications

to show how SFBS meets the required PALM assumptions:430

Assumption 1 (i): rE(.) and rE(λ) in (B.1) are proper and lower semi-continuous (lsc).

Justification: rE(.) and rE(λ) are are proper based on definition

of proper functions (cf. Theorem 1). In addition, indicator functions

and `p norm are lsc (cf. the definition in [22, Definition 1.5].

(ii): fd is a C1 function (the class of functions with first order differen-435

tiability). Justification: since fd is quadratic, therefore it is a C2

function, and hence it is a C1 function.

Assumption 2 (i): inf Ψ(.) > −∞, inf rE(.) > −∞, inf rE(λ) > −∞. Justification:

fd ≥ 0, rE(.) ≥ 0, rE(λ) ≥ 0.

25

(ii): fd is globally Lipschitz (see [36] for a detailed definition). Justifica-440

tion: since fd is quadratic, it is globally Lipschitz.

(iii): The inequalities (3.5) and (3.6) from [36] are trivially fulfilled. Jus-

tification: Assumption 2 (ii) is satisfied (cf. [36, Remark 3 (iii)]).

(iv): The inequality (3.7) from [36] is satisfied for fd, whenever fd is a C2

function (cf. [36, Remark 3 (iv)]). Justification: as fd is quadratic,445

it is a C2 function.

Assumption 3 Ψ(.) defined in (B.1) satisfies the KL property. Justification: according

to the above-mentioned properties of semi-algebraic functions, the indica-

tor function of a polyhedral set (such as non-negativity and the member-

ship to the simplex set) and `p norm (p = 0, 1, 2,∞) are semi-algebraic.450

In addition, Ψ(.) is semi-algebraic as it is the sum of a polynomial and a

semi-algebraic function. Therefore, Ψ(.) satisfies the KL.

Appendix B.2. The convergence of each step of AO in SFBS

Each step of AO in SFBS is Forward-Backward Splitting, whose convergence

is proved in [18]. This proof is not only applicable for continuous and convex455

functions, but also is usable for non-smooth and non-convex ones. According to

the analysis in [18], the objective function in each step, should be a proper and

lsc function, which has the KL property and is bounded from below. As men-

tioned before, (7) is proper (cf. Theorem 1) and lsc, since 1
2‖T

(n) −A(n)W ‖2F
is continuous and the regularization term is lsc based on Assumption 1 (i).460

Finally, (7) is bounded from below, and satisfies KL according to the semi-

algebraic function properties.

The only assumption of the convergence analysis in [18] to be discussed is

generating a bounded sequence by SFBS. The assumptions that guarantee the

boundedness of generated sequence is discussed in [37, Remark 5]. For instance,465

the coercivity [22, Definition 3.25] of the objective function is simply sufficient to

obtain a bounded sequence from SFBS. A function is coercive, if it is bounded

26

from below on bounded sets and lim inf |x|→∞
f(x)

x
= ∞. It can be observed

that (7) is coercive.

[1] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of470

products, Journal of Mathematics and Physics 6 (1-4) (1927) 164–189.

[2] P. Comon, Tensors: a brief introduction, IEEE Sig. Proc. Magazine 31 (3)

(2014) 44–53.

[3] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-

akis, C. Faloutsos, Tensor decomposition for signal processing and machine475

learning, IEEE Transactions on Signal Processing 65 (13) (2017) 3551–3582.

[4] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,

H. A. Phan, Tensor decompositions for signal processing applications: From

two-way to multiway component analysis, IEEE signal processing magazine

32 (2) (2015) 145–163.480

[5] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, M. Telgarsky, Tensor de-

compositions for learning latent variable models, J. Machine Learning Re-

search 15 (2014) 2773–2832.

[6] E. Sobhani, P. Comon, C. Jutten, M. Babaie-Zadeh, Text mining with

constrained tensor decomposition, in: International Conference on Machine485

Learning, Optimization, and Data Science (LOD), Springer, 2019, pp. 219–

231. doi:978-3-030-37599-7_19.

[7] A. Cichocki, R. Zdunek, A. H. Phan, S.-i. Amari, Nonnegative matrix and

tensor factorizations: applications to exploratory multi-way data analysis

and blind source separation, John Wiley & Sons, 2009.490

[8] S.-H. Hsieh, C.-S. Lu, S.-C. Pei, 2d sparse dictionary learning via tensor

decomposition, in: 2014 IEEE Global Conference on Signal and Information

Processing (GlobalSIP), IEEE, 2014, pp. 492–496.

27

http://dx.doi.org/978-3-030-37599-7_19

[9] B. W. Bader, T. G. Kolda, et al., Matlab tensor toolbox version 2.6, Avail-

able online (February 2015).495

URL http://www.sandia.gov/~tgkolda/TensorToolbox/

[10] K. Huang, N. D. Sidiropoulos, A. P. Liavas, A flexible and efficient algo-

rithmic framework for constrained matrix and tensor factorization, IEEE

Transactions on Signal Processing 64 (19) (2016) 5052–5065.

[11] Y. Xu, W. Yin, A block coordinate descent method for regularized multi-500

convex optimization with applications to nonnegative tensor factorization

and completion, SIAM Journal on imaging sciences 6 (3) (2013) 1758–1789.

[12] Y. Zhang, G. Zhou, Q. Zhao, A. Cichocki, X. Wang, Fast nonnegative

tensor factorization based on accelerated proximal gradient and low-rank

approximation, Neurocomputing 198 (2016) 148–154.505

[13] X. Vu, C. Chaux, N. Thirion-Moreau, S. Maire, A proximal approach for

nonnegative tensor decomposition, in: International Conference on Latent

Variable Analysis and Signal Separation, Springer, 2017, pp. 201–210.

[14] Y. Wang, W. Yin, J. Zeng, Global convergence of admm in nonconvex

nonsmooth optimization, Journal of Scientific Computing 78 (1) (2019)510

29–63.

[15] X. Fu, S. Ibrahim, H.-T. Wai, C. Gao, K. Huang, Block-randomized

stochastic proximal gradient for low-rank tensor factorization, IEEE Trans-

actions on Signal Processing 68 (2020) 2170–2185.

[16] P. L. Combettes, J.-C. Pesquet, Proximal splitting methods in signal pro-515

cessing, in: Fixed-point algorithms for inverse problems in science and

engineering, Springer, 2011, pp. 185–212, ch.10.

[17] N. Parikh, S. Boyd, Proximal algorithms, Foundations and Trends in opti-

mization 1 (3) (2014) 127–239.

28

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/

[18] H. Attouch, J. Bolte, B. F. Svaiter, Convergence of descent methods for520

semi-algebraic and tame problems: proximal algorithms, forward–backward

splitting, and regularized gauss–seidel methods, Mathematical Program-

ming 137 (1-2) (2013) 91–129.

[19] P. Comon, Tensor decompositions—state of the art and applications,

keynote address in ima conf, Mathematics in Signal Processing, Warwick,525

UK 375.

[20] L. Chiantini, G. Ottaviani, N. Vannieuwenhoven, An algorithm for generic

and low-rank specific identifiability of complex tensors, SIAM Journal on

Matrix Analysis and Applications 35 (4) (2014) 1265–1287.

[21] Y. Censor, S. A. Zenios, et al., Parallel optimization: Theory, algorithms,530

and applications, Oxford University Press on Demand, 1997.

[22] R. T. Rockafellar, R. J.-B. Wets, Variational analysis, Vol. 317, Springer

Science & Business Media, 2009.

[23] J.-J. Moreau, Fonctions convexes duales et points proximaux dans un es-

pace hilbertien, Comptes Rendus Acad. Sciences Paris Serie A Math. 255535

(1962) 2897–2899.

[24] R. Rockafellar, Convex analysis in the calculus of variations, in: Advances

in Convex Analysis and Global Optimization, Springer, 2001, pp. 135–151.

[25] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-

backward splitting, Multiscale Modeling & Simulation 4 (4) (2005) 1168–540

1200.

[26] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for

linear inverse problems, SIAM journal on imaging sciences 2 (1) (2009)

183–202.

[27] L. Condat, Fast projection onto the simplex and the `1 ball, Mathematical545

Programming 158 (1-2) (2016) 575–585.

29

[28] K. Huang, AO-ADMM-Code @ONLINE, https://www.catalyzex.com/

paper/arxiv:1506.04209#clicktoread/ (Oct. 2015).

[29] Y. Xu, W. Yin, APG-Code @ONLINE, https://xu-yangyang.github.

io/BCD/ (2013).550

[30] R. Bro, H. A. Kiers, A new efficient method for determining the number

of components in parafac models, Journal of Chemometrics: A Journal of

the Chemometrics Society 17 (5) (2003) 274–286.

[31] H. W. Kuhn, The hungarian method for the assignment problem, Naval

research logistics quarterly 2 (1-2) (1955) 83–97.555

[32] E. Sobhani, P. Comon, C. Jutten, M. Babaie-Zadeh, Corrindex: a permu-

tation invariant performance index, Signal Processing (2022) 108457.

[33] K. Nigam, 20 Newsgroups data sets @ONLINE, http://www.cs.cmu.edu/

~TextLearning/datasets.html (Feb. 2000).

[34] S. Prabhakaran, Pre-processing steps @ONLINE, https://www.560

machinelearningplus.com/nlp/topic-modeling-gensim-python/

#20topicdistributionacrossdocuments (Mar. 2018).

[35] C. Battaglino, G. Ballard, T. G. Kolda, A practical randomized cp tensor

decomposition, SIAM Journal on Matrix Analysis and Applications 39 (2)

(2018) 876–901.565

[36] J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimiza-

tion for nonconvex and nonsmooth problems, Mathematical Programming

146 (1-2) (2014) 459–494.

[37] H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Proximal alternating min-

imization and projection methods for nonconvex problems: An approach570

based on the kurdyka- lojasiewicz inequality, Mathematics of operations re-

search 35 (2) (2010) 438–457.

30

https://www.catalyzex.com/paper/arxiv:1506.04209#clicktoread/
https://www.catalyzex.com/paper/arxiv:1506.04209#clicktoread/
https://www.catalyzex.com/paper/arxiv:1506.04209#clicktoread/
https://xu-yangyang.github.io/BCD/
https://xu-yangyang.github.io/BCD/
https://xu-yangyang.github.io/BCD/
http://www.cs.cmu.edu/~TextLearning/datasets.html
http://www.cs.cmu.edu/~TextLearning/datasets.html
http://www.cs.cmu.edu/~TextLearning/datasets.html
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/#20topicdistributionacrossdocuments
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/#20topicdistributionacrossdocuments
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/#20topicdistributionacrossdocuments
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/#20topicdistributionacrossdocuments
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/#20topicdistributionacrossdocuments

	Introduction
	Preliminaries
	Tensors and CP decomposition
	Proximity operator
	Forward-Backward Splitting

	Proposed: Simple Forward-Backward Splitting (SFBS)
	Simulation
	Synthetic data
	Non-negativity constraint
	Simplex constraint

	Real data
	Discussion

	Conclusion and perspectives
	Lipschitz constant
	Convergence analysis
	The convergence of AO with Proximal Minimization
	The convergence of each step of AO in SFBS

